CN114699998A - 一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法 - Google Patents

一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法 Download PDF

Info

Publication number
CN114699998A
CN114699998A CN202210377848.0A CN202210377848A CN114699998A CN 114699998 A CN114699998 A CN 114699998A CN 202210377848 A CN202210377848 A CN 202210377848A CN 114699998 A CN114699998 A CN 114699998A
Authority
CN
China
Prior art keywords
composite nano
nano material
noble metal
metal particle
hydrogen bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210377848.0A
Other languages
English (en)
Other versions
CN114699998B (zh
Inventor
程劼
刘雅玲
王培龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhikong Shanghai Biotechnology Co ltd
Original Assignee
Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS filed Critical Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Priority to CN202210377848.0A priority Critical patent/CN114699998B/zh
Publication of CN114699998A publication Critical patent/CN114699998A/zh
Application granted granted Critical
Publication of CN114699998B publication Critical patent/CN114699998B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法,首先称取一定量的配体和聚乙烯吡咯烷酮PVP,溶于混合有机溶剂中;向所得到的混合溶液中加入一定量的甲酸和氯金酸,并涡旋混合;将混合体系置于烘箱中,在高温条件下进行反应;在反应完成后,将混合体系取出静置到室温,取下层絮状沉淀于样品瓶中,并于4000rpm的离心机上离心4min,弃去上清液;再加入等体积的甲醇进行清洗,于4000rpm的离心机上离心4min,弃去上清液,重复此过程,取下层沉淀物作为复合纳米材料。该方法精确控制“一核一壳”的单元结构,提高核壳产率,避免出现“一壳多核”或者“无法包覆”的现象。

Description

一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法
技术领域
本发明涉及聚合物制备技术领域,尤其涉及一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法。
背景技术
目前,氢键有机框架(Hydrogen-bonded Organic Framework,HOF)材料是一种以有机配体作为连接体,通过有序组装制备的多孔配位聚合物,由于其特有的物理化学性质,如大比表面积,孔径可调,性质稳定等,近年来在气体储存、气体分离、异相催化和传感分析等方面有较多的研究报道。表面增强拉曼光谱(Surface Enhanced-Raman Spectroscopy,SERS)技术是基于贵金属纳米结构(如金纳米颗粒,Au nanoparticle,AuNP)的表面等离子体共振效应和电荷转移增强机制的,实现对目标分子指纹高灵敏识别的分析技术,它可实现在单分子水平上的超痕量传感检测,已经应用于环境、食品及农产品中危害物的分析检测。
现有的研究报道仅仅是利用HOF材料对目标物进行富集,或是通过HOF材料对目标物进行荧光检测,但并没有将HOF和AuNP进行结合制备Au@HOF-20型复合材料的工艺手段。
发明内容
本发明的目的是提供一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法,所解决的技术问题是:如何制备核壳型基底,如何优化HOF-20配体、金源以及还原剂的配比,如何调控反应温度和反应时间,从而精确控制“一核一壳”的单元结构,提高核壳产率,避免出现“一壳多核”或者“无法包覆”的现象,提高传感材料的分析稳定性和传感灵敏度。
本发明的目的是通过以下技术方案实现的:
一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法,所述方法包括:
步骤1、称取一定量的配体和聚乙烯吡咯烷酮PVP,溶于混合有机溶剂中;其中,所述配体为5-(2,6-双(4-羧苯基)吡啶-4-取代)间苯二甲酸;
步骤2、向步骤1所得到的混合溶液中加入一定量的甲酸和氯金酸,并涡旋混合;
步骤3、将步骤2的混合体系置于烘箱中,在高温条件下进行反应;
步骤4、在反应完成后,将混合体系取出静置到室温,取下层絮状沉淀于样品瓶中,并于4000rpm的离心机上离心4min,弃去上清液;
步骤5、再加入与下层絮状沉淀等体积的甲醇进行清洗,于4000rpm的离心机上离心4min,弃去上清液,重复此过程,取下层沉淀物作为复合纳米材料;所述复合纳米材料作为SERS分析用的传感基底。
由上述本发明提供的技术方案可以看出,上述制备方法以HOF材料(以下简称HOF-20)为壳,AuNP为核的“核/壳”复合纳米材料(Au@HOF-20),利用壳层HOF-20具有规则有序的多孔结构实现对目标分子的富集,同时利用核层AuNP的SERS活性,来实现对目标物的高性能SERS传感分析,提高了传感材料的分析稳定性和传感灵敏度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的氢键有机框架包覆贵金属粒子复合纳米材料的制备方法流程示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,这并不构成对本发明的限制。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
如图1所示为本发明实施例提供的氢键有机框架包覆贵金属粒子复合纳米材料的制备方法流程示意图,所述方法包括:
步骤1、称取一定量的配体和聚乙烯吡咯烷酮PVP,溶于混合有机溶剂中;其中,所述配体为5-(2,6-双(4-羧苯基)吡啶-4-取代)间苯二甲酸;
在该步骤中,所述配体用量为2.5mg;所述聚乙烯吡咯烷酮PVP的用量为1.2g;
所述混合有机溶剂是二甲基甲酰胺DMF与乙醇体积比5:3的混合溶剂。具体实现中,混合有机溶剂(二甲基甲酰胺(DMF):乙醇=5:3,V/V)将决定核壳结构的产率。这里,DMF用来充当金源的还原剂,而乙醇用来改变Au周边微环境,有利于形成一核一壳的微结构。如果固定氯金酸HAuCl4用量为600μl,乙醇用量为3mL时,当二甲基甲酰胺(DMF):乙醇小于5:3(V/V),所形成的Au核尺寸过大,不利用HOF-20结构的包覆,形成的核壳结构单元产率小于40%;当二甲基甲酰胺(DMF):乙醇大于5:3(V/V)时,形成的核壳结构单元产率小于50%,故本申请所限定的二甲基甲酰胺DMF与乙醇体积比5:3的混合溶剂是经过反复测试所得出的体积比,能得到最优的核壳结构单元产率。
步骤2、向步骤1所得到的混合溶液中加入一定量的甲酸和氯金酸,并涡旋混合。
在该步骤中,所加入的氯金酸HAuCl4用量为600μl;所加入的甲酸用量为300μl。
具体实现中,配体用量、氯金酸HAuCl4用量以及聚乙烯吡咯烷酮PVP三者的配比决定了核壳材料中壳层HOF-20的厚度,以及AuNP核层尺寸。具体来说,当配体的用量(mg):氯金酸用量(1%,μl)大于2.5:600时,形成的HOF-20核层厚度太薄(<1nm),或者无法形成Au@HOF-20的核壳结构;而PVP的用量(g)与氯金酸的用量(1%,μl)比例固定在1.2:600时,反应过程中的AuNP可以有效分散,有利于一核一壳单元结构的形成,HOF-20厚度约为3nm,Au核尺寸40~60nm,故上述所限定的配比能够带来最优的壳层HOF-20厚度,以及AuNP核层尺寸。
步骤3、将步骤2的混合体系置于烘箱中,在高温条件下进行反应;
在该步骤中,具体是于100℃高温条件下反应3h。
具体实现中,反应温度和反应时间将决定传感分析的灵敏度和稳定性。具体来说,当反应温度不足100℃,反应时间不足3h时,壳层HOF-20的无法实现对Au核的包覆,无法形成Au@HOF-20的核壳结构,其对靶标物的传感分析灵敏度和稳定性大大下降,如对双酚E的分析灵敏度低于100ppm,稳定性不足7days;而当反应温度过高(>100℃),反应时间过长(>3h)时,形成的HOF-20壳层的厚度太厚(一般>3nm),同样也不利于传感分析的灵敏度和稳定性,如对双酚E的分析灵敏度低于100ppm,稳定性不足7days。故上述所限定的反应温度(100℃)和反应时间(3h)能有效提高传感分析的灵敏度和稳定性,具有积极的有益效果。
步骤4、在反应完成后,将混合体系取出静置到室温,取下层絮状沉淀于样品瓶中,并于4000rpm的离心机上离心4min,弃去上清液;
步骤5、再加入与下层絮状沉淀等体积的甲醇进行清洗,于4000rpm的离心机上离心4min,弃去上清液,重复此过程,取下层沉淀物作为复合纳米材料。
这里,所述复合纳米材料作为SERS(Surface Enhanced-Raman Spectroscopy,表面增强拉曼光谱)分析用的传感基底。
另外,具体实现中,若需要对待测样品进行分析,则将所述传感基底滴在硅片上或者直接放在样品瓶中;
再加入待测样品进行拉曼散射信号采集,根据目标物的特征拉曼位移对待测样品进行定性或定量分析。
上述所制备的复合纳米基底材料可用于水体、牛奶等样品中痕量化合物(如农药、抗生素和二噁英、双酚类等环境内分泌干扰物)的高灵敏SERS传感分析。
值得注意的是,本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。本文背景技术部分公开的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。

Claims (5)

1.一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法,其特征在于,所述方法包括:
步骤1、称取一定量的配体和聚乙烯吡咯烷酮PVP,溶于混合有机溶剂中;其中,所述配体为5-(2,6-双(4-羧苯基)吡啶-4-取代)间苯二甲酸;
步骤2、向步骤1所得到的混合溶液中加入一定量的甲酸和氯金酸,并涡旋混合;
步骤3、将步骤2的混合体系置于烘箱中,在高温条件下进行反应;
步骤4、在反应完成后,将混合体系取出静置到室温,取下层絮状沉淀于样品瓶中,并于4000rpm的离心机上离心4min,弃去上清液;
步骤5、再加入与下层絮状沉淀等体积的甲醇进行清洗,于4000rpm的离心机上离心4min,弃去上清液,重复此过程,取下层沉淀物作为复合纳米材料;所述复合纳米材料作为SERS分析用的传感基底。
2.根据权利要求1所述氢键有机框架包覆贵金属粒子复合纳米材料的制备方法,其特征在于,
在步骤1中,所述配体用量为2.5mg;所述聚乙烯吡咯烷酮PVP的用量为1.2g;
所述混合有机溶剂是二甲基甲酰胺DMF与乙醇体积比5:3的混合溶剂。
3.根据权利要求1所述氢键有机框架包覆贵金属粒子复合纳米材料的制备方法,其特征在于,在步骤2中,所加入的氯金酸HAuCl4用量为600μl;
所加入的甲酸用量为300μl。
4.根据权利要求1所述氢键有机框架包覆贵金属粒子复合纳米材料的制备方法,其特征在于,在步骤3中,具体是于100℃高温条件下反应3h。
5.根据权利要求1所述氢键有机框架包覆贵金属粒子复合纳米材料的制备方法,其特征在于,所述方法还包括:
将所述传感基底滴在硅片上或者直接放在样品瓶中;
再加入待测样品进行拉曼散射信号采集,根据目标物的特征拉曼位移对待测样品进行定性或定量分析。
CN202210377848.0A 2022-04-12 2022-04-12 一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法 Active CN114699998B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210377848.0A CN114699998B (zh) 2022-04-12 2022-04-12 一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210377848.0A CN114699998B (zh) 2022-04-12 2022-04-12 一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN114699998A true CN114699998A (zh) 2022-07-05
CN114699998B CN114699998B (zh) 2023-04-25

Family

ID=82173586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210377848.0A Active CN114699998B (zh) 2022-04-12 2022-04-12 一种氢键有机框架包覆贵金属粒子复合纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN114699998B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180274013A1 (en) * 2015-09-23 2018-09-27 Nanyang Technological University Metal-organic framework nanosheet
US20200179916A1 (en) * 2017-04-28 2020-06-11 Cambridge Enterprise Limited Composite Metal Organic Framework Materials, Processes for Their Manufacture and Uses Thereof
CN111269430A (zh) * 2020-02-21 2020-06-12 安徽农业大学 一种空心核壳结构金属-有机骨架材料的制备方法和应用
CN111318687A (zh) * 2020-02-29 2020-06-23 上海燊铭检测技术有限公司 一种氨基功能化金纳米核壳结构mof-5及其制备方法
CN112958038A (zh) * 2021-02-08 2021-06-15 中国农业科学院农业质量标准与检测技术研究所 一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法
CN113000853A (zh) * 2021-02-23 2021-06-22 中国农业科学院农业质量标准与检测技术研究所 一种精准调控纳米核-壳结构的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180274013A1 (en) * 2015-09-23 2018-09-27 Nanyang Technological University Metal-organic framework nanosheet
US20200179916A1 (en) * 2017-04-28 2020-06-11 Cambridge Enterprise Limited Composite Metal Organic Framework Materials, Processes for Their Manufacture and Uses Thereof
CN111269430A (zh) * 2020-02-21 2020-06-12 安徽农业大学 一种空心核壳结构金属-有机骨架材料的制备方法和应用
CN111318687A (zh) * 2020-02-29 2020-06-23 上海燊铭检测技术有限公司 一种氨基功能化金纳米核壳结构mof-5及其制备方法
CN112958038A (zh) * 2021-02-08 2021-06-15 中国农业科学院农业质量标准与检测技术研究所 一种基于纳米粒子/金属有机框架的核-壳结构纳米材料的制备方法
CN113000853A (zh) * 2021-02-23 2021-06-22 中国农业科学院农业质量标准与检测技术研究所 一种精准调控纳米核-壳结构的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JI-FEI FENG ET AL.: ""Fabrication of Lanthanide-Functionalized Hydrogen-Bonded Organic Framework Films for Ratiometric Temperature Sensing by Electrophoretic Deposition"", 《ACS APPLIED MATERIALS & INTERFACES》 *
MONAKOHANTORABI ET AL.: ""Cyclohexene oxidation catalyzed by flower-like core-shell Fe3O4@Au/metal organic frameworks nanocomposite"", 《MATERIALS CHEMISTRY AND PHYSICS》 *

Also Published As

Publication number Publication date
CN114699998B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
Liu et al. Recent advances in sensors for tetracycline antibiotics and their applications
Wang et al. Highly sensitive and automated surface enhanced Raman scattering-based immunoassay for H5N1 detection with digital microfluidics
Zhang et al. Biominerized gold-Hemin@ MOF composites with peroxidase-like and gold catalysis activities: a high-throughput colorimetric immunoassay for alpha-fetoprotein in blood by ELISA and gold-catalytic silver staining
Chen et al. Fe3O4@ PDA immune probe-based signal amplification in surface plasmon resonance (SPR) biosensing of human cardiac troponin I
Mohamad et al. Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles
Wu et al. Novel ratiometric surface-enhanced raman spectroscopy aptasensor for sensitive and reproducible sensing of Hg2+
Li et al. Nanomaterial-amplified chemiluminescence systems and their applications in bioassays
CN102206357B (zh) 一种sers标签微球及其制备方法
An et al. A novel molecularly imprinted electrochemical sensor based on Prussian blue analogue generated by iron metal organic frameworks for highly sensitive detection of melamine
CN106442436B (zh) 用于检测水中痕量4-硝基苯酚的磁性量子点印迹材料、制备方法及用途
Zhang et al. Application trends of nanofibers in analytical chemistry
Zhou et al. Highly selective detection of l-Phenylalanine by molecularly imprinted polymers coated Au nanoparticles via surface-enhanced Raman scattering
Jin et al. A lateral flow strip for on-site detection of tobramycin based on dual-functional platinum-decorated gold nanoparticles
Wang et al. Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications
Zhao et al. Chiroplasmonic assemblies of gold nanoparticles as a novel method for sensitive detection of alpha-fetoprotein
Wang et al. Visible-light induced photoelectrochemical biosensor for the detection of microRNA based on Bi 2 S 3 nanorods and streptavidin on an ITO electrode
Yang et al. Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots
Li et al. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe
Xian et al. Surface-modified paper-based SERS substrates for direct-droplet quantitative determination of trace substances
Chormey et al. Nanoflower synthesis, characterization and analytical applications: a review
Ge et al. Aptamer/derivatization-based surface-enhanced Raman scattering membrane assembly for selective analysis of melamine and formaldehyde in migration of melamine kitchenware
Li et al. Conformational sensitivity of surface selection rules for quantitative Raman identification of small molecules in biofluids
Geng et al. A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection
Zhang et al. Molecularly imprinted polymers-surface-enhanced Raman spectroscopy: State of the art and prospects
US20080118986A1 (en) Methods for amplifying the Raman signal of surface enhanced Raman scattering nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240507

Address after: 201400 1st floor, No. 281-289 (single), Lixin Road, Fengxian District, Shanghai

Patentee after: Zhikong (Shanghai) Biotechnology Co.,Ltd.

Country or region after: China

Address before: 100081 No. 12 South Main Street, Haidian District, Beijing, Zhongguancun

Patentee before: INSTITUTE OF QUALITY STANDARD AND TESTING TECHNOLOGY FOR AGRO-PRODUCTS, CHINESE ACADAMY OF AGRICULTURAL SCIENCES

Country or region before: China