CN112921397B - 一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法 - Google Patents

一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法 Download PDF

Info

Publication number
CN112921397B
CN112921397B CN202110082333.3A CN202110082333A CN112921397B CN 112921397 B CN112921397 B CN 112921397B CN 202110082333 A CN202110082333 A CN 202110082333A CN 112921397 B CN112921397 B CN 112921397B
Authority
CN
China
Prior art keywords
tibr
air atmosphere
glass bottle
red
dish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110082333.3A
Other languages
English (en)
Other versions
CN112921397A (zh
Inventor
郭小伟
何逸洲
许李毅飞
刘超
郑慧宜
李绍荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110082333.3A priority Critical patent/CN112921397B/zh
Publication of CN112921397A publication Critical patent/CN112921397A/zh
Application granted granted Critical
Publication of CN112921397B publication Critical patent/CN112921397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法,其包括以下步骤:将溴化铯和溴化钛和氢溴酸以物质量之比1:(1.3~2):(1.6~2.2)的比例加入到装有磁力转子的玻璃瓶中,将玻璃瓶密封好后放在加热磁力搅拌器上,以280~400rpm的转速持续搅拌15~30min形成Cs2TiBr6溶液;将玻璃瓶打开,用移液器将瓶中的红色溶液吸出,滴加到蒸发皿上,将蒸发皿置于加热台上,235℃~250℃的温度持续加热5~7min,多余溶液蒸发完毕得到红色结晶;取下蒸发皿,刮下附着在培养皿上的红色结晶,得到红色Cs2TiBr6单晶。优点是在空气氛围下合成,不需要真空环境,对设备和环境要求低,制备成本低,并且液相合成法适合大批量合成Cs2TiBr6晶体,有利于商业生产。

Description

一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备 方法
技术领域
本发明涉及一种晶体的制备方法,尤其是涉及一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法。
背景技术
钙钛矿太阳能电池在过去的十年中,由于材料优化、器件结构和界面工程的共同努力,钙钛矿太阳能电池的能量转化效率超过了25%。尽管钙钛矿太阳能电池的能量转化效率接近单结太阳能电池的理论效率极限,但由于有机化合物和铅成分的稳定性和毒性的问题,钙钛矿太阳能电池的商业利用能力目前受到阻碍。
近年来,钛基卤化物钙钛矿作为有望替代传统铅基钙钛矿的有潜力的方案被提出,并初步实验证明基于Cs2TiBr6(带隙1.82ev)的太阳能电池具有功率转换效率(PCE)约为3.28%,是目前报道的双钙钛矿太阳能电池的最高效率。在文献报道中,Cs2TiBr6双钙钛矿的稳定性优于传统铅基钙钛矿材料MAPbI3,并且由于钛具有良好的生物相容性和生态友好性,这种材料是制备稳定无毒的太阳能电池的理想材料。
现有的文献报道中,Cs2TiBr6的制备方法是通过气相两步法合成,即先通过热蒸发的方式形成CsBr薄膜,再在200℃的TiBr4蒸汽下退火CsBr薄膜来得到Cs2TiBr6晶体。这种气相两步法对设备要求较高,需要使用热蒸发镀膜机并且需要真空条件,成本较高,不适用于大规模和商业化生产Cs2TiBr6晶体。
发明内容
本发明要解决的技术问题是提供一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的液相合成方法,液相合成法是指将不同组分的溶质按照一定的比例混合在溶剂中合成相应的双钙钛矿晶体,然后通过蒸发的方式去除多余溶剂得到溶质晶体。其解决了制备成本高和合成条件必须是真空的问题。
本发明解决上述技术问题所采用的技术方案为:一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法,其特征在于Cs2TiBr6双钙钛矿晶体制备过程全程在空气氛围下进行;制备方法包括以下步骤:
步骤一:将溴化铯和溴化钛和氢溴酸以物质量之比1:(1.3~2):(1.6~2.2)的比例加入到装有磁力转子的玻璃瓶中,将玻璃瓶密封好后放在加热磁力搅拌器上,以280~400rpm的转速持续搅拌15~30min形成Cs2TiBr6的紫红色粘稠溶液;
步骤二:将玻璃瓶打开,用移液器将瓶中的紫红色粘稠溶液吸出,滴加到蒸发皿上,将蒸发皿置于加热台上,以235℃~250℃的温度持续加热5~7min,多余溶液蒸发完毕得到红色结晶;
步骤三:取下蒸发皿,刮下附着在培养皿上的红色结晶,得到红色Cs2TiBr6单晶。
所述空气氛围,温度为5~25℃,湿度为20~70%。
所述步骤一中,溴化铯的纯度为99.5%,溴化钛的纯度为98%,氢溴酸溶液的纯度为分析纯,氢溴酸溶液的质量分数为48%。
与现有技术相比,本发明的优点在于:
1)在空气氛围下合成,相比需要真空环境的气相两步法,对设备和环境要求低;
2)不需要气相两步法需要的热蒸发镀膜机,成本低;
3)液相合成法适合大批量合成Cs2TiBr6晶体,有利于商业生产。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明制备的Cs2TiBr6双钙钛矿晶体的SEM电镜扫描照片;
图2为本发明制备的Cs2TiBr6双钙钛矿晶体的X射线衍射图(XRD图);
图3为本发明制备的Cs2TiBr6双钙钛矿晶体的Tauc plot图;
具体实施方式
下面结合附图和具体实施例对本发明内容作进一步的详细描述,下面列举的具体实施例不用于限定本发明的权利范围。
实施实例1:
步骤一:选用的物质量之比为1:2:1.76,将0.94mmol溴化铯(CsBr)和1.88mmol溴化钛(TiBr4)和0.2ml的氢溴酸溶液加入到装有磁力转子的玻璃瓶中,将玻璃瓶密封好后放在加热磁力搅拌器上,以280~400rpm的转速持续搅拌30min形成Cs2TiBr6的紫红色粘稠溶液;
在此,制备氛围为温度5~25℃,湿度20~70%的空气氛围。溴化铯的纯度为99.5%,溴化钛的纯度为98%,氢溴酸溶液的纯度为分析纯,氢溴酸溶液的质量分数为48%。
步骤二:将玻璃瓶打开,用移液器将瓶中的紫红色粘稠溶液吸出,滴加到蒸发皿上,将蒸发皿置于加热台上,以250℃的温度持续加热5min,多余溶液蒸发完毕得到红色结晶;
在此,制备氛围为温度5~25℃,湿度20~70%的空气氛围。
步骤三:取下蒸发皿,刮下附着在培养皿上的红色结晶,得到红色Cs2TiBr6单晶。
在此,制备氛围为温度5~25℃,湿度20~70%的空气氛围。
图1给出了本实施例的制备方法制备的Cs2TiBr6双钙钛矿晶体的SEM电镜扫描照片,从图中可以看出晶粒尺寸在400nm~1200nm之间。
图2给出了本实施例的制备方法制备的Cs2TiBr6双钙钛矿晶体的X射线衍射图(XRD图)。
图3给出了本实施例的制备方法制备的Cs2TiBr6双钙钛矿晶体的Tauc plots图。从图中可以看出Cs2TiBr6双钙钛矿晶体的带隙是1.9eV。
实施实例2:
步骤一:选用的物质量之比为1:1.3:1.9,将0.94mmol溴化铯(CsBr)和1.22mmol溴化钛(TiBr4)和0.216ml的氢溴酸溶液加入到装有磁力转子的玻璃瓶中,将玻璃瓶密封好后放在加热磁力搅拌器上,以280~400rpm的转速持续搅拌18min形成Cs2TiBr6的紫红色粘稠溶液;
在此,制备氛围为温度5~25℃,湿度20~70%的空气氛围。溴化铯的纯度为99.5%,溴化钛的纯度为98%,氢溴酸溶液的纯度为分析纯,氢溴酸溶液的质量分数为48%。
步骤二:将玻璃瓶打开,用移液器将瓶中的紫红色粘稠溶液吸出,滴加到蒸发皿上,将蒸发皿置于加热台上,以235℃的温度持续加热6min,多余溶液蒸发完毕得到红色结晶;
在此,制备氛围为温度5~25℃,湿度20~70%的空气氛围。
步骤三:取下蒸发皿,刮下附着在培养皿上的红色结晶后对其进行研磨,得到红色Cs2TiBr6单晶。
在此,制备氛围为温度5~25℃,湿度20~70%的空气氛围。
实施实例3:
步骤一:选用的物质量之比为1:1.7:2.2,将0.94mmol溴化铯(CsBr)和1.6mmol溴化钛(TiBr4)和0.25ml的氢溴酸溶液加入到装有磁力转子的玻璃瓶中,将玻璃瓶密封好后放在加热磁力搅拌器上,以280~400rpm的转速持续搅拌28min形成Cs2TiBr6溶液;
在此,制备氛围为温度5~25℃,湿度20~70%的空气氛围。溴化铯的纯度为99.5%,溴化钛的纯度为98%,氢溴酸溶液的纯度为分析纯,氢溴酸溶液的质量分数为48%。
步骤二:将玻璃瓶打开,用移液器将瓶中的紫红色粘稠溶液吸出,滴加到蒸发皿上,将蒸发皿置于加热台上,以250℃的温度持续加热6min,多余溶液蒸发完毕得到红色结晶;
在此,制备氛围为温度5~25℃,湿度20~70%的空气氛围。
步骤三:取下蒸发皿,刮下附着在培养皿上的红色结晶,得到红色Cs2TiBr6单晶。
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (3)

1.一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法,其特征在于整个合成过程均在空气氛围下进行,包括以下步骤:
步骤一:将溴化铯和溴化钛和氢溴酸以物质量之比1:(1.3~2):(1.6~2.2)的比例加入到装有磁力转子的玻璃瓶中,将玻璃瓶密封好后放在加热磁力搅拌器上,以280~400rpm的转速持续搅拌15~30min形成Cs2TiBr6的紫红色粘稠溶液;
步骤二:将玻璃瓶打开,用移液器将瓶中的紫红色粘稠溶液吸出,滴加到蒸发皿上,将蒸发皿置于加热台上,235℃~250℃的温度持续加热5~7min,多余溶液蒸发完毕得到红色结晶;
步骤三:取下蒸发皿,刮下附着在培养皿上的红色结晶,得到红色Cs2TiBr6单晶。
2.根据权利要求1所述的一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法,其特征在于所述空气氛围,温度为5~25℃,湿度为20~70%。
3.根据权利要求1所述的一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法,其特征在于所述步骤一中,溴化铯的纯度为99.5%,溴化钛的纯度为98%,氢溴酸溶液的纯度为分析纯,氢溴酸溶液的质量分数为48%。
CN202110082333.3A 2021-01-21 2021-01-21 一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法 Active CN112921397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110082333.3A CN112921397B (zh) 2021-01-21 2021-01-21 一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110082333.3A CN112921397B (zh) 2021-01-21 2021-01-21 一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法

Publications (2)

Publication Number Publication Date
CN112921397A CN112921397A (zh) 2021-06-08
CN112921397B true CN112921397B (zh) 2022-03-18

Family

ID=76165699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110082333.3A Active CN112921397B (zh) 2021-01-21 2021-01-21 一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法

Country Status (1)

Country Link
CN (1) CN112921397B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110003907A (zh) * 2019-04-14 2019-07-12 天津大学 一种非铅双钙钛矿纳米晶的合成方法
CN110408993B (zh) * 2019-06-29 2020-10-27 宁波大学 一种用于X射线探测的Cs2AgBiBr6双钙钛矿晶体的制备方法

Also Published As

Publication number Publication date
CN112921397A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
CN101863511B (zh) 制备单斜相二氧化钒及其掺杂纳米粉的方法
CN102285681A (zh) 一种低温水热合成ZnO纳米梭的方法
US20190140118A1 (en) Multi-Element Alloy Compound, Ink and Film Absorption Layer Thereof, and Methods for Preparing the Same
CN105870337A (zh) 一种高度平整致密钙钛矿薄膜材料的制备及其应用
CN102531034A (zh) 氧化锌纳米片状阵列的制备方法
CN107400917A (zh) 一种SnSe2晶体化合物及其制备方法和应用
CN113955792B (zh) 一种卤铜铯晶体的制备方法
CN101885475B (zh) 一种单质硒纳米带的合成方法
CN102330081A (zh) 一种溶剂热法制备Sm2O3 薄膜的方法
CN103183478A (zh) 氮化硅坩埚涂层及其制备方法
CN112921397B (zh) 一种稳定无毒的Cs2TiBr6双钙钛矿晶体在空气氛围下的制备方法
CN108598471B (zh) 一种钠离子电池含钴正极材料及其制备方法
CN113957524A (zh) 一种晶体红磷纤维及其高效制备方法
CN116377589A (zh) 一种钙钛矿材料MAPbBr3晶体的制备工艺
CN114011443B (zh) 碳纤维布@ZnTexS2-x@Ag3PO4复合材料及制备方法
CN111514879B (zh) 一种铟基钒氧化物催化剂的合成方法及其应用
CN105680037A (zh) 一种锂离子电池正极材料及其制备方法
CN113737279B (zh) 一种黑磷砷晶体的制备方法
CN112830503B (zh) 一种有机酸或有机碱改性斜发沸石的制备方法
CN112093807B (zh) 一种利用硼酸合成卤化硼酸锂的方法
CN109455763B (zh) 一种钨青铜型材料的制备方法
CN114150363A (zh) 一种锡基钙钛矿单晶的生长方法
CN105603532A (zh) 一种硒化锑微米单晶颗粒的制备方法
CN109052455B (zh) 一种无毒稳定钙钛矿的制备方法
CN110344120A (zh) 一种SnSe2基单晶材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant