CN112955359B - 一种车辆控制方法及装置 - Google Patents

一种车辆控制方法及装置 Download PDF

Info

Publication number
CN112955359B
CN112955359B CN202180000826.6A CN202180000826A CN112955359B CN 112955359 B CN112955359 B CN 112955359B CN 202180000826 A CN202180000826 A CN 202180000826A CN 112955359 B CN112955359 B CN 112955359B
Authority
CN
China
Prior art keywords
vehicle
traffic light
speed
light intersection
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202180000826.6A
Other languages
English (en)
Other versions
CN112955359A (zh
Inventor
朱盈璇
童传伟
张路刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202211110018.8A priority Critical patent/CN115675468A/zh
Publication of CN112955359A publication Critical patent/CN112955359A/zh
Application granted granted Critical
Publication of CN112955359B publication Critical patent/CN112955359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本申请实施例提供一种车辆控制方法及装置,用以实现对车辆的控制,以及在制动工况下尽可能多的回收制动能量,提高车辆的能量利用率,延长车辆的续航里程。该方法包括:获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf;若所述车辆通过红绿灯路口的工况为制动工况,根据所述第一车速vf和所述车辆前行驶的第二车速v0,确定所述车辆回收的制动能量;根据所述车辆回收的制动能量,控制所述车辆进行制动。

Description

一种车辆控制方法及装置
技术领域
本申请涉及智能汽车技术领域,尤其涉及一种车辆控制方法及装置。
背景技术
随着自动驾驶、车路协同和车云协同等技术的不断发展,车辆可以通过车载传感器、路侧设备和云端服务器获取车辆周围的感知信息。城市交通环境中,红绿灯路口通行是车辆面对的工况之一,车辆的车载传感器对红绿灯的感知易受光照、遮挡、距离等因素的影响,且无法获得红绿灯描述信息。
随着车路协同、车云协同等技术的发展,车辆可以通过路侧设备或云端服务器获取更全面和准确的感知信息,车辆可以提前根据红绿灯的状态和秒数,以及车辆的车速和车辆与红绿灯路口的距离,对车辆的行驶提前进行规划,使车辆安全平稳通过红绿灯路口。
目前基于车路协同的红绿灯路口车速控制方法,多为针对燃油汽车,而对于以电源作为动力的车辆的控制场景未给出解决方案。
发明内容
本申请实施例提供一种车辆控制方法及装置,用以实现对车辆的控制,以及在制动工况下尽可能多的回收制动能量,提高车辆的能量利用率,延长车辆的续航里程。
第一方面,提供一种车辆控制方法,包括:获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf;若所述车辆通过红绿灯路口的工况为制动工况,根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),确定所述车辆回收的制动能量;根据所述车辆回收的制动能量,控制所述车辆进行制动。
其中,所述车辆可以是纯电动汽车,或者可以是油电混合的车辆,或者可以是其他具有储能设备的车辆,在此不做限制。
通过上述方法,在对车辆进行车速规划控制时,在制动工况下考虑制动能量回收的因素,尽可能多的回收制动能量,提高车辆的能量利用率,延长车辆的续航里程。
在一个可能的设计中,在获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf时,可以根据所述车辆的行驶信息以及所述车辆所在区域的道路交通信息,构建车辆控制模型;基于所述车辆控制模型,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf。通过构建车辆控制模型,可以对车辆的车速进行更准确的规划控制。
在一个可能的设计中,所述车辆控制模型包括以下一种或多种:车辆动力学模型,物理约束模型,边界约束模型和所述车辆控制模型的优化目标。在车辆控制中考虑不同的模型和优化目标,可以提高乘客乘车的舒适度和安全性,以及提高道路的整体通行效率。
所述物理约束模型包括所述车辆的车速约束模型,和/或所述车辆的加速度约束模型。
所述边界约束模型用于约束所述车辆不与所述车辆行驶前方车辆相撞。
所述车辆模型的优化目标包括以下一种或多种:所述车辆通过红绿灯路口的效率评价指标,安全评价指标,舒适度评价指标,和车辆能量回收指标。
在一个可能的设计中,在获取车辆的行驶信息以及所述车辆所在区域的道路交通信息时,可以获取所述车辆的采集模块采集到的行驶信息,以及在路侧设备或云端服务器中获取所述车辆所在区域的道路交通信息。这样可以获取到更加精准、实时、可靠的路况信息,提高所述车辆的感知范围,增强所述车辆的感知能力。
在一个可能的设计中,在工况为制动工况时,所述车辆模型的优化目标包括所述车辆能量回收指标。通过考虑所述车辆能量回收指标,可以提高车辆的能量利用率,延长车辆的续航里程。
在一个可能的设计中,在工况为制动工况时,所述车辆的制动加速度a(t)满足以下条件:amin≤az≤a(t)≤amax,amin为所述车辆的最小加速度,amax为所述车辆的最大加速度,az为与所述车辆制动强度Z相关的加速度。当车辆的制动加速度大于az,且车辆处于非紧急制动时,在制动工况下,避免车辆紧急制动,可以尽可能多的回收制动能量。
在一个可能的设计中,所述车辆控制模型的优化目标与以下一个或多个信息有关:所述车辆的速度、所述车辆的位置、所述车辆的加速度、或所述车辆通过红绿灯路口的时刻。
例如车辆通过红绿灯路口的效率评价指标可以与车辆的速度有关。车辆通过红绿灯路口的安全评价指标可以与车辆的速度和车辆的位置有关。车辆通过红绿灯路口的舒适度评价指标可以与车辆的加速度有关。车辆能量回收指标可以与车辆通过红绿灯路口的时刻和车辆的速度有关。可见车辆控制中考虑不同的因素对优化目标的影响,可以车辆通过红绿灯路口的时刻。
在一个可能的设计中,所述车辆模型的优化目标满足以下公式:
Figure BDA0003029266820000021
J为所述车辆模型的优化目标,t0为车辆控制的初始时刻,tf为所述车辆通过红绿灯路口的时刻,v为所述车辆的速度,x为所述车辆的位置,a为所述车辆的加速度。
在一个可能的设计中,所述G(v(tf),x(tf),tf)与以下一个或多个信息相关:所述车辆通过红绿灯路口的时刻、所述车辆的速度。
在一个可能的设计中,在工况为制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:G(v(tf),x(tf),tf)=ωtimeGtimeSOCGSOC
在工况为非制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:G(v(tf),x(tf),tf)=ωtimeGtime
其中,ωtimeGtime为所述车辆通过红绿灯路口的通行效率评价指标,所述Gtime与所述车辆通过红绿灯路口的时刻有关,ωSOCGSOC为制动能量回收指标,所述GSOC与所述车辆的速度有关。
在该设计中,在车辆控制中考虑不同的优化目标,可以提高乘客乘车的舒适度和安全性,以及提高道路的整体通行效率。
在一个可能的设计中,所述GSOC满足以下公式:GSOC=(1/2mvf 2-1/2mv0 2)-Wa-Wf,其中m为所述车辆的质量,Wa为空气阻力的能量,Wf为滚动阻力的能量。
在一个可能的设计中,所述Gtime满足以下公式:Gtime=1/2tf 2,其中tf为所述车辆通过所述红绿灯口的时刻。
在一个可能的设计中,所述车辆通过红绿灯路口的效率评价指标与所述车辆的速度有关。
在一个可能的设计中,所述车辆通过红绿灯路口的效率评价指标满足以下公式:Lv=(v(t)-vf)2,其中Lv为所述车辆通过红绿灯路口的效率评价指标。
在一个可能的设计中,所述车辆通过红绿灯路口的安全评价指标与所述车辆的速度和所述车速的位置有关。
在一个可能的设计中,所述车辆通过红绿灯路口的安全评价指标满足以下公式:Lsafe=1-TCC(t)/TCCmax,其中Lsafe为所述车辆通过红绿灯路口的安全评价指标,TCC(t)为所述车辆与所述车辆行驶前方车辆的碰撞时间,TCCmax为所述车辆与所述车辆行驶前方车辆的最大碰撞时间。
在一个可能的设计中,所述边界约束模型与所述车辆的速度和所述车速的位置有关。可选的,所述边界约束模型与以下一个或多个信息有关:所述车辆的速度、所述车辆行驶前方车辆的车速、或所述车辆与所述车辆行驶前方车辆的距离。
在一个可能的设计中,所述边界约束模型满足以下公式:
Figure BDA0003029266820000031
其中dother为所述车辆与所述车辆行驶前方车辆的距离,vother为所述车辆行驶前方车辆的车速。
在一个可能的设计中,所述车辆通过红绿灯路口的舒适度评价指标与所述车辆的加速度有关。
在一个可能的设计中,所述车辆通过红绿灯路口的舒适度评价指标满足以下公式:Lsoft=a(t)2,Lsoft为所述车辆通过红绿灯路口的舒适度评价指标,a(t)为所述车辆在t时刻的加速度。
在该设计中,在车辆控制中考虑不同的优化目标,可以提高乘客乘车的舒适度和安全性,以及提高道路的整体通行效率。
在一个可能的设计中,所述车辆动力学模型与所述车辆的速度有关。
在一个可能的设计中,所述车辆动力学模型满足以下公式:
Figure BDA0003029266820000032
其中Ft为所述车辆的驱动力,
Figure BDA0003029266820000033
为道路的坡阻力,
Figure BDA0003029266820000034
为滚动摩擦力,μ为道路摩擦系数,1/2CDρaAv(t)2为风的阻力,CD为空气阻力系数,ρa为空气密度,A为所述车辆的迎风面积。
在一个可能的设计中,所述车辆的行驶信息包括以下一种或多种:所述车辆当前行驶的第二车速v(t),所述车辆当前行驶的加速度a(t),所述车辆当前行驶的位置。
在一种可能的情况下,在车辆控制的初始时刻,所述车辆当前行驶的车速可以为初始车速v0,所述车辆当前行驶的加速度可以为初始加速度a0。也就是说在这种情况下,v(t)=v0,a(t)=a0
所述车辆所在区域的道路交通信息包括以下一种或多种:红绿灯颜色,红绿灯秒数,所述车辆与红绿灯的距离,所述车辆所在区域的限速,所述车辆行驶前方车辆的车速,所述车辆与所述车辆行驶前方车辆的距离。
在该设计中可以获取到更加全面、精准的车辆行驶信息和路况信息,提高所述车辆的感知范围,增强所述车辆的感知能力,更好对车速进行规划控制。
第二方面,提供一种车辆控制方法,包括:获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf;若所述车辆通过红绿灯路口的工况为非制动工况,控制所述车辆以所述第一车速vf通过红绿灯路口。
其中非制动工况包括加速通过红绿灯路口,或匀速通过红绿灯路口。
其中匀速通过红绿灯路口可以为控制车辆以第一车速vf通过红绿灯路口。可选的,第一车速vf可以与车辆当前行驶的第二车速v(t)相等。
在一个可能的设计中,在获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf时,可以根据所述车辆的行驶信息以及所述车辆所在区域的道路交通信息,构建车辆控制模型;基于所述车辆控制模型,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
在一个可能的设计中,所述车辆控制模型包括以下一种或多种:车辆动力学模型,物理约束模型,边界约束模型和所述车辆控制模型的优化目标。
所述物理约束模型包括所述车辆的车速约束模型,和/或所述车辆的加速度约束模型。
所述边界约束模型用于约束所述车辆不与所述车辆行驶前方车辆相撞。
所述车辆模型的优化目标包括以下一种或多种:所述车辆通过红绿灯路口的效率评价指标,安全评价指标,舒适度评价指标,和车辆能量回收指标。
在非制动工况下,所述车辆模型的优化目标可以不包括车辆能量回收指标。
在一个可能的设计中,在获取车辆的行驶信息以及所述车辆所在区域的道路交通信息时,可以获取所述车辆的采集模块采集到的行驶信息,以及在路侧设备或云端服务器中获取所述车辆所在区域的道路交通信息。
在一个可能的设计中,所述车辆控制模型的优化目标与以下一个或多个信息有关:所述车辆的速度、所述车辆的位置、所述车辆的加速度、或所述车辆通过红绿灯路口的时刻。
在一个可能的设计中,所述车辆模型的优化目标满足以下公式:
Figure BDA0003029266820000041
J为所述车辆模型的优化目标,t0为车辆控制的初始时刻,tf为所述车辆通过红绿灯路口的时刻,v为所述车辆的速度,x为所述车辆的位置,a为所述车辆的加速度。
在一个可能的设计中,所述G(v(tf),x(tf),tf)与以下一个或多个信息相关:所述车辆通过红绿灯路口的时刻、所述车辆的速度。
在一个可能的设计中,在工况为非制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:G(v(tf),x(tf),tf)=ωtimeGtime
其中,ωtimeGtime为所述车辆通过红绿灯路口的通行效率评价指标,所述Gtime与所述车辆通过红绿灯路口的时刻有关。
在一个可能的设计中,所述Gtime满足以下公式:Gtime=1/2tf 2,其中tf为所述车辆通过所述红绿灯口的时刻。
在一个可能的设计中,所述车辆通过红绿灯路口的效率评价指标与所述车辆的速度有关。
在一个可能的设计中,所述车辆通过红绿灯路口的效率评价指标满足以下公式:Lv=(v(t)-vf)2,其中Lv为所述车辆通过红绿灯路口的效率评价指标。
在一个可能的设计中,所述车辆通过红绿灯路口的安全评价指标与所述车辆的速度和所述车速的位置有关。
所述车辆通过红绿灯路口的安全评价指标满足以下公式:Lsafe=1-TCC(t)/TCCmax,其中Lsafe为所述车辆通过红绿灯路口的安全评价指标,TCC(t)为所述车辆与所述车辆行驶前方车辆的碰撞时间,TCCmax为所述车辆与所述车辆行驶前方车辆的最大碰撞时间。
在一个可能的设计中,所述边界约束模型与以下一个或多个信息有关:所述车辆的速度、所述车辆行驶前方车辆的车速、或所述车辆与所述车辆行驶前方车辆的距离。
在一个可能的设计中,所述边界约束模型满足以下公式:
Figure BDA0003029266820000051
其中dother为所述车辆与所述车辆行驶前方车辆的距离,vother为所述车辆行驶前方车辆的车速。
在一个可能的设计中,所述车辆通过红绿灯路口的舒适度评价指标与所述车辆的加速度有关。
在一个可能的设计中,所述车辆通过红绿灯路口的舒适度评价指标满足以下公式:Lsoft=a(t)2,Lsoft为所述车辆通过红绿灯路口的舒适度评价指标,a(t)为所述车辆在t时刻的加速度。
在一个可能的设计中,所述车辆动力学模型与所述车辆的速度有关。
在一个可能的设计中,所述车辆动力学模型满足以下公式:
Figure BDA0003029266820000052
其中Ft为所述车辆的驱动力,
Figure BDA0003029266820000053
为道路的坡阻力,
Figure BDA0003029266820000054
为滚动摩擦力,μ为道路摩擦系数,1/2CDρaAv(t)2为风的阻力,CD为空气阻力系数,ρa为空气密度,A为所述车辆的迎风面积。
在一个可能的设计中,所述车辆的行驶信息包括以下一种或多种:所述车辆当前行驶的第二车速v(t),所述车辆当前行驶的加速度a(t),所述车辆当前行驶的位置。
在一种可能的情况下,在车辆控制的初始时刻,所述车辆当前行驶的车速可以为初始车速v0,所述车辆当前行驶的加速度可以为初始加速度a0。也就是说在这种情况下,v(t)=v0,a(t)=a0
所述车辆所在区域的道路交通信息包括以下一种或多种:红绿灯颜色,红绿灯秒数,所述车辆与红绿灯的距离,所述车辆所在区域的限速,所述车辆行驶前方车辆的车速,所述车辆与所述车辆行驶前方车辆的距离。
第三方面,提供一种车辆控制方法,包括:获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf。若所述车辆通过红绿灯路口的工况为制动工况,根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),确定所述车辆回收的制动能量;根据所述车辆回收的制动能量,控制所述车辆进行制动。若所述车辆通过红绿灯路口的工况为非制动工况,控制所述车辆以所述第一车速vf通过红绿灯路口。
第四方面,提供一种车辆控制装置,该车辆控制装置具有实现上述第一方面、第二方面或第三方面的车辆控制方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述车辆控制装置的结构中包括获取单元和处理单元,这些单元可以执行上述第一方面、第二方面或第三方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一种可能的设计中,所述车辆控制装置的结构中包括处理器和存储器。所述处理器被配置为支持所述车辆控制装置执行上述第一方面、第二方面或第三方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述目标距离确定装置必要的程序指令和数据。所述处理器用于读取并执行所述存储器中存储的程序指令,执行上述第一方面、第二方面或第三方面中任一可能的设计中所提及的方法。
第五方面,本申请实施例还提供了一种自动驾驶车辆,所述自动驾驶车辆中可以包括上述第四方面所提及的车辆控制装置。
第六方面,本申请实施例还提供了一种自动驾驶辅助系统,所述自动驾驶辅助系统中可以包括上述第四方面所提及的车辆控制装置。
第七方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述第一方面、第二方面、第三方面、或第一方面、第二方面、第三方面中任一可能的设计中所提及的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第八方面,本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得所述计算机执行上述第一方面、第二方面、第三方面、或第一方面、第二方面中任一可能的设计中所提及的方法。
第九方面,本申请实施例还提供了一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的程序指令,以实现上述第一方面、第二方面、或第一方面、第二方面、第三方面中任一可能的设计中所提及的方法。
上述第二方面至第九方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请实施例提供的一种车辆控制方法的流程图;
图2为本申请实施例提供的另一种车辆控制方法的流程图;
图3为本申请实施例提供的又一种车辆控制方法的流程图;
图4为本申请实施例提供的一种车辆控制方法的框图;
图5为本申请实施例提供的又一种车辆控制方法的流程图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第四代(4thGeneration,4G)系统,4G系统包括LTE系统,全球互联微波接入(worldwideinteroperability for microwave access,WiMAX)通信系统,第五代(5th Generation,5G)系统,如NR,6G系统,及未来的通信系统等。
本申请实施例的技术方案可以应用于无人驾驶(unmanned driving)、辅助驾驶(driver assistance,ADAS)、智能驾驶(intelligent driving)、网联驾驶(connecteddriving)、智能网联驾驶(Intelligent network driving)、汽车共享(car sharing)、智能汽车(smart/intelligent car)、数字汽车(digital car)、无人汽车(unmanned car/driverless car/pilotless car/automobile)、车联网(internet of vehicles,IoV)、自动汽车(self-driving car、autonomous car)、车路协同(cooperative vehicleinfrastructure,CVIS)、智能交通(intelligent transport system,ITS)、车载通信(vehicular communication)等技术领域。
本申请实施例的技术方案可以应用于无人驾驶(unmanned driving)、辅助驾驶(driver assistance,ADAS)、智能驾驶(intelligent driving)、网联驾驶(connecteddriving)、智能网联驾驶(Intelligent network driving)、汽车共享(car sharing)、智能汽车(smart/intelligent car)、数字汽车(digital car)、无人汽车(unmanned car/driverless car/pilotless car/automobile)、车联网(internet of vehicles,IoV)、自动汽车(self-driving car、autonomous car)、车路协同(cooperative vehicleinfrastructure,CVIS)、智能交通(intelligent transport system,ITS)、车载通信(vehicular communication)等技术领域。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)纯电动汽车(battery electric vehicle,BEV),也称电动汽车,以车载电源为动力,用电机驱动车轮行驶。也就是说,纯电动汽车的电源可以提供电能,纯电动汽车的电动机可以将电源的电能转化为机械能,驱动车轮行驶。根据用途不同,纯电动汽车可以包括电动轿车,电动货车和电动客车。
在本申请实施例中主要以车辆为纯电动汽车为例进行说明。需要说明的是,对于具有储能设备的车辆都适用于本申请实施例提供的车辆控制方法,例如包括以电源为动力的其它车辆,或者油电混合的车辆等。
2)制动能量回收,利用车辆在制动减速时将制动效能转变为电能存储并回收到电池中,相当于扩充了车辆的电池的容量,增加了车辆的续航里程。此外,制动能量回收还可以减少车辆的磨损,提高车辆行驶的稳定性。
3)路侧设备,包括路侧单元(road side unit,RSU),路侧智能设施(包括摄像头、毫米波雷达、少量激光雷达、环境感知设备、以及智能红绿灯、智能化标志标识等)等。所述路侧设备还可以包括多接入边缘计算(multi-access edge computing,MEC)设备等。
所述路侧设备可以获取所述路侧设备所在区域内车辆的位置和速度信息,也可以检测所述路侧设备所在区域内的车流量。所述路侧设备(如RSU)可以与其所在区域内的红绿灯(也称交通灯或信号灯)连接,获取到红绿灯的颜色和秒数(一般为倒计时的秒数)。所述路侧设备(如RSU)可以与其所在区域内的摄像头/激光雷达连接,检测道路是否存在异常情况(交通事故、大雾天气等)。可选的,所述路侧设备也可以承担一部分数据处理运算功能。
所述路侧设备可以与车辆进行交互,例如车辆可以将行驶信息上报给所述路侧设备,所述路侧设备可以将车辆所在区域内的道路交通信息下发给所述车辆。
4)云端服务器,即云端管理平台或智能车云服务平台,也称云端设备,可以对海量车辆的信息进行分析和处理,从而规划车辆的行驶路线、车速和安排信号灯的周期等。所述云端服务器可以与路侧设备、车辆进行交互,例如所述车辆可以将行驶信息上报给所述云端服务器,所述云端服务器可以将规划的行驶路线和车速等信息下发给所述车辆,或者所述云端服务器可以直接将车辆所在区域内的道路交通信息下发给所述车辆。一种可能的,所述云端服务器为交通中心。
5)车辆的行驶信息,与所述车辆行驶过程相关的信息,包括但不限于以下一种或多种:车辆行驶的速度/车辆的速度(即车速)、车辆行驶的加速度/车辆的加速度、或车辆行驶的位置/车辆的位置。可选的,所述车辆的行驶信息可以由车辆自身的车载传感器、摄像头等采集模块采集到。或者所述车辆的行驶信息可以由车辆所在区域内的路侧设备采集到。在一些场景中,车辆还可以采集并上报所在区域内的道路交通信息,例如可以采集并上报所在区域内的红绿灯信息,和/或异常情况等。
在本申请实施例中,所述车辆的车速可能包括:v0,v(t),vf或vtarget。假设在t0到tf的时间段内进行一次车辆控制(t0为车辆控制的初始时刻,tf为车速控制的结束时刻),所述车辆在t0时刻的车速为v0,所述车辆在t时刻的车速(一般指当前行驶的车速)为v(t),所述车辆在tf时刻的车速为vf,所述车辆通过红绿灯路口的车速为vtarget。在一些可能的情况下,例如在车辆控制的初始时刻t0时,所述车辆当前行驶的车速v(t)=v0,又如在车辆控制的结束时刻tf时,所述车辆当前行驶的车速v(t)=vf,又如在车辆控制的结束时刻tf时,所述车辆通过红绿灯路口,则vf=vtarget。在本申请实施例中,车辆控制的过程主要是对车辆进行车速规划控制的过程。
所述车辆的加速度可能包括:a0或a(t)。假设在t0到tf的时间段内进行一次车辆控制,所述车辆在t0时刻的加速度为a0,所述车辆在t时刻的加速度(一般指当前行驶的加速度)为a(t)。在一些可能的情况下,例如在车辆控制的初始时刻t0时,所述车辆当前行驶的加速度a(t)=a0
需要说明的是,所述车辆从某一位置行驶到红绿灯路口的时长内,可以进行一次或多次车辆控制,以及可以包括一个或多个t0到tf的时间段。在本申请实施例中主要以所述车辆从某一位置行驶到红绿灯路口的时长内,进行一次车辆控制说明,即tf为所述车辆通过红绿灯路口的时间,vf=vtarget
可以理解的是,在本申请实施例中,除特别说明外,“时间”和“时刻”的概念可以相互替换。
6)道路交通信息,指车辆所在区域的道路交通信息,包括但不限于以下一种或多种:红绿灯颜色,红绿灯秒数,所述车辆与红绿灯的距离,所述车辆所在区域的限速,所述车辆行驶前方车辆的车速,所述车辆与所述车辆行驶前方车辆的距离,所述车辆所在区域的车流量,所述车辆所在区域的天气信息,所述车辆所在区域的拥堵情况。
可以理解的是,除特别说明外,本申请实施例中涉及的车辆为智能车,可以与路侧设备、云端服务器等进行交互。
7)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
随着自动驾驶、车路协同(车辆与路侧设备之间协同)和车云协同(车辆与云端服务器之间协同)等技术的不断发展,车辆(如智能车)可以通过车载传感器、路侧设备和云端服务器更全面的获得车辆周围的感知信息。城市交通环境中,红绿灯路口通行是车辆面对的工况之一,车辆的车载传感器对红绿灯的感知易受光照、遮挡、距离等因素的影响,且无法获得红绿灯描述信息。随着车路协同、车云协同等技术的发展,车辆可以通过路侧设备或云端服务器获取更全面和准确的感知信息,车辆可以提前根据红绿灯的状态和秒数,以及车辆的车速和车辆与红绿灯路口的距离,对车辆的行驶提前进行规划,使车辆安全平稳通过红绿灯路口。
一般的,车辆通过车与外界任何事物(vehicle to everything,V2X)通信,获得红绿灯及其他车辆信息,然后进行车速规划控制,以燃油经济性、通行效率、舒适度中的一个或多个作为优化目标,计算得到车辆的车速控制结果。基于车路协同的红绿灯路口车速控制方法,多为针对燃油汽车实现,在车速规划时的优化目标考虑燃油经济性、通行效率、舒适度中的一个或多个,不适用于以电源作为动力的车辆。
基于此,本申请实施例提供一种车辆规划方法,在该方法中,可以根据车辆的行驶信息以及车辆所在区域的道路交通信息,规划车辆通过红绿灯路口的工况和第一车速,若规划出所述车辆通过红绿灯路口的工况为制动工况,可以根据车辆通过红绿灯路口的第一车速和车辆当前行驶的第二车速,确定车辆回收的制动能量,可以根据所述车辆回收的能量,控制车辆进行制动,从而提高纯车辆的制动能量回收。
本申请实施例提供的一种可能的车辆控制过程如图1所示,包括以下步骤:
S101:第一设备获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
本申请实施例涉及的所述第一设备可以为所述车辆本身,或者可以为路侧设备,或者可以为云端服务器,或者也可以为其他设备,在此不做限制。
可选的,所述车辆上可以安装有采集模块,所述车辆通过安装的采集模块采集所述车辆的行驶信息。所述第一设备(例如非所述车辆)可以在所述车辆中获取所述行驶信息,或者所述第一设备(例如所述车辆)可以通过所述采集模块获取所述行驶信息。
可选的,所述第一设备可以在路侧设备或云端服务器中获取所述车辆所在区域的道路交通信息。以所述第一设备为所述车辆为例进说明,当所述车辆进入到路侧设备的通信范围内,和/或所述车辆进入到云端服务器的广播范围内时,所述路侧设备或所述云端服务器可以向所述车辆发送所述道路交通信息。即在本申请实施例中,所述第一设备在车辆控制过程中也考虑到了从云端服务器中获取到的信息。
一种可能的实现中,所述第一设备可以根据红绿灯剩余时间,以及所述车辆与所述红绿灯路口的距离,预测所述车辆通过所述红绿灯路口的第一车速vf。所述第一车速vf即为所述车辆通过所述红绿灯路口的参考车速/目标车速。
所述第一设备根据所述车辆与所述红绿灯路口的距离,以及所述红绿灯剩余时间,确定所述车辆在所述红绿灯剩余时间为0(或者所述红绿灯颜色改变)时,通过所述红绿灯路口的速度vlight
例如所述红绿灯为红灯时,若所述车辆当前行驶的第二车速v(t)<vlight,所述车辆以车速v(t)行驶。当红灯变为绿灯时,所述车辆未到所述红绿灯路口的停止线,所述车辆可以匀速通过红绿/红绿灯路口,所述车辆通过所述红绿灯路口的第一车速vf可以为v(t)。所述车辆可以不制动减速。若所述车辆当前行驶的第二车速v(t)>vlight,所述车辆以车速v(t)行驶。当所述车辆到达所述红绿灯路口的停止线时,所述红绿灯仍然为红灯,所述车辆可以减速或停车,所述车辆通过所述红绿灯路口的第一车速可以为vsub(减速后的车速)或0(停车时的车速)。所述车辆可以制动减速。
又如,所述红绿灯为绿灯时,若所述车辆当前行驶的第二车速v(t)<vlight,所述车辆以车速v(t)行驶。当所述车辆到达所述红绿灯路口的停止线时,绿灯变为红灯。所述车辆可以加速或停止,所述车辆通过所述红绿灯路口的第一车速可以为vadd(加速后的车速)或0(停车时的车速)。若所述车辆当前行驶的第二车速v(t)>vlight,所述车辆以车速v(t)行驶。所述车辆可以匀速通过红绿/红绿灯路口,所述车辆通过所述红绿灯路口的第一车速vf可以为v0
另一种可能的实现中,所述第一设备根据所述车辆的行驶信息以及所述车辆所在区域的道路交通信息,构建车辆控制模型;所述第一设备基于所述车辆控制模型,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf。可选的,所述第一设备基于所述车辆控制模型,还可以预测所述车辆通过红绿灯路口的加速度。该车辆控制模型也可以称为车速规划控制模型。
所述车辆模型包括但不限于以下一种或多种:车辆动力学模型,物理约束模型,边界约束模型,所述车辆控制模型的优化目标,或车辆状态变化矩阵。也就是说,构建所述车辆模型时可以考虑车辆动力学模型,物理约束模型,边界约束模型,所述车辆控制模型的优化目标,或车辆状态变化矩阵中的一种或多种。或者所述车辆模型与以下一种或多种有关:车辆动力学模型,物理约束模型,边界约束模型,所述车辆控制模型的优化目标,或车辆状态变化矩阵。
所述车辆动力学模型即为车辆动力学约束。所述车辆动力学模型可以与以下一种或多种信息有关:所述车辆的速度,所述车辆的驱动力(可以由所述车辆的电动机提供),道路的坡阻力,风的阻力,空气阻力,或所述车辆的迎风面积(指所述车辆在行驶方向上的投影面积,可以通过数码照相法或工程绘图等方法计算)等。可选的,所述车辆动力学模型可以满足以下公式:
Figure BDA0003029266820000111
其中m为所述车辆的质量/重量,a(t)为所述车辆在t时刻的加速度,Ft为所述车辆的驱动力,
Figure BDA0003029266820000112
为道路的坡阻力,
Figure BDA0003029266820000113
为滚动摩擦力,μ为道路摩擦系数,1/2CDρaAv(t)2为风的阻力,CD为空气阻力系数,ρa为空气密度,A为所述车辆的迎风面积。
所述物理约束模型包括所述车辆的车速约束模型,和/或所述车辆的加速度约束模型。所述物理约束模型与车辆的速度和/或车辆的加速度有关。所述车速约束模型中速度的最大值(vmax)和最小值(vmin)受车辆机械性能限制,可以根据不同车辆的实际情况进行设定。例如所述车速约束模型中约束vmin≤v(t)≤vmax,即所述车辆在t时刻的速度v(t)不小于(即大于或等于)所述车辆的最小速度vmin,且不大于(即小于或等于)所述车辆的最大速度vmax。可选的vmin≤v(t)≤vmax且v(t)≤vrmax,vrmax为所述车辆所在区域内的限速(区域内的最大行驶速度)。所述加速度约束模型中加速度的最大值(amax)和最小值(amin)受车辆机械性能限制,可以根据不同车辆的实际情况进行设定。例如所述加速度约束模型中约束amin≤a(t)≤amax,即所述车辆在t时刻的加速度a(t)不小于所述车辆的最小加速度amin,且不大于所述车辆的最大加速度amax。所述物理约束模型可以用于分析所述车辆的通行效率和/或安全性。其中
Figure BDA0003029266820000121
任意时刻t属于[t0,tf]集合范围内。[t0,tf]表示对所述车辆控制的时间范围为t0到tf。t0为所述车辆控制的起始时刻,t0可以为确定出红绿灯工况的时刻,或者可以为获取所述车辆的行驶信息的时刻等,在此不做限定。tf为所述车辆控制的结束时刻,在通行红绿灯路口的场景下,tf可以为预估的所述车辆通过红绿灯路口的时刻。
所述边界约束模型用于约束所述车辆与所述车辆行驶前方车辆(简称前车)不发生碰撞。所述边界约束模型与以下一个或多个信息有关:所述车辆的速度、所述车辆行驶前方车辆的车速、或所述车辆与所述车辆行驶前方车辆的距离。所述边界约束模型可以用于分析所述车辆的安全性。可选的,所述边界约束模型可以约束所述车辆与前车的碰撞时间TCC(t)不小于最小碰撞时间TCCmin,即可保证所述车辆不会碰撞到前车。例如,所述边界约束模型可以满足以下公式:
Figure BDA0003029266820000122
其中dother为所述车辆与前车的距离,vother为前车的车速。
所述车辆控制模型的优化目标包括但不限于以下一种或多种:所述车辆通过红绿灯路口的效率评价指标,安全评价指标,舒适度评价指标,或车辆能量回收指标。一种可能的场景中,在所述车辆通过红绿灯路口的工况为制动工况时,所述车辆控制模型包括所述车辆能量回收指标。
所述车辆控制模型的优化目标可以与以下一个或多个信息有关:所述车辆的速度、所述车辆的位置、所述车辆的加速度、或所述车辆通过红绿灯路口的时刻。
例如,所述车辆控制模型的优化目标满足以下公式:
Figure BDA0003029266820000123
Figure BDA0003029266820000124
J为所述车辆控制模型的优化目标,G(v(tf),x(tf),tf)为非积分项的优化目标,
Figure BDA0003029266820000125
为积分项的优化目标,t0为所述车辆当前行驶的时刻,tf为所述车辆控制的结束时刻,v为所述车辆的速度,x为所述车辆的位置,a为所述车辆的加速度。在通行红绿灯路口的场景下,tf可以为预估的所述车辆通过红绿灯路口的时刻。
L(v,x,a)与所述效率评价指标、所述安全评价指标或所述舒适度评价指标中的一项或多项有关。可选的,可以对所述效率评价指标、所述安全评价指标和所述舒适度评价指标进行归一化,使各指标的值位于范围[0,1]之间。例如L(v,x,a)=ωvLvsafeLsafesoftLsoft。其中L(v,x,a)用于表示积分项的优化目标,Lv为所述效率评价指标,ωv为所述效率评价指标的权值,Lsafe为所述安全评价指标,ωsafe为所述安全评价指标的权值,Lsoft为所述舒适度评价指标,ωsoft为所述舒适度评价指标的权值。在本申请实施例中,对ωv、ωsafe、ωsoft等各权值的取值不做限制。
所述车辆通过红绿灯路口的效率评价指标为车速维度的评价指标,可以与所述车辆的速度有关。可选的,所述效率评价指标与所述车辆在t时刻的速度v(t),所述车辆在所述车辆控制的结束时刻的速度,或所述车辆通过红绿灯路口的速度中的一项或多项有关。所述车辆通过红绿灯路口的效率评价指标与所述车辆的速度有关。例如所述车辆通过红绿灯路口的效率评价指标满足以下公式:Lv=(v(t)-vf)2。其中Lv为所述车辆通过红绿灯路口的效率评价指标,vf为所述车辆在所述车辆控制的结束时刻的速度。在通行红绿灯路口的场景下,所述车辆在所述车辆控制的结束时刻的速度,与所述车辆通过红绿灯路口的速度可以相同,所述vf也可以表示为所述车辆通过红绿灯路口的速度vtarget
所述车辆通过红绿灯路口的安全评价指标与所述车辆的速度和所述车速的位置有关。例如所述车辆通过红绿灯路口的安全评价指标可以和所述车辆与前车的碰撞时间有关。可选的所述车辆通过红绿灯路口的安全评价指标满足以下公式:Lsafe=1-TCC(t)/TCCmax,其中Lsafe为所述车辆通过红绿灯路口的安全评价指标,TCC(t)为所述车辆与所述车辆行驶前方车辆的碰撞时间,TCCmax为所述车辆与所述车辆行驶前方车辆的最大碰撞时间。
所述车辆通过红绿灯路口的舒适度评价指标可以与所述车辆的加速度有关。可选的,所述舒适度评价指标与所述车辆在t时刻的加速度a(t)有关。例如所述车辆通过红绿灯路口的舒适度评价指标满足以下公式:Lsoft=a(t)2,Lsoft为所述车辆通过红绿灯路口的舒适度评价指标,a(t)为所述车辆在t时刻的加速度。
在通信红绿灯路口的场景下,所述车辆通过红绿灯路口的工况包括制动工况和非制动工况。其中制动工况包括减速通过红绿灯路口或减速停车。非制动工况包括车速不变(即匀速)通过红绿灯路口或加速通过红绿灯路口。
可选的,在所述工况为制动工况时,a(t)表示所述车辆的制动加速度。所述车辆的制动加速度a(t)满足以下条件:amin≤az≤a(t)≤amax,amin为所述车辆的最小加速度,amax为所述车辆的最大加速度,az为与所述车辆制动强度z相关的加速度。纯车辆受制动强度Z影响。当所述车辆的制动加速度大于az,且所述车辆处于紧急制动时,所述车辆仅采用机械制动,无制动能量回收。而当所述车辆的制动加速度大于az,且所述车辆处于非紧急制动时,在制动工况下,避免所述车辆紧急制动,所述车辆可以尽可能多的回收制动能量。
所述G(v(tf),x(tf),tf)与以下一个或多个信息相关:所述车辆通过红绿灯路口的时刻、所述车辆的速度。
在所述工况为制动工况时,所述G(v(tf),x(tf),tf)可以与所述车辆通过红绿灯路口的通行效率评价指标,和制动能量回收指标有关。其中所述通行效率指标为时间维度的评价指标。例如G(v(tf),x(tf),tf)满足以下公式:G(v(tf),x(tf),tf)=ωtimeGtimeSOCGSOC。其中ωtimeGtime为所述通行效率评价指标,ωtime为用于计算所述通行效率评价指标的权值,ωSOCGSOC为制动能量回收指标,ωSOC为用于计算制动能量回收指标的权值,所述GSOC与所述车辆的速度有关。在本申请实施例中,对ωtime、ωSOC等各权值的取值不做限制。
Gtime与时间有关,可选的与所述车辆通过红绿灯路口的时刻有关。例如Gtime满足以下公式:Gtime=1/2tf 2
GSOC可以与所述车辆的质量/重量,所述空气阻力(或所述空气阻力的能量),或所述滚动阻力(或所述滚动阻力的能量)中的一项或多项有关。例如,假设所述车辆从车速v0减速至vf,GSOC满足以下公式:GSOC=(1/2mvf 2-1/2mv0 2)-Wa-Wf,Wa为空气阻力的能量(即所述车辆对抗空气阻力时所消耗的能量/所做的功),Wf为所述滚动阻力的能量(即所述车辆对抗滚动阻力时所消耗的能量/所做的功)。考虑到制动能量回收指标,所述车辆可以尽可能多的回收制动能量。
在所述工况为非制动工况时,所述G(v(tf),x(tf),tf)可以与所述车辆通过红绿灯路口的通行效率评价指标有关。例如G(v(tf),x(tf),tf)满足以下公式:G(v(tf),x(tf),tf)=ωtimeGtime。在非制动工况中,不考虑制动能量回收。
可选的,所述车辆状态变化矩阵与所述车辆的位置和所述车辆的速度有关。例如所述车辆状态变化矩阵满足以下公式:[x(t)v(t)]T,其中x(t)表示所述车辆在t时刻的位置,或者所述车辆在t时刻的位移。
S102:若所述车辆通过红绿灯路口的工况为制动工况,所述第一设备根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),确定所述车辆回收的制动能量。
示例的,所述第一设备可以根据车辆控制模型计算得到的车速(如第一车速vf)、加速度,以及所述第二车速v(t),确定所述车辆回收的制动能量。
在本申请实施例中对所述车辆回收制动能量的过程不做限制。例如所述车辆根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),计算制动工况下的回馈力矩,基于所述回馈力矩确定所述车辆回收的制动能量。
可选的,所述车辆可以将所述制动能量转换为电能,存储在所述车辆的蓄电池中,实现制动能量的回收。
S103:所述第一设备根据所述车辆回收的制动能量,控制所述车辆进行制动。
在该S103中,所述第一设备控制所述车辆由v0制动减速到vf
在所述第一设备非所述车辆时,所述第一设备可以将vf或制动加速度a(t)发送给所述车辆,所述第一车辆进行制动减速。
可选的,若所述工况为非制动工况时,所述第一设备控制所述车辆维持当前车速v0或加速通过红绿灯路口。
一种可能的实现中,所述第一设备可以每隔时间T执行S101-S103,可以及时对所述车辆进行控制,及时响应所述车辆行驶过程中出现的突发情况。
本申请实施例提供的车辆控制方法中,考虑到车辆的制动能量回收,当车辆在红绿灯路口通行场景下制动时,在保证车辆的制动稳定性和安全性的前提下,尽可能多的回收制动能量,提高车辆的能量利用率,延长车辆行驶的续航里程。
图2为本申请实施例提供的另一种可能的车辆控制过程,包括如下步骤:
S201:第一设备获取车辆行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
该S201的实现过程可以参见上述S101,相似之处不做赘述。
S202:若所述车辆通过红绿灯路口的工况为非制动工况,所述第一设备控制所述车辆以所述第一车速vf通过红绿灯路口。
其中非制动工况下,所述第一设备可以控制所述车辆以所述第一车速vf匀速通过红绿灯路口。可选的,匀速通过红绿灯路口时,所述第一车速vf可以与车辆当前行驶的第二车速v0相等。
或者非制动工况下,第一设备可以控制所述车辆以所述第一车速vf加速通过红绿灯路口。
一种可能的实现中,所述第一设备可以每隔时间T执行S101-S103,可以及时对所述车辆进行控制,及时响应所述车辆行驶过程中出现的突发情况。
在本申请实施例提供的车辆控制方法中,考虑到更全面的路况信息,可以提高车辆的感知范围,增强车辆的感知能力,并且可以提高乘客乘车的舒适度和安全性,以及提高道路的整体通行效率。
图3为本申请实施例提供的又一种可能的车辆控制过程,包括如下步骤:
S301:第一设备获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
S302:若所述车辆通过红绿灯路口的工况为制动工况,所述第一设备根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),确定所述车辆回收的制动能量。所述第一设备根据所述车辆回收的制动能量,控制所述车辆进行制动。
S301~S302的实现过程可以参见上述S101~S103,相似之处不做赘述。
S303:若所述车辆通过红绿灯路口的工况为非制动工况,所述第一设备控制所述车辆以所述第一车速vf通过红绿灯路口。
S303的实现过程可以参见上述S202,相似之处不做赘述。
在本申请实施例提供的车辆控制方法中,考虑到更全面的路况信息,可以提高车辆的感知范围,增强车辆的感知能力,并且可以提高乘客乘车的舒适度和安全性,以及提高道路的整体通行效率。以及当车辆在红绿灯路口通行场景下制动时,考虑到车辆的制动能量回收,在保证车辆的制动稳定性和安全性的前提下,尽可能多的回收制动能量,提高车辆的能量利用率,延长车辆行驶的续航里程。
下面以一个具体实施例对上述实施例进行说明,图4为车辆控制过程的框图,具体步骤参见图5所示:
S501:车辆通过采集装置采集行驶信息。
所述车辆上安装有所述采集装置。所述采集装置可以为车载传感器和/或摄像头等。可选的,所述车辆可以通过所述摄像头获取红绿灯的颜色和秒数等信息。
S502:所述车辆在路侧设备或云端服务器中获取道路交通信息。
路侧设备或云端服务器可以从交通中心、红绿灯和路侧摄像头等中获取道路交通信息,并下发到通信区域内的智能车。
例如在所述车辆通过红绿灯路口的场景下,当所述车辆进入到路侧设备的通信范围内时,所述路侧设备向所述车辆发送所述道路交通信息;当所述车辆进入到所在区域的云端服务器的广播范围内时,所述云端服务器向所述车辆发送道路交通信息。
S503:所述车辆根据行驶信息和道路交通信息,基于车辆动力学模型、物理约束模型和边界约束模型,以所述车辆通过红绿灯路口的效率、舒适度、安全性和能量回收(可选)为优化目标,建立车辆控制模型。
其中在制动工况下,所述车辆控制模型可以考虑能量回收指标。在非制动工况下,所述车辆控制模型可以不考虑能量回收指标。
S504:所述车辆基于所述车辆控制模型,提前规划所述车辆通过红绿灯路口的工况和车速。
S505:非制动工况下,所述车辆根据规划的车速对油门进行控制。
在制动工况下,基于制动能量回收控制策略,最大限度的回收制动能量。
S506:制动工况下,所述车辆基于制动能量回收算法,回收制动能量,并对刹车进行控制。
在该S506中,所述车辆回收的制动能量可以为最大限度回收的制动能量。
S507:所述车辆按照时间间隔T重复S501-S506的步骤,对车速进行规划控制。
在该实施例中,车辆在路侧设备或云端服务器中获得道路交通信息,可以获取到更加精准、实时、可靠的路况信息,提高所述车辆的感知范围,增强所述车辆的感知能力。所述车辆基于获取到的车辆行驶信息和道路交通信息,提前对车辆的工况和车速进行规划,在车速规划中考虑到不同的优化目标,可以提高乘客乘车的舒适度和安全性,以及提高道路的整体通行效率,以及可以提高车辆的能量利用率,延长车辆的续航里程。
可以理解的是,本申请实施例主要针对车联网环境下,红绿灯场景下对车辆的车速控制。当然也可以适用其他道路交通场景,例如匝道、车辆拥堵路段等车辆制动工况场景中。
以上结合图1至图5,详细说明了本申请实施例的车辆控制方法。基于与上述车辆控制方法的同一技术构思,本申请实施例还提供了一种通信装置。如图6所示,该通信装置600包括获取单元601和处理单元602。
在一个实施例中,具体的:
获取单元601,用于获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
处理单元602,用于若所述车辆通过红绿灯路口的工况为制动工况,根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),确定所述车辆回收的制动能量;根据所述车辆回收的制动能量,控制所述车辆进行制动。
在一种可选的实施方式中,所述处理单元602,具体用于根据所述车辆的行驶信息以及所述车辆所在区域的道路交通信息,构建车辆控制模型;基于所述车辆控制模型,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
在一种可选的实施方式中,所述车辆控制模型包括以下一种或多种:车辆动力学模型,物理约束模型,边界约束模型和所述车辆控制模型的优化目标;
所述物理约束模型包括所述车辆的车速约束模型,和/或所述车辆的加速度约束模型;
所述边界约束模型用于约束所述车辆不与所述车辆行驶前方车辆相撞;
所述车辆控制模型的优化目标包括以下一种或多种:所述车辆通过红绿灯路口的效率评价指标,安全评价指标,舒适度评价指标,和车辆能量回收指标。
在一种可选的实施方式中,所述获取单元601,具体用于获取所述车辆的采集模块采集到的行驶信息,以及在路侧设备或云端服务器中获取所述车辆所在区域的道路交通信息。
在一种可选的实施方式中,在工况为制动工况时,所述车辆控制模型的优化目标包括所述车辆能量回收指标。
在一种可选的实施方式中,在工况为制动工况时,所述车辆的制动加速度a(t)满足以下条件:amin≤az≤a(t)≤amax,amin为所述车辆的最小加速度,amax为所述车辆的最大加速度,az为与所述车辆制动强度Z相关的加速度。
在一种可选的实施方式中,所述车辆控制模型的优化目标与以下一个或多个信息有关:所述车辆的速度、所述车辆的位置、所述车辆的加速度、或所述车辆通过红绿灯路口的时刻。
在一种可选的实施方式中,所述车辆控制模型的优化目标满足以下公式:
Figure BDA0003029266820000171
J为所述车辆控制模型的优化目标,t0为车辆控制的初始时刻,tf为所述车辆通过红绿灯路口的时刻,v为所述车辆的速度,x为所述车辆的位置,a为所述车辆的加速度。
在一种可选的实施方式中,所述G(v(tf),x(tf),tf)与以下一个或多个信息相关:所述车辆通过红绿灯路口的时刻、所述车辆的速度。
在一种可选的实施方式中,在工况为制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:
G(v(tf),x(tf),tf)=ωtimeGtimeSOCGSOC
在工况为非制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:
G(v(tf),x(tf),tf)=ωtimeGtime
其中,ωtimeGtime为所述车辆通过红绿灯路口的通行效率评价指标,所述Gtime与所述车辆通过红绿灯路口的时刻有关,ωSOCGSOC为制动能量回收指标,所述GSOC与所述车辆的速度有关。
在一种可选的实施方式中,所述GSOC满足以下公式:
GSOC=(1/2mvf 2-1/2mv0 2)-Wa-Wf,其中m为所述车辆的质量,Wa为空气阻力的能量,Wf为滚动阻力的能量。
在一种可选的实施方式中,所述Gtime满足以下公式:
Gtime=1/2tf 2
在一种可选的实施方式中,所述车辆通过红绿灯路口的效率评价指标与所述车辆的速度有关。
在一种可选的实施方式中,所述车辆通过红绿灯路口的效率评价指标满足以下公式:Lv=(v(t)-vf)2,其中Lv为所述车辆通过红绿灯路口的效率评价指标。
在一种可选的实施方式中,所述车辆通过红绿灯路口的安全评价指标与所述车辆的速度和所述车速的位置有关。
在一种可选的实施方式中,所述车辆通过红绿灯路口的安全评价指标满足以下公式:Lsafe=1-TCC(t)/TCCmax,其中Lsafe为所述车辆通过红绿灯路口的安全评价指标,TCC(t)为所述车辆与所述车辆行驶前方车辆的碰撞时间,TCCmax为所述车辆与所述车辆行驶前方车辆的最大碰撞时间。
在一种可选的实施方式中,所述车辆通过红绿灯路口的舒适度评价指标与所述车辆的加速度有关。
在一种可选的实施方式中,所述车辆通过红绿灯路口的舒适度评价指标满足以下公式:Lsoft=a(t)2,Lsoft为所述车辆通过红绿灯路口的舒适度评价指标,a(t)为所述车辆在t时刻的加速度。
在一种可选的实施方式中,所述车辆动力学模型与所述车辆的速度有关。
在一种可选的实施方式中,所述车辆动力学模型满足以下公式:
Figure BDA0003029266820000181
Figure BDA0003029266820000182
其中Ft为所述车辆的驱动力,
Figure BDA0003029266820000183
为道路的坡阻力,
Figure BDA0003029266820000184
为滚动摩擦力,μ为道路摩擦系数,1/2CDρaAv(t)2为风的阻力,CD为空气阻力系数,ρa为空气密度,A为所述车辆的迎风面积。
在一种可选的实施方式中,所述边界约束模型与所述车辆的速度和所述车速的位置有关。可选的,所述边界约束模型与以下一个或多个信息有关:所述车辆的速度、所述车辆行驶前方车辆的车速、或所述车辆与所述车辆行驶前方车辆的距离。
在一种可选的实施方式中,所述边界约束模型满足以下公式:
Figure BDA0003029266820000185
其中dother为所述车辆与所述车辆行驶前方车辆的距离,vother为所述车辆行驶前方车辆的车速。
在一种可选的实施方式中,所述车辆的行驶信息包括以下一种或多种:所述车辆当前行驶的第二车速v(t),所述车辆当前行驶的加速度v(t),所述车辆当前行驶的位置。
所述车辆所在区域的道路交通信息包括以下一种或多种:红绿灯颜色,红绿灯秒数,所述车辆与红绿灯的距离,所述车辆所在区域的限速,所述车辆行驶前方车辆的车速,所述车辆与所述车辆行驶前方车辆的距离。
另一个实施例中,具体的:
获取单元601,用于获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
处理单元602,用于若所述车辆通过红绿灯路口的工况为非制动工况,控制所述车辆以所述第一车速vf通过红绿灯路口。
又一个实施例中,具体的:
获取单元601,用于获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
处理单元602,用于若所述车辆通过红绿灯路口的工况为制动工况,根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),确定所述车辆回收的制动能量;根据所述车辆回收的制动能量,控制所述车辆进行制动。若所述车辆通过红绿灯路口的工况为非制动工况,控制所述车辆以所述第一车速vf通过红绿灯路口。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,所述通信装置可以实现上述实施例。参阅图7所示,所述通信装置700可以包括处理器701和存储器702,其中:
其中,处理器701可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合等等。处理器701还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器701在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
处理器701和存储器702之间相互连接。可选的,处理器701和存储器702可以通过总线703相互连接;总线703可以是外设部件互连标准(Peripheral ComponentInterconnect,PCI)总线或扩展工业标准结构(Extended Industry StandardArchitecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,存储器702,与处理器701耦合,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。存储器702可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器701执行存储器702所存放的应用程序,实现上述功能,从而实现通信装置700的功能,即实现车辆控制方法。
一个实施例中,具体的,所述通信装置700在实现车辆控制方法时,可以包括:
所述处理器701用于调用所述存储器702中的程序指令执行:
获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
若所述车辆通过红绿灯路口的工况为制动工况,根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),确定所述车辆回收的制动能量;
根据所述车辆回收的制动能量,控制所述车辆进行制动。
在一种可选的实施方式中,所述处理器701具体用于:根据所述车辆的行驶信息以及所述车辆所在区域的道路交通信息,构建车辆控制模型;基于所述车辆控制模型,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
在一种可选的实施方式中,所述车辆控制模型包括以下一种或多种:车辆动力学模型,物理约束模型,边界约束模型和所述车辆控制模型的优化目标;
所述物理约束模型包括所述车辆的车速约束模型,和/或所述车辆的加速度约束模型;
所述边界约束模型用于约束所述车辆不与所述车辆行驶前方车辆相撞;
所述车辆控制模型的优化目标包括以下一种或多种:所述车辆通过红绿灯路口的效率评价指标,安全评价指标,舒适度评价指标,和车辆能量回收指标。
在一种可选的实施方式中,所述处理器701具体用于:获取所述车辆的采集模块采集到的行驶信息,以及在路侧设备或云端服务器中获取所述车辆所在区域的道路交通信息。
在一种可选的实施方式中,在工况为制动工况时,所述车辆控制模型的优化目标包括所述车辆能量回收指标。
在一种可选的实施方式中,在工况为制动工况时,所述车辆的制动加速度a(t)满足以下条件:amin≤az≤a(t)≤amax,amin为所述车辆的最小加速度,amax为所述车辆的最大加速度,az为与所述车辆制动强度Z相关的加速度。
在一种可选的实施方式中,所述车辆控制模型的优化目标与以下一个或多个信息有关:所述车辆的速度、所述车辆的位置、所述车辆的加速度、或所述车辆通过红绿灯路口的时刻。
在一种可选的实施方式中,所述车辆控制模型的优化目标满足以下公式:
Figure BDA0003029266820000201
J为所述车辆控制模型的优化目标,t0为车辆控制的初始时刻,tf为所述车辆通过红绿灯路口的时刻,v为所述车辆的速度,x为所述车辆的位置,a为所述车辆的加速度。
在一种可选的实施方式中,所述G(v(tf),x(tf),tf)与以下一个或多个信息相关:所述车辆通过红绿灯路口的时刻、所述车辆的速度。
在一种可选的实施方式中,在工况为制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:
G(v(tf),x(tf),tf)=ωtimeGtimeSOCGSOC
在工况为非制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:
G(v(tf),x(tf),tf)=ωtimeGtime
其中,ωtimeGtime为所述车辆通过红绿灯路口的通行效率评价指标,所述Gtime与所述车辆通过红绿灯路口的时刻有关,ωSOCGSOC为制动能量回收指标,所述GSOC与所述车辆的速度有关。
在一种可选的实施方式中,所述GSOC满足以下公式:
GSOC=(1/2mvf 2-1/2mv0 2)-Wa-Wf,其中m为所述车辆的质量,Wa为空气阻力的能量,Wf为滚动阻力的能量。
在一种可选的实施方式中,Gtime满足以下公式:
Gtime=1/2tf 2
在一种可选的实施方式中,所述车辆通过红绿灯路口的效率评价指标与所述车辆的速度有关。
在一种可选的实施方式中,所述车辆通过红绿灯路口的效率评价指标满足以下公式:Lv=(v(t)-vf)2,其中Lv为所述车辆通过红绿灯路口的效率评价指标。
在一种可选的实施方式中,所述车辆通过红绿灯路口的安全评价指标与所述车辆的速度和所述车速的位置有关。
在一种可选的实施方式中,所述车辆通过红绿灯路口的安全评价指标满足以下公式:Lsafe=1-TCC(t)/TCCmax,其中Lsafe为所述车辆通过红绿灯路口的安全评价指标,TCC(t)为所述车辆与所述车辆行驶前方车辆的碰撞时间,TCCmax为所述车辆与所述车辆行驶前方车辆的最大碰撞时间。
所述车辆通过红绿灯路口的舒适度评价指标满足以下公式:Lsoft=a(t)2,Lsoft为所述车辆通过红绿灯路口的舒适度评价指标,a(t)为所述车辆在t时刻的加速度。
在一种可选的实施方式中,所述车辆通过红绿灯路口的舒适度评价指标与所述车辆的加速度有关。
在一种可选的实施方式中,在一种可选的实施方式中,所述车辆动力学模型满足以下公式:
Figure BDA0003029266820000211
其中Ft为所述车辆的驱动力,
Figure BDA0003029266820000212
为道路的坡阻力,
Figure BDA0003029266820000213
为滚动摩擦力,μ为道路摩擦系数,1/2CDρaAv(t)2为风的阻力,CD为空气阻力系数,ρa为空气密度,A为所述车辆的迎风面积。
在一种可选的实施方式中,所述边界约束模型与所述车辆的速度和所述车速的位置有关。可选的,所述边界约束模型与以下一个或多个信息有关:所述车辆的速度、所述车辆行驶前方车辆的车速、或所述车辆与所述车辆行驶前方车辆的距离。
在一种可选的实施方式中,所述边界约束模型满足以下公式:
Figure BDA0003029266820000214
其中dother为所述车辆与所述车辆行驶前方车辆的距离,vother为所述车辆行驶前方车辆的车速。
在一种可选的实施方式中,所述车辆的行驶信息包括以下一种或多种:所述车辆当前行驶的第二车速v(t),所述车辆当前行驶的加速度v(t),所述车辆当前行驶的位置;
所述车辆所在区域的道路交通信息包括以下一种或多种:红绿灯颜色,红绿灯秒数,所述车辆与红绿灯的距离,所述车辆所在区域的限速,所述车辆行驶前方车辆的车速,所述车辆与所述车辆行驶前方车辆的距离。
另一个实施例中,具体的,所述通信装置700在实现车辆控制方法时,可以包括:
所述处理器701用于调用所述存储器702中的程序指令执行:
获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
若所述车辆通过红绿灯路口的工况为非制动工况,控制所述车辆以所述第一车速vf通过红绿灯路口。
又一个实施例中,具体的,所述通信装置700在实现车辆控制方法时,可以包括:
所述处理器701用于调用所述存储器702中的程序指令执行:
获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
若所述车辆通过红绿灯路口的工况为制动工况,根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),确定所述车辆回收的制动能量;根据所述车辆回收的制动能量,控制所述车辆进行制动;
若所述车辆通过红绿灯路口的工况为非制动工况,控制所述车辆以所述第一车速vf通过红绿灯路口。
基于以上实施例,本申请实施例还提供了一种自动驾驶车辆,所述自动驾驶车辆中可以包括上述图6或图7所示的通信装置,实现上述各实施例。
本申请实施例还提供了一种自动驾驶辅助系统,所述自动驾驶辅助系统中可以包括上述图6或图7所示的通信装置,实现上述各实施例。
基于以上实施例,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的车辆控制方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的车辆控制方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的车辆控制方法。
在本申请中,多个指两个或者两个以上。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

1.一种车辆控制方法,其特征在于,包括:
获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,根据所述车辆的行驶信息以及所述车辆所在区域的道路交通信息,构建车辆控制模型;
基于所述车辆控制模型,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf
若所述车辆通过红绿灯路口的工况为制动工况,根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),确定所述车辆回收的制动能量;
根据所述车辆回收的制动能量,控制所述车辆进行制动;
所述车辆控制模型包括所述车辆控制模型的优化目标;所述车辆控制模型的优化目标包括以下一种或多种:所述车辆通过红绿灯路口的效率评价指标,安全评价指标,舒适度评价指标,和车辆能量回收指标;
所述车辆控制模型的优化目标满足以下公式:
Figure FDA0003663953130000011
J为所述车辆控制模型的优化目标,t0为车辆控制的初始时刻,tf为所述车辆通过红绿灯路口的时刻,v为所述车辆的速度,x为所述车辆的位置,a为所述车辆的加速度;
在工况为制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:
G(v(tf),x(tf),tf)=ωtimeGtimeSOCGSOC,其中,ωtimeGtime为所述车辆通过红绿灯路口的通行效率评价指标,所述Gtime与所述车辆通过红绿灯路口的时刻有关,ωSOCGSOC为制动能量回收指标,所述GSOC与所述车辆的速度有关;
所述GSOC满足以下公式:GSOC=(1/2mvf 2-1/2mv0 2)-Wa-Wf,其中m为所述车辆的质量,Wa为空气阻力的能量,Wf为滚动阻力的能量;
所述Gtime满足以下公式:Gtime=1/2tf 2
2.如权利要求1所述的方法,其特征在于,所述车辆控制模型还包括以下一种或多种:车辆动力学模型,物理约束模型,和边界约束模型;
所述物理约束模型包括所述车辆的车速约束模型,和/或所述车辆的加速度约束模型;
所述边界约束模型用于约束所述车辆不与所述车辆行驶前方车辆相撞。
3.如权利要求1或2所述的方法,其特征在于,所述获取车辆的行驶信息以及所述车辆所在区域的道路交通信息,包括:
获取所述车辆的采集模块采集到的行驶信息,以及在路侧设备或云端服务器中获取所述车辆所在区域的道路交通信息。
4.如权利要求2所述的方法,其特征在于,在工况为制动工况时,所述车辆的制动加速度a(t)满足以下条件:amin≤az≤a(t)≤amax,amin为所述车辆的最小加速度,amax为所述车辆的最大加速度,az为与所述车辆制动强度Z相关的加速度。
5.如权利要求1所述的方法,其特征在于,在工况为非制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:
G(v(tf),x(tf),tf)=ωtimeGtime
6.如权利要求1所述的方法,其特征在于,所述车辆通过红绿灯路口的效率评价指标与所述车辆的速度有关。
7.如权利要求6所述的方法,其特征在于,所述车辆通过红绿灯路口的效率评价指标满足以下公式:Lv=(v(t)-vf)2,其中Lv为所述车辆通过红绿灯路口的效率评价指标。
8.如权利要求1所述的方法,其特征在于,所述车辆通过红绿灯路口的安全评价指标与所述车辆的速度和所述车速的位置有关。
9.如权利要求8所述的方法,其特征在于,所述车辆通过红绿灯路口的安全评价指标满足以下公式:Lsafe=1-TCC(t)/TCCmax,其中Lsafe为所述车辆通过红绿灯路口的安全评价指标,TCC(t)为所述车辆与所述车辆行驶前方车辆的碰撞时间,TCCmax为所述车辆与所述车辆行驶前方车辆的最大碰撞时间。
10.如权利要求1所述的方法,其特征在于,所述车辆通过红绿灯路口的舒适度评价指标与所述车辆的加速度有关。
11.如权利要求10所述的方法,其特征在于,所述车辆通过红绿灯路口的舒适度评价指标满足以下公式:Lsoft=a(t)2,Lsoft为所述车辆通过红绿灯路口的舒适度评价指标,a(t)为所述车辆在t时刻的加速度。
12.如权利要求2所述的方法,其特征在于,所述车辆动力学模型与所述车辆的速度有关。
13.如权利要求12所述的方法,其特征在于,所述车辆动力学模型满足以下公式:
Figure FDA0003663953130000021
其中Ft为所述车辆的驱动力,
Figure FDA0003663953130000022
为道路的坡阻力,
Figure FDA0003663953130000023
为滚动摩擦力,μ为道路摩擦系数,1/2CDρaAv(t)2为风的阻力,CD为空气阻力系数,ρa为空气密度,A为所述车辆的迎风面积。
14.如权利要求2所述的方法,其特征在于,所述边界约束模型与以下一个或多个信息有关:所述车辆的速度、所述车辆行驶前方车辆的车速、或所述车辆与所述车辆行驶前方车辆的距离。
15.如权利要求14所述的方法,其特征在于,所述边界约束模型满足以下公式:
Figure FDA0003663953130000024
其中dother为所述车辆与所述车辆行驶前方车辆的距离,vother为所述车辆行驶前方车辆的车速。
16.如权利要求1-15任一项所述的方法,其特征在于,所述车辆的行驶信息包括以下一种或多种:所述车辆当前行驶的第二车速v(t),所述车辆当前行驶的加速度a(t),所述车辆当前行驶的位置;
所述车辆所在区域的道路交通信息包括以下一种或多种:红绿灯颜色,红绿灯秒数,所述车辆与红绿灯的距离,所述车辆所在区域的限速,所述车辆行驶前方车辆的车速,所述车辆与所述车辆行驶前方车辆的距离。
17.一种车辆控制装置,其特征在于,包括:
获取单元,用于获取车辆的行驶信息以及所述车辆所在区域的道路交通信息;
处理单元,用于根据所述车辆的行驶信息以及所述车辆所在区域的道路交通信息,构建车辆控制模型;基于所述车辆控制模型,预测所述车辆通过红绿灯路口的工况和所述车辆通过红绿灯路口的第一车速vf;若所述车辆通过红绿灯路口的工况为制动工况,根据所述第一车速vf和所述车辆当前行驶的第二车速v(t),确定所述车辆回收的制动能量;根据所述车辆回收的制动能量,控制所述车辆进行制动;
所述车辆控制模型包括所述车辆控制模型的优化目标;所述车辆控制模型的优化目标包括以下一种或多种:所述车辆通过红绿灯路口的效率评价指标,安全评价指标,舒适度评价指标,和车辆能量回收指标;
所述车辆控制模型的优化目标满足以下公式:
Figure FDA0003663953130000031
J为所述车辆控制模型的优化目标,t0为车辆控制的初始时刻,tf为所述车辆通过红绿灯路口的时刻,v为所述车辆的速度,x为所述车辆的位置,a为所述车辆的加速度;
在工况为制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:
G(v(tf),x(tf),tf)=ωtimeGtimeSOCGSOC,其中,ωtimeGtime为所述车辆通过红绿灯路口的通行效率评价指标,所述Gtime与所述车辆通过红绿灯路口的时刻有关,ωSOCGSOC为制动能量回收指标,所述GSOC与所述车辆的速度有关;
所述GSOC满足以下公式:GSOC=(1/2mvf 2-1/2mv0 2)-Wa-Wf,其中m为所述车辆的质量,Wa为空气阻力的能量,Wf为滚动阻力的能量;
所述Gtime满足以下公式:Gtime=1/2tf 2
18.如权利要求17所述的装置,其特征在于,所述车辆控制模型还包括以下一种或多种:车辆动力学模型,物理约束模型,和边界约束模型;
所述物理约束模型包括所述车辆的车速约束模型,和/或所述车辆的加速度约束模型;
所述边界约束模型用于约束所述车辆不与所述车辆行驶前方车辆相撞。
19.如权利要求18所述的装置,其特征在于,在工况为制动工况时,所述车辆的制动加速度a(t)满足以下条件:amin≤az≤a(t)≤amax,amin为所述车辆的最小加速度,amax为所述车辆的最大加速度,az为与所述车辆制动强度Z相关的加速度。
20.如权利要求17所述的装置,其特征在于,在工况为非制动工况时,所述G(v(tf),x(tf),tf)满足以下公式:
G(v(tf),x(tf),tf)=ωtimeGtime
21.一种通信装置,其特征在于,包括处理器和存储器;
所述存储器用于存储计算机执行指令;
所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1至16任一项所述的方法。
22.一种通信装置,其特征在于,包括处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1至16任一项所述的方法。
23.一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1至16任一项所述的方法被实现。
24.一种自动驾驶车辆,其特征在于,包括如权利要求17-20任一项所述的车辆控制装置。
25.一种自动驾驶辅助系统,其特征在于,包括如权利要求17-20任一项所述的车辆控制装置。
CN202180000826.6A 2021-03-31 2021-03-31 一种车辆控制方法及装置 Active CN112955359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211110018.8A CN115675468A (zh) 2021-03-31 2021-03-31 一种车辆控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084771 WO2022205242A1 (zh) 2021-03-31 2021-03-31 一种车辆控制方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202211110018.8A Division CN115675468A (zh) 2021-03-31 2021-03-31 一种车辆控制方法及装置

Publications (2)

Publication Number Publication Date
CN112955359A CN112955359A (zh) 2021-06-11
CN112955359B true CN112955359B (zh) 2022-09-16

Family

ID=76233931

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211110018.8A Pending CN115675468A (zh) 2021-03-31 2021-03-31 一种车辆控制方法及装置
CN202180000826.6A Active CN112955359B (zh) 2021-03-31 2021-03-31 一种车辆控制方法及装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202211110018.8A Pending CN115675468A (zh) 2021-03-31 2021-03-31 一种车辆控制方法及装置

Country Status (2)

Country Link
CN (2) CN115675468A (zh)
WO (1) WO2022205242A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113635887B (zh) * 2021-10-12 2022-02-08 比亚迪股份有限公司 车辆控制方法、装置和车辆
CN114179804B (zh) * 2021-11-24 2023-06-09 东风柳州汽车有限公司 车辆制动能量回收方法、装置、设备及存储介质
CN116431974B (zh) * 2023-05-10 2023-10-03 常州工学院 基于多源信息融合的电动汽车能源控制调节系统及方法
CN116424370B (zh) * 2023-06-14 2023-09-15 苏州上善知源汽车电子有限公司 一种车辆控制方法、装置、电子设备及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102929A1 (de) * 1991-01-31 1992-08-06 Man Nutzfahrzeuge Ag Kraftfahrzeug mit einer einrichtung zur bremsenergierueckgewinnung
CN104590247B (zh) * 2014-12-09 2017-02-22 河南理工大学 基于交通信号灯信息的混合动力汽车节能预测控制方法
FR3070658B1 (fr) * 2017-09-06 2019-08-30 IFP Energies Nouvelles Procede de determination d'une vitesse a atteindre pour un premier vehicule precede par un deuxieme vehicule, en particulier pour un vehicule autonome
CN108656958A (zh) * 2018-07-17 2018-10-16 合肥工业大学 一种基于道路信息的纯电动汽车制动能量回收方法
CN110588656B (zh) * 2019-09-30 2021-01-12 的卢技术有限公司 一种基于道路及路况信息的自适应动能回收方法及系统
CN111332126B (zh) * 2019-12-18 2021-12-07 北京理工大学 车辆制动能量回收控制方法、装置、车辆及存储介质
CN111038512B (zh) * 2019-12-25 2022-06-28 联合汽车电子有限公司 车辆减速控制方法及整车控制器
CN110871759A (zh) * 2020-01-20 2020-03-10 浙江天尚元科技有限公司 一种无人驾驶车辆智能惯性节能系统及其控制方法
CN112339756B (zh) * 2020-10-14 2021-10-15 天津大学 一种基于强化学习的新能源汽车红绿灯路口能量回收优化速度规划算法
CN112550290B (zh) * 2020-12-17 2022-07-22 江苏大学 一种考虑电机能耗的能量最优自适应巡航控制方法及系统

Also Published As

Publication number Publication date
WO2022205242A1 (zh) 2022-10-06
CN112955359A (zh) 2021-06-11
CN115675468A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN112955359B (zh) 一种车辆控制方法及装置
US20210262808A1 (en) Obstacle avoidance method and apparatus
WO2021136130A1 (zh) 一种轨迹规划方法及装置
CN102800214B (zh) 一种基于车车信息交互条件下的车辆换道冲突消解方法
JP6286192B2 (ja) 移動体の駆動制御装置
US11254313B2 (en) Travelling control apparatus
CN102800213A (zh) 一种基于车辆通行优先级的换道危险避撞的方法
CN113160547B (zh) 一种自动驾驶方法及相关设备
JP2007221889A (ja) 車両用運転支援装置
EP4316935A1 (en) Method and apparatus for obtaining lane change area
CN104417558A (zh) 减速度设定系统、方法以及程序
US20230211809A1 (en) Autonomous driving method and apparatus
CN114677858B (zh) 车辆管理方法、装置、设备及计算机存储介质
CN109878339B (zh) 用于操作机动车辆的方法
JP6253646B2 (ja) 車両制御装置
CN116691680B (zh) 一种基于多车运动模型的变道方法和装置
CN112092811B (zh) 巡航控制中的预测坡度优化
CN115547035B (zh) 超视距避撞行驶控制方法、装置及信息物理系统
US11981330B2 (en) Method for controlling a platoon of vehicles
CN113963535B (zh) 行驶决策确定方法、装置、电子设备存储介质
CN113799794B (zh) 车辆纵向运动参数的规划方法和装置
CN113525405B (zh) 自动驾驶车辆的辅助控制方法、车载装置及系统
WO2023102827A1 (zh) 一种路径约束方法及装置
CN113246949B (zh) 自动跟随距离的巡航控制方法
Muniyandi Energy Efficient Electric Vehicle Platooning At Signalized Intersections

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant