CN112899318A - (E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法 - Google Patents

(E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法 Download PDF

Info

Publication number
CN112899318A
CN112899318A CN202110087921.6A CN202110087921A CN112899318A CN 112899318 A CN112899318 A CN 112899318A CN 202110087921 A CN202110087921 A CN 202110087921A CN 112899318 A CN112899318 A CN 112899318A
Authority
CN
China
Prior art keywords
cyano
beta
alpha
compound
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110087921.6A
Other languages
English (en)
Other versions
CN112899318B (zh
Inventor
贾娴
游松
左伟国
邢亚洁
杨顺彬
肖茜雯
范多纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Pharmaceutical University
Original Assignee
Shenyang Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Pharmaceutical University filed Critical Shenyang Pharmaceutical University
Priority to CN202110087921.6A priority Critical patent/CN112899318B/zh
Publication of CN112899318A publication Critical patent/CN112899318A/zh
Application granted granted Critical
Publication of CN112899318B publication Critical patent/CN112899318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于化学合成技术领域,涉及(E)‑α‑氰基‑β‑芳基丙烯酰胺类化合物的绿色制备方法,具体涉及基于金属卟啉‑酶连续催化法的(E)‑α‑氰基‑β‑芳基丙烯酰胺类化合物的绿色制备方法。本发明所述的方法以芳香醛和丙二腈为底物,以卟啉或金属卟啉为催化剂,在无溶剂条件下发生Knoevenagel反应,生成的芳基亚甲基丙二腈类化合物用于腈水合酶催化下的水合反应,可选择性地生成(E)‑α‑氰基‑β‑芳基丙烯酰胺类化合物。本发明利用腈水合酶对芳基亚甲基丙二腈类化合物进行生物转化,可以合成高顺反选择性的(E)‑α‑氰基‑β‑芳基丙烯酰胺类化合物,其转化率>99%,顺反选择性>99%。

Description

(E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法
技术领域
本发明属于化学合成技术领域,涉及(E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法,具体涉及基于金属卟啉-酶连续催化法的(E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法。
背景技术
酰胺类化合物不仅在生物科学中可以构建蛋白质、多肽、酶等,而且在有机、医药和材料科学中也有广泛的应用。其中丙烯酰胺类化合物平均每年生产20万吨(AngewandteChemie-International Edition 2004,43:1576-1580;Organometallics 2003,22:1203-1211),具有重要的工业应用价值。而α-氰基-β-芳基丙烯酰胺类化合物及其衍生物在生命科学中也发挥了重要作用,如抑制登革热、西尼罗病毒丝氨酸蛋白酶(NS2B-NS3)(Bioorganic&Medicinal Chemistry 2011,19:7318-7337),也具有抑制RSK2、MSK1激酶的可逆性半胱氨酸受体等潜在生物活性(Nature Chemical Biology 2014,10:1066-1072;Journal of the American Chemical Society 2014,136:12624-12630;Nature ChemicalBiology 2012,8:471-476)。因此,开发简单高效、经济实用的合成α-氰基-β-芳基丙烯酰胺类化合物的新策略是非常有价值的。
目前关于α-氰基-β-芳基丙烯酰胺类化合物的合成策略大约分为以下几种:
(1)芳香醛与氰基乙酰胺在强酸或强碱条件下发生Knoevenagel缩合,直接生成α-氰基-β-芳基丙烯酰胺类化合物(Tetrahedron.1987,43:537-542;CatalysisCommunications 2008,9:403-405)。
Figure BDA0002911577850000011
(2)苄胺、二苄胺或三苄胺与氰基乙酰胺在高价碘的介导下氧化生成α-氰基-β-芳基丙烯酰胺类化合物(European Journal of Organic Chemistry 2019,36:62326239)。
Figure BDA0002911577850000012
(3)芳香醛与丙二腈发生Knoevenagel缩合生成芳基亚甲基丙二腈类化合物,再通过氰基的单水合反应生成α-氰基-β-芳基丙烯酰胺类化合物(ChemCatChem 2016,8:1-11;ChemistrySelect 2018,3:3534-3538)。
Figure BDA0002911577850000021
(4)芳香醛与丙烯腈发生Baylis-Hillman反应,所得产物在离子液体的作用下转化为α-氰基-β-芳基丙烯醛类化合物,然后在羟胺甲醇溶液中转化为α-氰基-β-芳基丙烯酰胺类化合物(New Journal of Chemistry 2017,41:9203-9209)。
Figure BDA0002911577850000022
上述合成策略仍存在以下问题:反应条件苛刻、反应时间长;芳基亚甲基丙二腈类化合物的两个氰基都有可能成为水合反应的反应官能团;在有些条件下酰胺的水解速度快于氰基转变为酰胺的速度,生成的酰胺可能继续水解成羧酸。因此,开发无毒、无腐蚀、无羧酸副产物的方法,选择性生成单水合产物,即(E)-α-氰基-β-芳基丙烯酰胺类化合物,仍是一项具有挑战性的任务。
卟啉类化合物因其特殊的共轭大环结构,所以具有较好的热稳定性和化学稳定性。金属卟啉可以模拟过氧化物酶、细胞色素P450等蛋白质的生物功能,是重要的仿生催化剂之一(Chemical Reviews 2017,117,4:2910-3043)。卟啉及金属卟啉作为催化剂的优点包括:结构稳定、无毒无味,易从反应体系中分离、重复利用度高和易于合成等。
腈水合酶(NHase,EC 4.2.1.84)是腈类化合物的代谢过程中的一种关键分解酶(Biotechnology Advances 2010,28:725-741),能够在温和的条件下高效地水解腈变为相应的酰胺类化合物。
发明内容
为了克服传统化学合成(E)-α-氰基-β-芳基丙烯酰胺类化合物的不足,本发明提供了一种绿色、高效、高顺反选择性的连续式化学-酶法合成(E)-α-氰基-β-芳基丙烯酰胺类化合物的方法。
本发明通过如下技术方案实现:
一种基于金属卟啉的化学-酶连续催化法的(E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法,所述的方法以芳香醛和丙二腈为底物,以卟啉或金属卟啉为催化剂,在无溶剂条件下发生Knoevenagel反应,生成的芳基亚甲基丙二腈类化合物用于腈水合酶催化下的水合反应,可选择性地生成(E)-α-氰基-β-芳基丙烯酰胺类化合物。
Figure BDA0002911577850000031
其中,Ar为5-10元芳基或5-10元杂芳基。
具体包括以下步骤:
(1)将芳香醛和丙二腈按一定比例充分混合,以卟啉或金属卟啉作为催化剂,在无溶剂条件下,于30~80℃下发生Knoevenagel反应,反应时间为0.5-6小时,得到芳基亚甲基丙二腈类化合物。
(2)步骤(1)得到的化合物加入适量溶剂溶解,滤出金属卟啉,得到芳基亚甲基丙二腈类化合物的溶液。取适量该溶液加入到生物催化剂腈水合酶的磷酸盐缓冲液体系中,再发生水合反应,用乙酸乙酯萃取,得到(E)-α-氰基-β-芳基丙烯酰胺类化合物。
其中,
步骤(1)所述的芳香醛为取代或未取代的5-10元芳香醛、5-10元杂芳香醛,所述取代可以为单取代或多取代,取代基为卤素、硝基、氰基、羟基、C1~C10烷基、C1~C10烷氧基;
进一步地,所述的芳香醛包括但不限于取代或未取代的苯甲醛、呋喃甲醛、噻吩甲醛、咪唑甲醛、吡唑甲醛、吡啶甲醛、吡嗪甲醛、肉桂醛、萘甲醛、联苯甲醛,取代基为卤素、硝基、氰基、羟基、C1~C10烷基、C1~C10烷氧基。
步骤(1)所述的催化剂的用量为芳香醛用量的0.1~5%;
优选反应温度为60~80℃,反应时间为0.5~1小时,催化剂用量为1~2%。
步骤(1)所述的芳香醛和丙二腈的摩尔比例为1:1~1:3。
步骤(1)所述的金属卟啉催化剂具有如式(I)所示结构:
Figure BDA0002911577850000032
式(I)中,R1、R2、R3、R4各自独立为:取代或未取代的苯基、咪唑基、吡啶基、联苯基,所述的取代基为氨基、硝基、羧基,具体可以为4-氨基苯基、4-硝基苯基、4-羧基苯基、3,5-二羧基苯基、4-(4’-羧基联苯)基、4-咪唑基或4-吡啶基,M为钴(II)、铁(II)、镉(II)、锰(II)、镍(II)、锌(II)或铜(II)中的任意一种。
进一步地,步骤(1)所述的卟啉或金属卟啉催化剂为:5,10,15,20-四(4-羧基苯基)卟啉、5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)铁卟啉、5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)卟啉、5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)锌卟啉。
所述的金属卟啉可以按常规方法合成得到。
步骤(2)所述的生物催化剂腈水合酶来源于紫红色红球菌J1(Rhodococcusrhodochrous J1);所述的生物催化剂的形式可以为细胞、粗酶粉、酶溶液或固定化酶。
步骤(2)所述的溶剂为甲醇、乙醇、二甲基亚砜、二氧六环或四氢呋喃;所述的芳基亚甲基丙二腈类化合物溶液的浓度为0.05~1mol/mL;所述的磷酸盐缓冲溶液浓度为50~100mM,pH 5~9。
步骤(2)所述的金属卟啉可重复利用。
本发明以芳香醛和丙二腈为底物,以金属卟啉为催化剂,在无溶剂条件下发生Knoevenagel反应,生成的芳基亚甲基丙二腈类化合物经简单处理再直接用于腈水合酶催化下的水合反应,可选择性地生成(E)-α-氰基-β-芳基丙烯酰胺类化合物,为(E)-α-氰基-β-芳基丙烯酰胺类化合物的制备构建了一条高效、温和、绿色的合成路线。
与现有技术相比,本发明具有下列优点:
(1)本发明通过实验证明,金属卟啉可以高效催化Knoevenagel缩合反应,转化率>99%,且性质稳定,可以重复利用。
(2)本发明首次利用腈水合酶对芳基亚甲基丙二腈类化合物进行生物转化,可以合成高顺反选择性的(E)-α-氰基-β-芳基丙烯酰胺类化合物,其转化率>99%,顺反选择性>99%。
(3)本发明第一步采用无溶剂方法金属卟啉催化法,第二步采用酶催化方法,所述方法与传统化学合成方法相比更加高效且绿色环保,且所述的金属卟啉和腈水合酶均可通过商购获得,为制备(E)-α-氰基-β-芳基丙烯酰胺类化合物提供了新思路。
附图说明
图1为苯甲醛与苯基亚甲基丙二腈的HPLC谱图,用于检测转化率,
其中:A为底物苯甲醛,B为产物苯基亚甲基丙二腈;
图2为苯基亚甲基丙二腈与(E)-α-氰基-β-苯基丙烯酰胺的HPLC谱图,用于检测转化率及顺反选择性,
其中:A为底物苯基亚甲基丙二腈,B为产物(E)-α-氰基-β-苯基丙烯酰胺。
图3为(E)-α-氰基-β-苯基丙烯酰胺的1H-1H COSY谱图。
具体实施方式
通过下述实施例将有助于理解本发明的目的、特征、优点、技术方法,但不能局限于本发明的内容。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为常规实验中的条件或者厂商建议的条件。
实施例涉及的培养基配方:
(1)Rhodococcus rhodochrous种子培养基:KH2PO4 2.4g,K2HPO4 2.4g,葡萄糖10.0g,酵母膏8.0g,尿素2.0g,味精1.6g,MgSO4 2.4g,加蒸馏水定容至1000ml(如需配制固体平板培养基,可在灭菌前加入15g琼脂),115℃,灭菌30min。
(2)Rhodococcus rhodochrous发酵培养基:KH2PO4 6.0g,K2HPO4 6.0g,葡萄糖30.0g,酵母膏8.0g,尿素9.2g,CoCl2.6H2O 24mg,味精0.96g,MgSO4 0.6g,加蒸馏水定容至1000ml,115℃,灭菌30min。
实施例1 5,10,15,20-四(4-羧基苯基)卟啉的制备
在50mL的圆底烧瓶中加入25mL丙酸,加入1.5g(10mmol)4-甲酰苯甲酸,加热至80℃,滴加0.68mL(10mmol)新蒸吡咯,升高温度至140℃回流反应2h,经TLC检测原料反应完全,停止反应,冷却至室温,放入4℃冰箱静置过夜。抽滤,滤饼用二氯甲烷洗涤,得到目标产物。粗产品经柱层析得到黑紫色粉末状固体0.39g,转化率为20%。
实施例2 5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)卟啉的制备
在50mL的圆底烧瓶中加入25mL丙酸,加热至80℃,先加入0.85g(3.2mmol)2,2'-((4-羧基苯基)亚甲基)双(1H-吡咯),搅拌至完全溶解后再加入0.307g(3.2mmol)4-咪唑甲醛,升高温度至140℃回流反应2h,经TLC检测原料反应完全,停止反应,冷却至室温,放入4℃冰箱静置过夜。抽滤,滤饼用二氯甲烷洗涤,得到目标产物。粗产品经柱层析得到黑紫色粉末状固体0.37g,转化率为17%。
实施例3 5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)铁卟啉的制备
取0.1g(0.15mmol)5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)卟啉溶于40mLDMF,0.15g(1.2mmol)氯化亚铁溶于10mL DMF,将上述反应体系混合,120℃条件下反应12h。反应完毕后冷却至室温,加入50mL蒸馏水,静置,抽滤,DMF洗涤3次,分别用蒸馏水和乙醇洗涤,将滤饼真空干燥,得到目标产物0.11g,转化率为93%。
实施例4 5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)锌卟啉的制备
取0.1g(0.15mmol)5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)卟啉溶于40mLDMF,0.14g(1.2mmol)氯化锌溶于10mL DMF,将上述反应体系混合,120℃条件下反应12h。反应完毕后冷却至室温,加入50mL蒸馏水,静置,抽滤,DMF洗涤3次,分别用蒸馏水和乙醇洗涤,将滤饼真空干燥,得到目标产物0.11g,转化率为93%。
实施例5腈水合酶(EC 4.2.1.84)的制备-Rhodococcus rhodochrous J1的诱导培养
将紫红色红球菌J1(Rhodococcus rhodochrous J1)接种至3mL液体种子培养基中,28℃,200rpm,培养48h。取1mL培养好的种子液接种至100mL发酵培养基中,置28℃、200rpm的摇床震荡培养,当培养液的OD600达到1.0,4000rpm离心15min,富集菌体,弃上清,菌体用100mM pH 7.5的磷酸盐缓冲液洗涤两次,再次离心,将得到的菌体用100mM pH 7.5的磷酸盐缓冲液分装保藏于4℃冰箱中。
实施例6金属卟啉催化剂用量和反应温度对于Knoevenagel反应的影响
表1
Figure BDA0002911577850000061
反应条件:苯甲醛(1mmol)、丙二腈(2mmol)、5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)铁卟啉,加热搅拌反应30分钟。a转化率通过高效液相色谱法测定。
实施例7苯基亚甲基丙二腈的制备
向10mL圆底瓶中加入1mmol苯甲醛、100mg(1.5mmol)丙二腈和10mg(1.4%mmol)5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)铁卟啉。混合物于60℃搅拌,经TLC检测至苯甲醛反应完全,再加入5mL二甲基亚砜,滤出金属卟啉可重复利用,得到苯基亚甲基丙二腈溶液,供下一步酶催化使用。经HPLC检测计算反应转化率>99%。
底物苯甲醛及产物苯基亚甲基丙二腈的HPLC检测条件为:色谱柱:ODS-C18柱;检测器:UV检测器;波长:254nm;流动相:乙腈:水=50:50(v/v);流动相流速:1mL/min;柱温:25℃。
实施例8(2-氟苯基)亚甲基丙二腈的制备
向10mL圆底瓶中加入1mmol 2-氟苯甲醛、132mg(2mmol)丙二腈和10mg(1.4%mmol)5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)锌卟啉。混合物于60℃搅拌,经TLC检测至2-氟苯甲醛反应完全,再加入5mL乙醇,滤出金属卟啉可重复利用,得到(2-氟苯基)亚甲基丙二腈溶液,供下一步酶催化使用。经HPLC检测计算反应转化率>99%。
实施例9(E)-α-氰基-β-苯基丙烯酰胺的制备
将50mg腈水合酶(NHase)湿菌体悬浮于950μL 50mM pH 7.5的磷酸盐缓冲液中并加入到1.5mL Eppendorf管中,然后加入0.1mmol/mL苯基亚甲基丙二腈的DMSO溶液50μL。室温条件下将该反应体系置于200rpm摇床,经TLC检测至底物反应完全。反应结束后加入10μL6N HCl以终止反应,将反应液12000rpm离心后,将上清液与沉淀分离。随后用3×1mL乙酸乙酯萃取上清液,合并有机层,减压除去溶剂,得到(E)-α-氰基-β-苯基丙烯酰胺1.7mg。经HPLC检测转化率>99%,顺反选择性>99%。
底物苯基亚甲基丙二腈及产物(E)-α-氰基-β-苯基丙烯酰胺的HPLC检测条件:色谱柱:ODS-C18柱;检测器:UV检测器;波长:254nm;流动相:乙腈:水:磷酸=33:66:1(v/v);流动相流速:1mL/min;柱温:25℃。
实施例10(E)-α-氰基-β-(2-氟苯基)丙烯酰胺的制备
将50mg NHase湿菌体悬浮于950μL 50mM pH 7.5的磷酸盐缓冲液中并加入到1.5mL Eppendorf管中,然后加入0.1mmol/mL(2-氟苯基)亚甲基丙二腈的乙醇溶液50μL。室温条件下将该反应体系置于200rpm摇床,经TLC检测至底物反应完全。反应结束后加入10μL6N HCl以终止反应,将反应液12000rpm离心后,将上清液与沉淀分离。随后用3×1mL乙酸乙酯萃取上清液,合并有机层,减压除去溶剂,得到(E)-α-氰基-β-(2-氟苯基)丙烯酰胺1.9mg。经HPLC检测转化率>99%,顺反选择性>99%。

Claims (10)

1.(E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法,其特征在于,
所述的方法以芳香醛和丙二腈为底物,以卟啉或金属卟啉为催化剂,在无溶剂条件下发生Knoevenagel反应,生成的芳基亚甲基丙二腈类化合物用于腈水合酶催化下的水合反应,生成(E)-α-氰基-β-芳基丙烯酰胺类化合物。
2.如权利要求1所述的制备方法,其特征在于,包括以下步骤:
(1)将芳香醛和丙二腈按一定比例充分混合,以卟啉或金属卟啉作为催化剂,在无溶剂条件下,于30~80℃下发生Knoevenagel反应,反应时间为0.5-6小时,得到芳基亚甲基丙二腈类化合物;
(2)步骤(1)得到的化合物加入适量溶剂溶解,滤出卟啉或金属卟啉,得到芳基亚甲基丙二腈类化合物的溶液;取适量该溶液加入到生物催化剂腈水合酶的磷酸盐缓冲液体系中,再发生水合反应,用乙酸乙酯萃取,得到(E)-α-氰基-β-芳基丙烯酰胺类化合物。
3.如权利要求1或2所述的制备方法,其特征在于,所述的芳香醛为取代或未取代的5-10元芳香醛、5-10元杂芳香醛,所述取代可以为单取代或多取代,取代基为卤素、硝基、氰基、羟基、C1~C10烷基、C1~C10烷氧基。
4.如权利要求1或2所述的制备方法,其特征在于,所述的芳香醛为取代或未取代的苯甲醛、呋喃甲醛、噻吩甲醛、咪唑甲醛、吡唑甲醛、吡啶甲醛、吡嗪甲醛、肉桂醛、萘甲醛、联苯甲醛,取代基为卤素、硝基、氰基、羟基、C1~C10烷基、C1~C10烷氧基。
5.如权利要求2所述的制备方法,其特征在于,步骤(1)所述的芳香醛和丙二腈的摩尔比例为1:1~1:3;所述的催化剂的用量为芳香醛用量的0.1~5%,优选为1~2%;反应温度为60~80℃。
6.如权利要求1或2所述的制备方法,其特征在于,所述的金属卟啉催化剂具有如式(I)所示结构:
Figure FDA0002911577840000011
式(I)中,R1、R2、R3、R4各自独立为:取代或未取代的苯基、咪唑基、吡啶基、联苯基,所述的取代基为氨基、硝基、羧基;R1、R2、R3、R4优选为4-氨基苯基、4-硝基苯基、4-羧基苯基、3,5-二羧基苯基、4-(4’-羧基联苯)基、4-咪唑基或4-吡啶基,M为钴(II)、铁(II)、镉(II)、锰(II)、镍(II)、锌(II)或铜(II)中的任意一种。
7.如权利要求1或2所述的制备方法,其特征在于,卟啉或金属卟啉催化剂为:5,10,15,20-四(4-羧基苯基)卟啉、5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)铁卟啉、5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)卟啉、5,15-二(4-咪唑基)-10,20-二(4-羧基苯基)锌卟啉。
8.如权利要求1或2所述的制备方法,其特征在于,所述的生物催化剂腈水合酶来源于紫红色红球菌J1(Rhodococcus rhodochrous J1);所述的生物催化剂的形式为细胞、粗酶粉、酶溶液或固定化酶。
9.如权利要求2所述的制备方法,其特征在于,步骤(2)所述的溶剂为甲醇、乙醇、二甲基亚砜、二氧六环或四氢呋喃;所述的芳基亚甲基丙二腈类化合物溶液的浓度为0.05~1mol/mL;所述的磷酸盐缓冲溶液浓度为50~100mM,pH 5~9。
10.金属卟啉-酶催化剂在制备(E)-α-氰基-β-芳基丙烯酰胺类化合物中的应用。
CN202110087921.6A 2021-01-22 2021-01-22 (E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法 Active CN112899318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110087921.6A CN112899318B (zh) 2021-01-22 2021-01-22 (E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110087921.6A CN112899318B (zh) 2021-01-22 2021-01-22 (E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法

Publications (2)

Publication Number Publication Date
CN112899318A true CN112899318A (zh) 2021-06-04
CN112899318B CN112899318B (zh) 2022-10-11

Family

ID=76117043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110087921.6A Active CN112899318B (zh) 2021-01-22 2021-01-22 (E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法

Country Status (1)

Country Link
CN (1) CN112899318B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043365A1 (en) * 1999-01-22 2000-07-27 Boehringer Ingelheim Pharmaceuticals, Inc. Synthesis of 3-amino-2-chloro-4-methylpyridine from malononitrile and acetone
WO2018120094A1 (zh) * 2016-12-30 2018-07-05 泸州东方农化有限公司 一种制备2-(亚环己烯基)丙二酸衍生物的方法及其应用
CN109232292A (zh) * 2018-09-11 2019-01-18 浙江中山化工集团股份有限公司 一种2,6-二乙基-4-甲基苯基丙二酰胺的制备方法
CN109797164A (zh) * 2019-01-31 2019-05-24 大连理工大学 一种新型腈水合酶高效催化脂肪二腈水合反应的体系
CN111936632A (zh) * 2018-03-28 2020-11-13 三井化学株式会社 酰胺化合物的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043365A1 (en) * 1999-01-22 2000-07-27 Boehringer Ingelheim Pharmaceuticals, Inc. Synthesis of 3-amino-2-chloro-4-methylpyridine from malononitrile and acetone
WO2018120094A1 (zh) * 2016-12-30 2018-07-05 泸州东方农化有限公司 一种制备2-(亚环己烯基)丙二酸衍生物的方法及其应用
CN111936632A (zh) * 2018-03-28 2020-11-13 三井化学株式会社 酰胺化合物的制造方法
CN109232292A (zh) * 2018-09-11 2019-01-18 浙江中山化工集团股份有限公司 一种2,6-二乙基-4-甲基苯基丙二酰胺的制备方法
CN109797164A (zh) * 2019-01-31 2019-05-24 大连理工大学 一种新型腈水合酶高效催化脂肪二腈水合反应的体系

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
沈瑞华 等: "腈水合酶区域选择性与对映选择性的研究进展", 《江西化工》 *
王建英 等: "基于螺环结构桥连的固有微孔卟啉聚合物网络的制备与表征及其催化Knoevenagel缩合反应", 《功能高分子学报》 *

Also Published As

Publication number Publication date
CN112899318B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
Westerhausen et al. Formate‐Driven, Non‐Enzymatic NAD (P) H Regeneration for the Alcohol Dehydrogenase Catalyzed Stereoselective Reduction of 4‐Phenyl‐2‐butanone
Ma et al. Enantioselective synthesis of functionalized α-amino acids via a chiral guanidine catalyzed Michael addition reaction
CN114524701B (zh) 一种n-n轴手性吡咯衍生物及其合成方法
CN114014787B (zh) 一种制备(2s,3r)-对甲砜基苯丝氨酸乙酯的不对称合成方法
CN111925522B (zh) 一种聚喹唑啉类化合物及其制备方法与应用
CN109897190A (zh) 一种氮杂环卡宾功能化的共价有机框架材料及其合成方法
KR20070064440A (ko) 티탄 화합물 및 광학 활성 시아노하이드린류의 제조 방법
CN110922369B (zh) 三氟甲基取代的二氢呋喃胺化合物及其制备方法与应用
CN112899318B (zh) (E)-α-氰基-β-芳基丙烯酰胺类化合物的绿色制备方法
CN109422700A (zh) 一种n-乙酰基喹喔啉-2-酰胺及其衍生物的合成方法
Zhang et al. Facile access to 2, 5-diaryl fulleropyrrolidines: magnesium perchlorate-mediated reaction of [60] fullerene with arylmethylamines and aryl aldehydes
CN107915653B (zh) 催化酯和胺进行反应制备酰胺的方法
CN114478424B (zh) 一种环烯基在β位取代的吖内酯衍生物的制备方法
CN114716631B (zh) 一种吡咯烷基共价有机框架材料及其制备方法与应用
CN113185444A (zh) 一种利用亚铁配合物催化合成吲哚衍生物的方法
CN103664875B (zh) 1,4,5,6-四氢嘧啶衍生物的合成方法
CN112457221B (zh) 一种γ-肼基氰化合物及其合成方法
CN113620977B (zh) 一种噻唑烷并嘧啶酮乙酸的合成方法
CN109678854B (zh) 一种锰催化合成吡啶并[1,2-a]吲哚-6(1H)-酮类化合物的方法
CN113441135B (zh) 一种2-氨基-3h-吩噁嗪-3-酮或其衍生物的制备方法
CN114082442B (zh) 丁二酰亚胺基离子液体及用其催化合成喹唑啉-2,4(1h,3h)-二酮的方法
JP3753465B2 (ja) 微生物によるアミノ酸の製造法
CN113481253B (zh) 生物催化制备磷酸吡哆醛的方法
CN111333526B (zh) 一种n-芳基甘氨酸酯类衍生物的制备方法
CN114702492B (zh) 一种钌(ii)基金属-有机笼状化合物及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant