CN112939611A - 一种采用直接滴定成型技术制备陶瓷微球的方法 - Google Patents

一种采用直接滴定成型技术制备陶瓷微球的方法 Download PDF

Info

Publication number
CN112939611A
CN112939611A CN202110115466.6A CN202110115466A CN112939611A CN 112939611 A CN112939611 A CN 112939611A CN 202110115466 A CN202110115466 A CN 202110115466A CN 112939611 A CN112939611 A CN 112939611A
Authority
CN
China
Prior art keywords
ceramic
powder
inclined plane
adopted
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110115466.6A
Other languages
English (en)
Inventor
杨硕
刘汉强
薛建强
师琳璞
苏摇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
725th Research Institute of CSIC
Original Assignee
725th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 725th Research Institute of CSIC filed Critical 725th Research Institute of CSIC
Priority to CN202110115466.6A priority Critical patent/CN112939611A/zh
Publication of CN112939611A publication Critical patent/CN112939611A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/004Devices for shaping artificial aggregates from ceramic mixtures or from mixtures containing hydraulic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种采用直接滴定成型技术制备陶瓷微球的方法,主要包含如下步骤:称取陶瓷粉体和水溶剂各组分,将陶瓷粉体和水溶剂进行球磨得到固含量为75~85%陶瓷浆料,在陶瓷浆料中加入固化剂并混合均匀;陶瓷浆料的成型是在点胶机系统设备上进行,在斜面轨道表面制备超疏水薄膜,控制滴定针筒注射出的陶瓷浆料形成尺寸为0.1~1.5mm的液滴并滴落至斜面轨道顶端,液滴自斜面轨道顶端自由滚落至底端即完成固化形成球坯;将球坯经100~120℃干燥5~10h、550~600℃脱脂10~20h、最后于1400~1550℃烧结并保温2~5h后制得陶瓷微球。本发明制备的陶瓷微球球形度很高,内部结构均匀,具有工艺成本低、工序少、高效以及容易实现自动控制等优点。

Description

一种采用直接滴定成型技术制备陶瓷微球的方法
技术领域
本发明涉及无机陶瓷微球制备技术领域,具体的说是一种采用直接滴定成型技术制备陶瓷微球的方法。
背景技术
陶瓷微球一般指直径在1mm以下(通常为0.1mm~1mm)的球体形结构或功能材料。目前在陶瓷微球领域常用的微球种类包括:研磨介质类(如ZrO2陶瓷微球用于砂磨机研磨粉料)、功能类(如Gd2O2S用于G-M超低温制冷机中新型蓄冷材料,锂陶瓷(Li4SiO4和Li2TiO3)和ZrN陶瓷微球分别用于核工业领域中的产氚包层功能材料和惰性基质材料)。
在目前的陶瓷微球成型技术领域,主要包括滚制法和常规滴定法。其中滚制法需要制核、加入粘结剂喷湿、滚制、自磨修正等多道工序,且受工艺影响,锅体不能继续增大,若提高产量就需要大量锅体和操作工人,造成成本增加,同时滚制法制备的陶瓷微球球坯圆度不高,坯体均匀性较差,容易导致烧结后成品球磨耗增加、使用寿命降低。而常规滴定法是一种将陶瓷粉浆滴入固化液池中成型的方法,相对于滚制法,其在直径0.2mm规格以下产品中的优势明显,也是国外0.1~0.2mm高端研磨球所使用的方法,但该方法所制成的微球也有如下缺点,1)由于在固化液中保持球状并在短时间内发生固化反应,当陶瓷液滴进入固化液瞬时,液滴容易形成拖尾,导致球形度不十分理想,容易出现椭球形产品;2)该方法固化后的微球表皮容易脱落,需要继续研磨、抛光等后续处理工序;3)固化池占地面积较大,且不易实现自动化控制或自动化控制成本偏高。
发明内容
为了解决现有技术中微球成型均匀性不高、圆度不足、制作过程繁琐、不易实现自动化控制等问题,本发明提供一种采用直接滴定成型技术制备陶瓷微球的方法。
为了实现上述目的,本发明采用的具体方案为:
一种采用直接滴定成型技术制备陶瓷微球的方法,主要包含如下步骤:
步骤一、制备固含量为75~85%的陶瓷浆料
称取陶瓷粉体和水溶剂用各组分,将陶瓷粉体和水溶剂进行球磨得到固含量为75~85%的陶瓷浆料,之后在陶瓷浆料中加入固化剂并混合均匀;
步骤二、直接滴定成型
陶瓷浆料的成型是在点胶机系统设备上进行的,所述点胶机系统设备上设有多个滴定针筒及与各滴定针筒相对应的斜面轨道,斜面轨道的倾角为5~8°,在购置的超疏水涂料中加入质量分数为2~5%的粘结剂并混合均匀,然后施涂或沉积在斜面轨道表面以形成一层超疏水薄膜,陶瓷浆料经抽真空脱气后,注入到点胶机系统设备的料筒中,控制斜面轨道的温度为常温或50~110℃,通过控制压缩空气的进气压力和针孔尺寸使滴定针筒注射出的陶瓷浆料形成尺寸为0.1~1.5mm的液滴并滴落至相对应的斜面轨道顶端,液滴自斜面轨道顶端自由滚落至底端即完成固化形成球坯;
步骤三、制备陶瓷微球
将球坯经100~120℃干燥5~10h、550~600℃脱脂10~20h、最后于1400~1550℃高温烧结并保温2~5h后,制得陶瓷微球。
进一步地,步骤一和步骤二中,所采用的工艺为凝胶注膜工艺或常温固化工艺。
进一步地,步骤一中,采用凝胶注膜工艺时,所采用的水溶剂包含的组分为:加入量占粉体质量0.8%~1.55%的分散剂、加入量占粉体质量1.25%~5.80%的单体、加入量占粉体质量0.03%~0.43%的交联剂以及加入量占粉体质量17.64~33.33%的水;
所述分散剂为聚丙烯酸类或聚羧酸类,所述单体为丙烯酰胺或甲基丙烯酰胺,所述交联剂为N-N’亚甲基双丙烯酰胺。
进一步地,步骤一中,采用常温固化工艺时,所采用的水溶剂包含的组分为:加入量占陶瓷粉体质量的0.80%~1.55%的聚丙烯酸类或聚羧酸类分散剂以及加入量占粉体质量17.64~33.33%的水。
进一步地,步骤一中,采用凝胶注膜工艺时,球磨后得到的陶瓷浆料的粘度值为49~155mPa•s。
进一步地,步骤一中,采用常温固化工艺时,球磨后得到的陶瓷浆料的粘度值为32~128mPa•s。
进一步地,步骤一中,采用凝胶注膜工艺时,采用的固化剂为:加入量占陶瓷粉体质量0.03‰~0.61‰的过硫酸铵和加入量占陶瓷粉体质量0.01‰~0.015‰的四甲基乙二胺。
进一步地,步骤一中,采用常温固化工艺时,采用的固化剂为ISObam,其加入量占粉体质量的1%~1.5%。
进一步地,步骤二中,采用凝胶注膜工艺时,斜面轨道下方粘附有加热带,先利用加热带将斜面轨道加热至50~110℃,然后通过滴定针筒将液滴滴落于相对应的斜面轨道顶端使其自由滑落。
进一步地,所述陶瓷粉体为ZrO2、Gd2O2S、Li4SiO4、ZrN中的任意一种,所述陶瓷粉体的平均粒径为0.05~2μm。
有益效果:
本发明制备的陶瓷微球球形度很高,内部结构均匀,且具有工艺成本低、工序少、高效以及容易实现自动控制等优势,具体如下:
1、陶瓷微球具有很高的球形度
由于陶瓷浆料形成的液滴自斜面轨道顶端自由滑落至底端,因超疏水薄膜的作用,在疏水角大于150°时,始终保持为较为理想的球体,同时因浆料的固含量较高,水分含量较低,故蒸发固化过程中,球坯的收缩变形量极小,滚动过程本身也有利于球形化,故整个过程可始终保持较高的球形度。固化后的陶瓷微球球坯的球形度经测量为99 %以上,烧结后球形度为98%以上,接近于理想球体(球形度为1),其球形度远高于滚制法以及常规滴定法所制备的微球。球形度的提高有利于进一步增加其机械强度、均匀性以及抗磨损能力。
2、陶瓷微球内部均匀性好、纯度高
由于陶瓷微球液滴在固化过程中处于运动状态,且固化时间较短,故其内部浆料不易发生沉降,可保持球坯内部颗粒的均匀分布;在蒸发干燥过程中,因毛细管力使球坯进一步收缩,进一步提高了球坯密度,提高了烧结动力,有利于烧结致密化以及提高成品球的强度,经测试,烧成后直径为0.1mm的陶瓷微球,其相对密度超过99.5%,压溃强度较常规滴定成型法提高7~12%。同时,由于该成型方法不接触固化液,故可防止固化液中的杂质对微球的污染,可保证成品陶瓷微球具有很高的纯度。
3、工序少、工艺成本低
本发明的直接滴定成型过程可一步完成,省去了常规滴定成型后微球表面的除油、清洗等工序,且球坯固化工序可与后续的收集及筛分工序无缝连接,大幅降低工序数量、工艺成本以及设备投入。
4、效率高、易实现自动化
本发明的直接滴定成型方法十分简洁,可在点胶机系统设备上同时生产,生产效率可大幅提高。
附图说明
图1是实施例1中步骤二中得到固化后的ZrO2球坯的显微组织图。
图2是实施例2中步骤二中得到固化后的ZrO2球坯的显微组织图。
具体实施方式
下面将结合具体实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
一种采用直接滴定成型技术制备陶瓷微球的方法,所采用的陶瓷粉体为ZrO2、Gd2O2S、Li4SiO4、ZrN中的任意一种,所述陶瓷粉体的平均粒径为0.05~2μm,所采用的工艺为凝胶注膜工艺或常温固化工艺两类。
一种采用直接滴定成型技术制备陶瓷微球的方法(采用凝胶注膜工艺),主要包含如下步骤:
步骤一、制备固含量为75~85%的陶瓷浆料
称取陶瓷粉体和水溶剂用各组分,将陶瓷粉体和水溶剂进行球磨得到固含量为75~85%的陶瓷浆料,球磨后得到的陶瓷浆料的粘度值为49~155mPa•s,之后在陶瓷浆料中加入占陶瓷粉体质量0.03‰~0.61‰的过硫酸铵和占陶瓷粉体质量0.01‰~0.015‰的四甲基乙二胺并混合均匀;详细地,所述水溶剂包括占粉体质量0.8%~1.55%的分散剂、占粉体质量1.25%~5.80%的单体、占粉体质量0.03%~0.43%的交联剂和占粉体质量17.64~33.33%的水,所述分散剂为聚丙烯酸类或聚羧酸类,所述单体为丙烯酰胺或甲基丙烯酰胺,所述交联剂为N-N’亚甲基双丙烯酰胺;
步骤二、直接滴定成型
陶瓷浆料的成型是在点胶机系统设备上进行的,所述点胶机系统设备上设有多个滴定针筒及与各滴定针筒相对应的斜面轨道,斜面轨道下方粘附有加热带,斜面轨道的倾角为5~8°,在购置的超疏水涂料中加入质量分数为2~5%的粘结剂并混合均匀,然后施涂或沉积在斜面轨道表面以形成一层超疏水薄膜,陶瓷浆料经抽真空脱气后,注入到点胶机系统设备的料筒中,先利用加热带将斜面轨道加热至50~110℃,通过控制压缩空气的进气压力和针孔尺寸使滴定针筒注射出的陶瓷浆料形成尺寸为0.1~1.5mm的液滴并滴落至相对应的斜面轨道顶端,液滴自斜面轨道顶端自由滚落至底端即完成固化形成球坯;
步骤三、制备陶瓷微球
将球坯经100~120℃干燥5~10h、550~600℃脱脂10~20h、最后于1400~1550℃高温烧结并保温2~5h后,制得陶瓷微球。
一种采用直接滴定成型技术制备陶瓷微球的方法(采用常温固化工艺),主要包含如下步骤:
步骤一、制备固含量为75~85%的陶瓷浆料
称取陶瓷粉体和水溶剂用各组分,将陶瓷粉体和水溶剂进行球磨得到固含量为75~85%的陶瓷浆料,将陶瓷粉体和水溶剂进行球磨得到陶瓷浆料,球磨后得到的陶瓷浆料的粘度值为32~128mPa•s,之后在陶瓷浆料中加入占陶瓷粉体质量1%~1.5%的ISObam固化剂并混合均匀;详细地,所述水溶剂包括占粉体质量0.80%~1.55%的聚丙烯酸类或聚羧酸类分散剂以及占粉体质量17.64~33.33%的水;
步骤二、直接滴定成型
陶瓷浆料的成型是在点胶机系统设备上进行的,所述点胶机系统设备上设有多个滴定针筒及与各滴定针筒相对应的斜面轨道,斜面轨道的倾角为5~8°,在购置的超疏水涂料中加入质量分数为2~5%的粘结剂并混合均匀,然后施涂或沉积在斜面轨道表面以形成一层超疏水薄膜,陶瓷浆料经抽真空脱气后,注入到点胶机系统设备的料筒中,通过控制压缩空气的进气压力和针孔尺寸使滴定针筒注射出的陶瓷浆料形成尺寸为0.1~1.5mm的液滴并滴落至相对应的斜面轨道顶端,液滴自斜面轨道顶端自由滚落至底端即完成固化形成球坯;
步骤三、制备陶瓷微球
将球坯经100~120℃干燥5~10h、550~600℃脱脂10~20h、最后于1400~1550℃高温烧结并保温2~5h后,制得陶瓷微球。
实施例1
一种直接滴定成型技术制备ZrO2微球的方法(凝胶注膜工艺),主要包含如下步骤:
步骤一、取平均粒径为0.1μm的ZrO2陶瓷粉体800g,称取占粉体质量2.5%的丙烯酰胺、占粉体质量0.29%的N-N’亚甲基双丙烯酰胺、占粉体质量1.0%的聚羧酸铵和占粉体质量18%的水,搅拌10min后制得水溶剂,将ZrO2陶瓷粉体和水溶剂加入到20L行星球磨罐内,其中球罐为聚氨酯罐,球磨介质为直径3mm的ZrO2球,料球比(质量比)为2:1。将球磨转速设定为180r/min,经过7h球磨后浆料流动性良好,测量其粘度值为82mPa•s(室温,转速20s-1),固含量为80%。在球磨后的陶瓷浆料中加入占粉体质量0.43‰的过硫酸铵和0.15‰的四甲基乙二胺,再用机械棒搅拌3min,得到合适的ZrO2浆料待用;
步骤二、陶瓷浆料经抽真空脱气后,注入到点胶机系统设备的料筒中,选用30#滴定针筒,通过调整压缩空气的气压,使液滴直径保持约为0.115mm。在超疏水涂料中加入2%的粘结剂(蛋白胶)并混合均匀后,涂覆在斜面轨道表面,并利用加热带将斜面轨道加热至60℃左右并保持该温度,将ZrO2液滴由斜面轨道顶端滴定并滚落至最低位置的收集槽内,得到固化后的ZrO2球坯(如图1所示,其中的球坯球形度良好);
步骤三、成型后的ZrO2球坯经100℃干燥10h、600℃脱脂15h、最后于1500℃条件下保温2h后,制得直径约0.1mm的ZrO2成品陶瓷微球。
经测试,其相对密度约为99.61%,压溃强度较常规滴定成型法平均提高约9%。
实施例2
一种直接滴定成型技术制备ZrO2微球的方法(常温固化工艺),主要包含如下步骤:
步骤一、取平均粒径为0.1μm的ZrO2粉体800g,称取占粉体质量1.0%的聚羧酸铵分散剂和占粉体质量20%的水,搅拌10min后制得水溶剂;将ZrO2粉体和水溶剂加入到20L行星球磨罐内,其中球罐为聚氨酯罐,球磨介质为直径3mm的ZrO2球,料球比(质量比)为2:1。将球磨转速设定为180r/min,经过7h球磨后浆料流动性良好,测量其粘度值为66mPa•s(室温,转速20s-1),固含量为80%。在球磨后的陶瓷浆料中加入占粉体质量1%的常温固化剂Isobam,再用机械棒搅拌3min,得到合适的ZrO2浆料待用;
步骤二、ZrO2浆料陶瓷浆料经抽真空脱气后,注入到点胶机系统设备的料筒中,选用30#滴定针筒,通过调整压缩空气的气压,使液滴直径保持为约0.115mm。在超疏水涂料中加入2%的蛋白胶后,涂覆在斜面轨道表面并在室温下自然干燥,将ZrO2液滴由斜面轨道上端滴定并滚落至最低位置,得到快速固化后的ZrO2球坯(如图2所示,其中的球坯球形度良好);
步骤三、成型后的ZrO2球坯经100℃干燥10h、600℃脱脂15h、最后于1500℃条件下保温2h后,制得直径约0.1mm的ZrO2成品陶瓷微球。
经测试,实施例2制备的陶瓷微球的相对密度约为99.50%,压溃强度较常规滴定成型法平均提高约7.8%。
实施例3
一种直接滴定成型技术制备Gd2O2S微球的方法(凝胶注膜工艺),主要包含如下步骤:
步骤一、取平均粒径为0.05μm的Gd2O2S粉体800g,称取占粉体质量2.55%的丙烯酰胺、0.31%的N-N’亚甲基双丙烯酰胺、1.2%的聚羧酸铵和占粉体质量25%的水,搅拌10min后制得水溶剂;将Gd2O2S粉和水溶剂加入到20L行星球磨罐内,其中球罐为聚氨酯罐,球磨介质为直径3mm的ZrO2球,料球比(质量比)为2:1。将球磨转速设定为180r/min,经过7h球磨后浆料流动性良好,测量其粘度值为110mPa•s(室温,转速20s-1),固含量为80%,在球磨后的浆料中加入占粉体0.47‰的过硫酸铵和0.18‰的四甲基乙二胺,再用机械棒搅拌3min,得到合适的Gd2O2S浆料待用;
步骤二、Gd2O2S浆料经抽真空脱气后,注入到点胶机系统设备的料筒中,选用30#滴定针筒,通过调整压缩空气的气压,使液滴直径保持为约0.115mm,在超疏水涂料中加入2%的蛋白胶后,涂覆在斜面轨道表面,并利用加热带将斜面轨道加热至60℃左右并保持温度,将Gd2O2S液滴由轨道上端滴定并滚落至最低位置的收集槽中,得到固化后的Gd2O2S球坯;
步骤三、成型后的Gd2O2S球坯经100℃干燥10h、600℃脱脂15h、最后于1600℃条件下保温2h后,制得直径约0.12mm的Gd2O2S微球。
经测试,实施例3制备的Gd2O2S微球的相对密度约为99.10%,压溃强度较常规滴定成型法平均提高约7.5%。
实施例4
一种直接滴定成型技术制备Li4SiO4微球的方法(凝胶注膜工艺),主要包含如下步骤:
步骤一、取平均粒径为0.08μm的Li4SiO4粉体800g,称取占粉体2.61%的丙烯酰胺、0.33%的N-N’亚甲基双丙烯酰胺、1.5%的聚羧酸铵和占粉体质量30%的水,搅拌10min后制得水溶剂;将Li4SiO4粉和水溶剂加入到20L行星球磨罐内,其中球罐为聚氨酯罐,球磨介质为直径3mm的ZrO2球,料球比(质量比)为2:1。将球磨转速设定为180r/min,经过7h球磨后浆料流动性良好,测量其粘度值为96mPa•s(室温,转速20s-1),固含量为80%。球磨后的浆料中加入占粉体0.45‰的过硫酸铵和0.17‰的四甲基乙二胺,再用机械棒搅拌3min,得到合适的Li4SiO4浆料待用;
步骤二、浆料经抽真空脱气后,注入到点胶机系统设备的料筒中,选用30#滴定针筒,通过调整压缩空气的气压,使液滴直径保持为约0.115mm。在超疏水涂料中加入2%的蛋白胶后,涂覆在斜面轨道表面,并利用加热带将斜面轨道加热至60℃左右并保持温度,将Li4SiO4液滴由轨道顶端滴定并滚落至最低位置的收集槽中,得到固化后的Li4SiO4球坯;
步骤三、成型后的Li4SiO4球坯经100℃干燥10h、600℃脱脂15h、最后于1000℃条件下保温2h后,制得直径约0.10mm的Li4SiO4微球。
经测试,实施例4制备的Li4SiO4微球的相对密度约为85.2%,压溃强度较常规滴定成型法平均提高约8.1%。
实施例5
一种直接滴定成型技术制备ZrN微球的方法(凝胶注膜工艺),主要包含如下步骤:
步骤一、取平均粒径为0.09μm的ZrN粉体800g,称取占粉体2.5%的丙烯酰胺、0.29%的N-N’亚甲基双丙烯酰胺、1.5%的聚羧酸铵和占粉体质量33.33%的水,搅拌10min后制得水溶剂;将ZrN粉和水溶剂加入到20L行星球磨罐内,其中球罐为聚氨酯罐,球磨介质为直径3mm的ZrO2球,料球比(质量比)为2:1。将球磨转速设定为180r/min,经过7h球磨后浆料流动性良好,测量其粘度值为103mPa•s(室温,转速20s-1),固含量为80%。球磨后的浆料中加入占粉体0.43‰的过硫酸铵和0.15‰的四甲基乙二胺,再用机械棒搅拌3min,得到合适的ZrN浆料待用;
步骤二、ZrN浆料经抽真空脱气后,注入到点胶机系统设备的料筒中,选用30#滴定针筒,通过调整压缩空气的气压,使液滴直径保持为约0.115mm。在超疏水涂料中加入2%的蛋白胶后,涂覆在斜面轨道表面,并利用加热带将斜面轨道加热至60℃左右并保持温度,将ZrN液滴由轨道上端滴定并滚落至最低位置的收集槽中,得到固化后的ZrN球坯;
步骤三、成型后的ZrN球坯经100℃干燥10h、600℃脱脂15h、最后于1250℃条件下保温2h后,制得直径约0.12mm的ZrN微球。
经测试,实施例5制备的ZrN微球的相对密度约为99%,压溃强度较常规滴定成型法平均提高约8.3%。
以上所述,仅是本发明的较佳实施例而已,并非随本发明作任何形式上的限制。凡根据本发明的实质所做的等效变换或修饰,都应该涵盖在本发明的保护范围之内。

Claims (10)

1.一种采用直接滴定成型技术制备陶瓷微球的方法,其特征在于,主要包含如下步骤:
步骤一、制备固含量为75~85%的陶瓷浆料
称取陶瓷粉体和水溶剂用各组分,将陶瓷粉体和水溶剂进行球磨得到固含量为75~85%的陶瓷浆料,之后在陶瓷浆料中加入固化剂并混合均匀;
步骤二、直接滴定成型
陶瓷浆料的成型是在点胶机系统设备上进行的,所述点胶机系统设备上设有多个滴定针筒及与各滴定针筒相对应的斜面轨道,斜面轨道的倾角为5~8°,在购置的超疏水涂料中加入质量分数为2~5%的粘结剂并混合均匀,然后施涂或沉积在斜面轨道表面以形成一层超疏水薄膜,陶瓷浆料经抽真空脱气后,注入到点胶机系统设备的料筒中,控制斜面轨道的温度为常温或50~110℃,通过控制压缩空气的进气压力和针孔尺寸使滴定针筒注射出的陶瓷浆料形成尺寸为0.1~1.5mm的液滴并滴落至相对应的斜面轨道顶端,液滴自斜面轨道顶端自由滚落至底端即完成固化形成球坯;
步骤三、制备陶瓷微球
将球坯经100~120℃干燥5~10h、550~600℃脱脂10~20h、最后于1400~1550℃高温烧结并保温2~5h后,制得陶瓷微球。
2.根据权利要求1所述的一种采用直接滴定成型技术制备陶瓷微球的方法,其特征在于:步骤一和步骤二中,所采用的工艺为凝胶注膜工艺或常温固化工艺。
3.根据权利要求2所述的一种采用直接滴定成型技术制备陶瓷微球的方法,其特征在于:步骤一中,采用凝胶注膜工艺时,所采用的水溶剂包含的组分为:加入量占粉体质量0.8%~1.55%的分散剂、加入量占粉体质量1.25%~5.80%的单体、加入量占粉体质量0.03%~0.43%的交联剂以及加入量占粉体质量17.64~33.33%的水;
所述分散剂为聚丙烯酸类或聚羧酸类,所述单体为丙烯酰胺或甲基丙烯酰胺,所述交联剂为N-N’亚甲基双丙烯酰胺。
4.根据权利要求2所述的一种采用直接滴定成型技术制备陶瓷微球的方法,其特征在于:步骤一中,采用常温固化工艺时,所采用的水溶剂包含的组分为:加入量占陶瓷粉体质量的0.80%~1.55%的聚丙烯酸类或聚羧酸类分散剂以及加入量占粉体质量17.64~33.33%的水。
5.根据权利要求2所述的一种采用直接滴定成型技术制备陶瓷微球的方法,其特征在于:步骤一中,采用凝胶注膜工艺时,球磨后得到的陶瓷浆料的粘度值为49~155mPa·s。
6.根据权利要求2所述的一种采用直接滴定成型技术制备陶瓷微球的方法,其特征在于:步骤一中,采用常温固化工艺时,球磨后得到的陶瓷浆料的粘度值为32~128mPa·s。
7.根据权利要求2所述的一种采用直接滴定成型技术制备陶瓷微球的方法,其特征在于:步骤一中,采用凝胶注膜工艺时,采用的固化剂为:加入量占陶瓷粉体质量0.03‰~0.61‰的过硫酸铵和加入量占陶瓷粉体质量0.01‰~0.015‰的四甲基乙二胺。
8.根据权利要求2所述的一种采用直接滴定成型技术制备陶瓷微球的方法,其特征在于:步骤一中,采用常温固化工艺时,采用的固化剂为ISObam,其加入量占粉体质量的1%~1.5%。
9.根据权利要求2所述的一种采用直接滴定成型技术制备陶瓷微球的方法,其特征在于:步骤二中,采用凝胶注膜工艺时,斜面轨道下方粘附有加热带,先利用加热带将斜面轨道加热至50~110℃,然后通过滴定针筒将液滴滴落于相对应的斜面轨道顶端使其自由滑落。
10.根据权利要求1所述的一种采用直接滴定成型技术制备陶瓷微球的方法,其特征在于,所述陶瓷粉体为ZrO2、Gd2O2S、Li4SiO4、ZrN中的任意一种,所述陶瓷粉体的平均粒径为0.05~2μm。
CN202110115466.6A 2021-01-28 2021-01-28 一种采用直接滴定成型技术制备陶瓷微球的方法 Pending CN112939611A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110115466.6A CN112939611A (zh) 2021-01-28 2021-01-28 一种采用直接滴定成型技术制备陶瓷微球的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110115466.6A CN112939611A (zh) 2021-01-28 2021-01-28 一种采用直接滴定成型技术制备陶瓷微球的方法

Publications (1)

Publication Number Publication Date
CN112939611A true CN112939611A (zh) 2021-06-11

Family

ID=76238282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110115466.6A Pending CN112939611A (zh) 2021-01-28 2021-01-28 一种采用直接滴定成型技术制备陶瓷微球的方法

Country Status (1)

Country Link
CN (1) CN112939611A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773041A (zh) * 2022-03-21 2022-07-22 中国船舶重工集团公司第七二五研究所 一种低成本制备陶瓷空心微球的方法
CN114773084A (zh) * 2022-03-21 2022-07-22 中国船舶重工集团公司第七二五研究所 一种制备硫氧化钆陶瓷空心微球的方法
CN116003139A (zh) * 2022-12-26 2023-04-25 赣州科盈结构陶瓷有限公司 一种陶瓷微珠的制备装置、制备方法及陶瓷微珠
CN117819989A (zh) * 2024-01-04 2024-04-05 河源帝诺新材料有限公司 一种离子交联凝胶法制备氮化硅精细微球的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1844863A1 (en) * 2006-04-12 2007-10-17 General Electric Company Article having a surface with low wettability and its method of making
US20100021692A1 (en) * 2006-09-21 2010-01-28 Edward Bormashenko Superhydrophobic nanotextured polymer and metal surfaces
CN108530112A (zh) * 2018-06-11 2018-09-14 四川大学 一种用超疏水面制备大颗粒尿素的方法
CN108947528A (zh) * 2018-08-10 2018-12-07 合肥工业大学 一种氧化钇稳定氧化锆陶瓷微球的制备方法
CN109454752A (zh) * 2018-10-31 2019-03-12 华中科技大学 一种陶瓷微球制备方法及其装置
CN110090595A (zh) * 2018-01-30 2019-08-06 徐州市禾协肥业有限公司 一种斜面冷却造粒系统
CN110494228A (zh) * 2016-09-11 2019-11-22 申卡尔工程设计艺术学院 微球及用于生产微球的方法
CN110606736A (zh) * 2019-08-23 2019-12-24 广东工业大学 一种无溶剂合成的陶瓷微球及其制备方法和应用
CN110721667A (zh) * 2018-07-17 2020-01-24 北京三聚环保新材料股份有限公司 制备球形催化剂珠粒的设备和方法
CN110835263A (zh) * 2019-10-31 2020-02-25 中国船舶重工集团公司第七二五研究所 一种制备氧化锆陶瓷微球的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1844863A1 (en) * 2006-04-12 2007-10-17 General Electric Company Article having a surface with low wettability and its method of making
US20100021692A1 (en) * 2006-09-21 2010-01-28 Edward Bormashenko Superhydrophobic nanotextured polymer and metal surfaces
CN110494228A (zh) * 2016-09-11 2019-11-22 申卡尔工程设计艺术学院 微球及用于生产微球的方法
CN110090595A (zh) * 2018-01-30 2019-08-06 徐州市禾协肥业有限公司 一种斜面冷却造粒系统
CN108530112A (zh) * 2018-06-11 2018-09-14 四川大学 一种用超疏水面制备大颗粒尿素的方法
CN110721667A (zh) * 2018-07-17 2020-01-24 北京三聚环保新材料股份有限公司 制备球形催化剂珠粒的设备和方法
CN108947528A (zh) * 2018-08-10 2018-12-07 合肥工业大学 一种氧化钇稳定氧化锆陶瓷微球的制备方法
CN109454752A (zh) * 2018-10-31 2019-03-12 华中科技大学 一种陶瓷微球制备方法及其装置
CN110606736A (zh) * 2019-08-23 2019-12-24 广东工业大学 一种无溶剂合成的陶瓷微球及其制备方法和应用
CN110835263A (zh) * 2019-10-31 2020-02-25 中国船舶重工集团公司第七二五研究所 一种制备氧化锆陶瓷微球的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773041A (zh) * 2022-03-21 2022-07-22 中国船舶重工集团公司第七二五研究所 一种低成本制备陶瓷空心微球的方法
CN114773084A (zh) * 2022-03-21 2022-07-22 中国船舶重工集团公司第七二五研究所 一种制备硫氧化钆陶瓷空心微球的方法
CN116003139A (zh) * 2022-12-26 2023-04-25 赣州科盈结构陶瓷有限公司 一种陶瓷微珠的制备装置、制备方法及陶瓷微珠
CN116003139B (zh) * 2022-12-26 2024-03-05 赣州科盈结构陶瓷有限公司 一种陶瓷微珠的制备装置、制备方法及陶瓷微珠
CN117819989A (zh) * 2024-01-04 2024-04-05 河源帝诺新材料有限公司 一种离子交联凝胶法制备氮化硅精细微球的方法

Similar Documents

Publication Publication Date Title
CN112939611A (zh) 一种采用直接滴定成型技术制备陶瓷微球的方法
CN104999385B (zh) 一种磨料定向排布的陶瓷结合剂磨具及其制备方法
CN106553137B (zh) 一种金刚石树脂砂轮的制备方法
JP2007522070A (ja) 粉砕ボール及びその製造方法
CN108748975A (zh) 一种纳米级高精度增材制造设备
CN106145946A (zh) 一种液相原料技术制备陶瓷结合剂砂轮的方法
CN111233486A (zh) 一种陶瓷微珠的制备方法
CN106891272A (zh) 一种基于强电磁的陶瓷结合剂高性能cbn砂轮及其制备方法
CN113307635A (zh) 一种通过轨道的凝胶注模直接滴定成型陶瓷微球的方法
LI et al. Powder characteristics on the rheological performance of resin-based zirconia suspension for stereolithography
CN112123223A (zh) 采用凝胶注模成型工艺制备高精密抛光陶瓷结合剂磨具的方法
CN110835263A (zh) 一种制备氧化锆陶瓷微球的方法
CN107140953A (zh) 一种快速挤出制备陶瓷微球的方法
CN108098602A (zh) 一种用于磨削钛合金的陶瓷微晶金刚石砂轮及其制备方法
CN105347396A (zh) 二氧化锆球磨介质的制备方法
CN110540414A (zh) 一种纳米微孔刚玉的制备方法
CN113402284A (zh) 一种解决软磁铁氧体烧结开裂的方法
CN111269011B (zh) 氧化锆微珠的制备方法
CN114517022B (zh) 一种耐磨防粘附涂料及其制备方法和应用
CN112063960A (zh) 一种基于大气等离子喷涂的硼化锆粉体喷雾造粒方法
CN105347792A (zh) 基于水基凝胶体系的二氧化锆球磨介质的制备方法
CN108837968B (zh) 一种可控粒径的球形磷酸铁前驱体制造方法及所用的压力雾化喷头
CN111450944A (zh) 一种蒸压加气混凝土料浆的研磨工艺
CN100412033C (zh) 一种大尺寸储能介质陶瓷的制备方法
CN114653961B (zh) 一种用于3d打印的纳米晶金属微球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210611