CN112877637B - 一种耐热蚀复合防护涂层及其制备方法 - Google Patents

一种耐热蚀复合防护涂层及其制备方法 Download PDF

Info

Publication number
CN112877637B
CN112877637B CN202110033426.7A CN202110033426A CN112877637B CN 112877637 B CN112877637 B CN 112877637B CN 202110033426 A CN202110033426 A CN 202110033426A CN 112877637 B CN112877637 B CN 112877637B
Authority
CN
China
Prior art keywords
coating
target
nicr
transition layer
craln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110033426.7A
Other languages
English (en)
Other versions
CN112877637A (zh
Inventor
何东青
尚伦霖
李文生
成波
翟海民
张新健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University of Technology
Original Assignee
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University of Technology filed Critical Lanzhou University of Technology
Priority to CN202110033426.7A priority Critical patent/CN112877637B/zh
Publication of CN112877637A publication Critical patent/CN112877637A/zh
Application granted granted Critical
Publication of CN112877637B publication Critical patent/CN112877637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种耐热蚀复合防护涂层及其制备方法,属于防护涂层技术领域。包括依次层叠设置的NiCr‑Cr3C2涂层、Cr过渡层、Cr/CrAlN过渡层和CrAlN层。本发明中,CrAlN过渡层封闭了NiCr‑Cr3C2涂层表面空隙、微裂纹等缺陷,避免了热腐蚀介质由于涂层表面缺陷入侵引起的热腐蚀,NiCr‑Cr3C2涂层为CrAlN层提供了硬质支撑且使得热膨胀系数从金属基体到硬质薄膜实现了平稳过渡,大幅减缓了热热腐蚀和热震过程中的热应力;热腐蚀过程中复合涂层表面形成致密且均匀的Cr2O3/Al2O3氧化物保护膜,有效抑制了高温腐蚀介质的进一步扩散和迁移,进而减缓了热腐蚀进程。

Description

一种耐热蚀复合防护涂层及其制备方法
技术领域
本发明涉及防护涂层技术领域,尤其涉及一种耐热蚀复合防护涂层及其制备方法。
背景技术
高温耐磨蚀材料一直以来都是科研工作者的主要研究方向。工业零部件(如球阀,锅炉管,过热器管等)的高温摩擦学性能及热腐蚀性能对其使用寿命有至关重要的影响。
NiCr-Cr3C2作为一种耐磨涂层材料,其在各种腐蚀性工况中具有较好的耐腐蚀、耐高温氧化性能,因此被广泛用于高温磨蚀零件表面强化材料,然而,高温硬度低、孔隙率高等问题导致涂层的耐磨损性能和耐腐蚀性能下降;CrN薄膜结构致密,具有相对较好的耐腐蚀性能,但薄膜与基体的热膨胀系数严重不匹配,热应力较高,削弱了薄膜的结合力,导致薄膜分层剥离,严重限制了薄膜在高温工况下的实际应用。
现有技术中将NiCr-Cr3C2涂层和CrN薄膜结合,组成CrN/NiCr-Cr3C2复合涂层,实现了热膨胀系数从薄膜到基体的平稳过渡,且CrN/NiCr-Cr3C2复合涂层表现出较单一涂层更好的耐腐蚀性能,但是该复合涂层仍存在耐热蚀性能不佳的问题。
发明内容
有鉴于此,本发明的目的在于提供一种耐热蚀复合防护涂层及其制备方法。本发明提供的复合防护涂层耐热蚀性能优异。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种耐热蚀复合防护涂层,在金属基体表面包括依次层叠设置的NiCr-Cr3C2涂层、Cr过渡层、Cr/CrAlN过渡层和CrAlN层。
优选地,所述NiCr-Cr3C2涂层的厚度为150~300μm。
优选地,所述Cr过渡层的厚度为100~250nm。
优选地,所述Cr/CrAlN过渡层的厚度为200~300nm。
优选地,所述CrAlN层的厚度为2~4μm。
本发明还提供了上述技术方案所述耐热蚀复合防护涂层的制备方法,包括以下步骤:
在金属基体表面进行超音速火焰喷涂,得到NiCr-Cr3C2涂层;
以Cr靶和CrAl靶为溅射靶材,在所述NiCr-Cr3C2涂层的表面进行闭合场非平衡磁控溅射,依次得到Cr过渡层、Cr/CrAlN过渡层和CrAlN层。
优选地,所述超音速火焰喷涂的氧气流量为160~200L·min-1,丙烷流量为15~20L·min-1,送粉速率为40~45g·min-1,喷涂距离为150~200mm。
优选地,制备Cr过渡层时,所述闭合场非平衡磁控溅射的偏压为-50~-100V,背景真空为1×10-4~3×10-4Pa,基底温度为250~300℃,Cr靶靶功率为0.8kW~1.2kW,沉积时间为10~15min,样品转架转速为3~5rpm。
优选地,制备Cr/CrAlN过渡层时,所述Cr靶与CrAl靶相对放置,所述闭合场非平衡磁控溅射的偏压为-50~-100V,基底温度为200~300℃,在25~30min内Cr靶功率由0.8kW~1.2kW线性降至0W,CrAl靶靶功率由0W线性增加至2.2kW~2.8kW,Ar/N2气流量比为0.5~1.5,总气压为0.2~0.5Pa,样品转架转速为1~3rpm。
优选地,制备CrAlN层时,所述闭合场非平衡磁控溅射的偏压为-50~-100V,基底温度为200~300℃,所述CrAl靶的靶功率为2.2kW~2.8kW,样品转架转速为3~5rpm,Ar/N2气流量比为0.5~1.5,总气压为0.2~0.5Pa,沉积时间为100~150min。
本发明提供了一种耐热蚀复合防护涂层,在金属基体表面包括依次层叠设置的NiCr-Cr3C2涂层、Cr过渡层、Cr/CrAlN过渡层和CrAlN层。本发明中,Cr/CrAlN过渡层中的CrAlN薄膜较现有技术中的CrN薄膜具有更优异的高温抗氧化性能和耐热腐蚀性能,Cr过渡层、Cr/CrAlN过渡层的引入,最大限度地实现材料属性(硬度、弹性模量及热膨胀系数)从金属陶瓷涂层(NiCr-Cr3C2)到硬质脆性薄膜(CrAlN)的梯度过渡,降低了薄膜内应力,提高了涂层与薄膜间的结合强度。就提高耐热腐蚀性能和抗热震性能方面而言,一方面CrAlN薄膜封闭了NiCr-Cr3C2涂层表面空隙、微裂纹等缺陷,避免了热腐蚀介质由于涂层表面缺陷入侵引起的热腐蚀,NiCr-Cr3C2涂层为CrAlN薄膜提供了硬质支撑且使得热膨胀系数从金属基体到硬质薄膜实现了平稳过渡,大幅减缓了热热腐蚀和热震过程中的热应力;另一方面,热腐蚀过程中复合涂层表面形成致密且均匀的Cr2O3/Al2O3氧化物保护膜,有效抑制了高温腐蚀介质的进一步扩散和迁移,进而减缓了热腐蚀进程。实施例的数据表明,本发明制得的耐热蚀复合防护涂层经800℃保温2min后取出水冷至室温,反复循环20次,未开裂,亦无明显微裂纹产生,说明抗热震性能优异;在550℃的6.5wt.%NaCl+34.5wt.%KCl+59wt.%Na2SO4复合熔盐介质中保温5小时后取出降至室温进行耐热腐蚀性能测试,表面形成的热腐蚀氧化层厚度最小为0.73微米,表面光洁完整,未发现热腐蚀剥落坑,说明耐热腐蚀性能优异。
本发明还提供了上述技术方案所述耐热蚀复合防护涂层的制备方法,包括以下步骤:在金属基体表面进行超音速火焰喷涂,得到NiCr-Cr3C2涂层;以Cr靶和CrAl靶为溅射靶材,在所述NiCr-Cr3C2涂层的表面进行闭合场非平衡磁控溅射,依次得到Cr过渡层、Cr/CrAlN过渡层和CrAlN层。本发明通过超音速火焰喷涂(HVOF)技术和闭合场非平衡磁控溅射技术(PVD)制备NiCr-Cr3C2涂层、Cr过渡层、Cr/CrAlN过渡层和CrAlN层,进而构筑复合涂层,不但提高了NiCr-Cr3C2涂层与CrAlN薄膜的结合力,降低了薄膜内应力,而且增强了整个体系的承载能力和耐磨蚀性能,应用于热腐蚀工况时,会显著提高工件的耐蚀性,延长其使用寿命,从而达到降低成本、提高安全与可高性的目的。
附图说明
图1为本发明实施例1制得的耐热蚀复合防护涂层的SEM图。
具体实施方式
本发明提供了一种耐热蚀复合防护涂层,在金属基体表面包括依次层叠设置的NiCr-Cr3C2涂层、Cr过渡层、Cr/CrAlN过渡层和CrAlN层。
在本发明中,所述NiCr-Cr3C2涂层的厚度优选为150~300μm,更优选为250~280μm,最优选为270μm。
在本发明中,所述Cr过渡层的厚度优选为100~250nm,更优选为150~220nm,最优选为180nm。
在本发明中,所述Cr/CrAlN过渡层的厚度优选为200~300nm,更优选为220~250nm。
在本发明中,所述CrAlN层的厚度优选为2~4μm,更优选为2.8~3.8μm,最优选为3.2μm。
在本发明中,所述金属基体优选为310s不锈钢基体。
本发明还提供了上述技术方案所述耐热蚀复合防护涂层的制备方法,包括以下步骤:
在金属基体表面进行超音速火焰喷涂,得到NiCr-Cr3C2涂层;
以Cr靶和CrAl靶为溅射靶材,在所述NiCr-Cr3C2涂层的表面进行闭合场非平衡磁控溅射,依次得到Cr过渡层、Cr/CrAlN过渡层和CrAlN层。
本发明在金属基体表面进行超音速火焰喷涂,得到NiCr-Cr3C2涂层。
在本发明中,所述超音速火焰喷涂(HVOF)的氧气流量优选为160~200L·min-1,更优选为180~190L·min-1,丙烷流量优选为15~20L·min-1,更优选为16~18L·min-1,送粉速率优选为40~45g·min-1,更优选为42g·min-1,喷涂距离优选为150~200mm,更优选为160~180mm。
在本发明中,所述超音速火焰喷涂的涂粉末优选为包覆型20%NiCr-80%Cr3C2商用粉末。
在本发明中,所述金属基体优选依次进行打磨和清洗后超音速火焰喷涂。
在本发明中,所述清洗用清洗剂优选为丙酮,所述清洗优选在超声条件下进行,所述超声的功率优选为800W,温度优选为25℃,时间优选为15min。
得到NiCr-Cr3C2涂层后,本发明以Cr靶和CrAl靶为溅射靶材,在所述NiCr-Cr3C2涂层的表面进行闭合场非平衡磁控溅射(PVD),依次得到Cr过渡层、Cr/CrAlN过渡层和CrAlN层。
得到NiCr-Cr3C2涂层后,本发明优选对所述NiCr-Cr3C2涂层的表面逐级抛光至表面粗糙度为0.1~0.3μm,总去除量为25~50μm后,再进行闭合场非平衡磁控溅射。在本发明中,所述逐级抛光优选为包括以下步骤:分别用800目、1000目、1500目和2000目砂纸分四级抛光,单次去除量优选为5~10μm,最后用粒度为1.5μm金刚石研磨膏抛至镜面。
在本发明中,所述逐级抛光后优选还包括清洗、氮气吹干和表面活化,所述清洗优选为依次进行无水乙醇洗和丙酮洗,所述清洗在超声条件下进行,所述超声的功率优选为800W,温度优选为25℃,时间优选为15min。
在本发明中,所述表面活化优选为用Ar+轰击清洗,所述Ar+轰击清洗的轰击偏压优选为-300~-500V,时间优选为15~20min。
在本发明中,制备Cr过渡层时,所述闭合场非平衡磁控溅射的偏压优选为-50~-100V,更优选为-70V,背景真空优选为1×10-4~3×10-4Pa,更优选为2×10-4Pa,基底温度优选为250~300℃,更优选为260~270℃,Cr靶靶功率优选为0.8kW~1.2kW,更优选为1~1.1kW,沉积时间优选为10~15min,样品转架转速优选为3~5rpm。在本发明中,所述Cr的纯度优选为99.999%。
在本发明中,制备Cr/CrAlN过渡层时,所述Cr靶与CrAl靶优选相对放置,所述闭合场非平衡磁控溅射的偏压优选为-50~-100V,更优选为-70V,基底温度优选为200~300℃,在25~30min内Cr靶功率优选由0.8kW~1.2kW线性降至0W,更优选为在30min内Cr靶功率优选由1.1kW线性降至0W,CrAl靶靶功率优选由0W线性增加至2.2kW~2.8kW,更优选为CrAl靶靶功率优选由0W线性增加至2.5kW,Ar/N2气流量比优选为0.5~1.5,更优选为1,总气压优选为0.2~0.5Pa,更优选为0.25Pa,样品转架转速优选为1~3rpm,更优选为2.5rpm。
在本发明中,所述AlCr靶优选为70wt%Cr-30wt%Al靶。
在本发明中,制备CrAlN层时,所述闭合场非平衡磁控溅射的偏压优选为-50~-100V,基底温度优选为200~300℃,所述CrAl靶的靶功率优选为2.2kW~2.8kW,更优选为2.5kW,样品转架转速优选为3~5rpm,Ar/N2气流量比优选为0.5~1.5,更优选为1,总气压优选为0.2~0.5Pa,沉积时间优选为100~150min,更优选为120min。
为了进一步说明本发明,下面结合实例对本发明提供的耐热蚀复合防护涂层及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
图1为本发明实施例1制得的耐热蚀复合防护涂层的SEM谱图,其中Cr过渡层和Cr/CrAl过渡层在目前倍数看不出来,所以在图1中没有体现。
耐热蚀复合防护涂层由设在以310S不锈钢为金属基体上的厚度为270μm的NiCr-Cr3C2涂层、NiCr-Cr3C2涂层上的厚度为150nm的Cr过渡层、设在Cr过渡层上的厚度为250nm的Cr/CrAlN过渡层和设在Cr/CrAlN过渡层层上的厚度为3.8μm的CrAlN层构成。
其制备方法,包括以下步骤:
⑴将310s不锈钢表面打磨平整后,采用丙酮清洗液,在超声功率为800W、温度为25℃的条件下超声清洗15min,得到金属基体。
⑵利用超音速火焰喷涂技术在金属基体表面喷涂一层厚度为270μm的NiCr-Cr3C2涂层,超音速火焰喷涂的条件是指喷涂粉末为包覆型20%NiCr-80%Cr3C2商用粉末,氧气流量为180L·min-1,丙烷流量为16L·min-1,送粉速率为40g·min-1,喷涂距离为180mm。
⑶将NiCr-Cr3C2涂层的表面逐级打磨(分别用800、1000、1500和2000目砂纸分四级抛光,单次去除量为5μm,最后用粒度为1.5μm金刚石研磨膏抛至镜面)、抛光至Ra≤0.2μm,且去除量≤50μm后,依次采用无水乙醇、丙酮作为清洗液,在超声功率为800W、温度为25℃的条件下超声清洗15min,然后氮气吹干。
⑷将步骤⑶所得的表面喷涂有NiCr-Cr3C2涂层的金属基体固定于闭合场非平衡磁控溅射系统样品架上,先用Ar+在偏压为-500V、时间为15min的条件下轰击清洗NiCr-Cr3C2涂层,再采用闭合场非平衡磁控溅射技术,以纯度为99.999%的Cr靶、AlCr(70%Cr-30%Al)靶为溅射靶材,通过控制偏压、靶功率、样品转架转速制备厚度为150nm的Cr过渡层和厚度为250nm的Cr/CrAlN过渡层。
其中:Cr过渡层沉积条件是指偏压为-70V,背景真空为2×10-4Pa,基底温度为270℃,Cr靶靶功率为1.1kW,沉积10min,样品转架转速为5rpm。Cr/CrAlN过渡层沉积条件是指Cr靶与CrAl靶相对放置,偏压为-50V,基底温度为300℃,在30min内Cr靶功率由1.1kW线性降至0W,CrAl靶靶功率由0W线性增加至2.5kW,Ar/N2气流量比为1,总气压为0.25Pa,样品转架转速为2.5rpm。
⑸在Cr/CrAlN过渡层上沉积厚度为3.8μm的CrAlN层,沉积条件是指偏压为-50V,基底温度为300℃,CrAl靶靶功率为2.5kW,样品转架转速为5rpm,Ar/N2气流量比为1,总气压为0.2Pa,沉积时间为120min。
实施例1所制备的耐热蚀复合防护涂层800℃保温2min后取出水冷至室温,反复循环50次未出现涂层脱落、开裂等现象;在550℃的6.5wt.%NaCl+34.5wt.%KCl+59wt.%Na2SO4复合熔盐介质中保温5小时后取出降至室温,耐热蚀复合防护涂层表面热腐蚀氧化层厚度仅为0.85微米,表面光洁完整,未发现热腐蚀剥落坑。
对比例
与实施例1相同,区别在于将CrAlN层替换为CrN层,且缺少Cr过渡层和Cr/CrAlN过渡层。
对比例所制备的防护涂层800℃保温2min后取出水冷至室温,反复循环50次,表面明显开裂;在550℃的6.5wt.%NaCl+34.5wt.%KCl+59wt.%Na2SO4复合熔盐介质中保温5小时后取出降至室温,涂层表面热腐蚀氧化层厚度为1.3微米,且表面有明显热腐蚀剥落坑。
实施例2
耐热蚀复合防护涂层由设在以310S不锈钢为金属基体上的厚度为250μm的NiCr-Cr3C2涂层、NiCr-Cr3C2涂层上的厚度为180nm的Cr过渡层、设在Cr过渡层上的厚度为220nm的Cr/CrAlN过渡层和设在Cr/CrAlN过渡层层上的厚度为3.2μm的CrAlN层构成。
其制备方法,包括以下步骤:
⑴将310s不锈钢表面打磨平整后,采用丙酮清洗液,在超声功率为800W、温度为25℃的条件下超声清洗15min,得到金属基体。
⑵利用超音速火焰喷涂技术在金属基体表面喷涂一层厚度为250μm的NiCr-Cr3C2涂层,超音速火焰喷涂的条件是指喷涂粉末为包覆型20%NiCr-80%Cr3C2商用粉末,氧气流量为180L·min-1,丙烷流量为16L·min-1,送粉速率为40g·min-1,喷涂距离为200mm。
⑶将NiCr-Cr3C2涂层的表面逐级打磨(分别用800、1000、1500和2000目砂纸分四级抛光,单次去除量为5μm,最后用粒度为1.5μm金刚石研磨膏抛至镜面)、抛光至Ra≤0.2μm,且去除量≤50μm后,依次采用无水乙醇、丙酮作为清洗液,在超声功率为800W、温度为25℃的条件下超声清洗15min,然后氮气吹干。
⑷将步骤⑶所得的表面喷涂有NiCr-Cr3C2涂层的金属基体固定于闭合场非平衡磁控溅射系统样品架上,先用Ar+在偏压为-500V、时间为15min的条件下轰击清洗NiCr-Cr3C2涂层,再采用闭合场非平衡磁控溅射技术,以纯度为99.999%的Cr靶、AlCr(70%Cr-30%Al)靶为溅射靶材,通过控制偏压、靶功率、样品转架转速制备厚度为180nm的Cr过渡层和厚度为220nm的Cr/CrAlN过渡层。
其中:Cr过渡层沉积条件是指偏压为-70V,背景真空为2×10-4Pa,基底温度为270℃,Cr靶靶功率为1.2kW,沉积10min,样品转架转速为5rpm。Cr/CrAlN过渡层沉积条件是指Cr靶与CrAl靶相对放置,偏压为-50V,基底温度为280℃,在25min内Cr靶功率由1.2kW线性降至0W,CrAl靶靶功率由0W线性增加至2.5kW,Ar/N2气流量比为1,总气压为0.25Pa,样品转架转速为2.5rpm。
⑸在Cr/CrAlN过渡层上沉积厚度为3.2μm的CrAlN层,沉积条件是指偏压为-50V,基底温度为300℃,CrAl靶靶功率为2.5kW,样品转架转速为5rpm,Ar/N2气流量比为1,总气压为0.2Pa,沉积时间为100min。
实施例2所制备的耐热蚀复合防护涂层800℃保温2min后取出水冷至室温,反复循环55次未出现涂层脱落、开裂等现象;在550℃的6.5wt.%NaCl+34.5wt.%KCl+59wt.%Na2SO4复合熔盐介质中保温5小时后取出降至室温,耐热蚀复合防护涂层表面热腐蚀氧化层厚度仅为0.73微米,表面光洁完整,未发现热腐蚀剥落坑。
实施例3
耐热蚀复合防护涂层由设在以310S不锈钢为金属基体上的厚度为280μm的NiCr-Cr3C2涂层、NiCr-Cr3C2涂层上的厚度为220nm的Cr过渡层、设在Cr过渡层上的厚度为200nm的Cr/CrAlN过渡层和设在Cr/CrAlN过渡层层上的厚度为2.8μm的CrAlN层构成。
其制备方法,包括以下步骤:
⑴将310s不锈钢表面打磨平整后,采用丙酮清洗液,在超声功率为800W、温度为25℃的条件下超声清洗15min,得到金属基体。
⑵利用超音速火焰喷涂技术在金属基体表面喷涂一层厚度为280μm的NiCr-Cr3C2涂层,超音速火焰喷涂的条件是指喷涂粉末为包覆型20%NiCr-80%Cr3C2商用粉末,氧气流量为190L·min-1,丙烷流量为18L·min-1,送粉速率为42g·min-1,喷涂距离为160mm。
⑶将NiCr-Cr3C2涂层的表面逐级打磨(分别用800、1000、1500和2000目砂纸分四级抛光,单次去除量为5μm,最后用粒度为1.5μm金刚石研磨膏抛至镜面)、抛光至Ra≤0.2μm,且去除量≤50μm后,依次采用无水乙醇、丙酮作为清洗液,在超声功率为800W、温度为25℃的条件下超声清洗15min,然后氮气吹干。
⑷将步骤⑶所得的表面喷涂有NiCr-Cr3C2涂层的金属基体固定于闭合场非平衡磁控溅射系统样品架上,先用Ar+在偏压为-500V、时间为15min的条件下轰击清洗NiCr-Cr3C2涂层,再采用闭合场非平衡磁控溅射技术,以纯度为99.999%的Cr靶、AlCr(70%Cr-30%Al)靶为溅射靶材,通过控制偏压、靶功率、样品转架转速制备厚度为220nm的Cr过渡层和厚度为200nm的Cr/CrAlN过渡层。
其中:Cr过渡层沉积条件是指偏压为-70V,背景真空为2×10-4Pa,基底温度为260℃,Cr靶靶功率为1.0kW,沉积15min,样品转架转速为5rpm。Cr/CrAlN过渡层沉积条件是指Cr靶与CrAl靶相对放置,偏压为-50V,基底温度为300℃,在30min内Cr靶功率由1.0kW线性降至0W,CrAl靶靶功率由0W线性增加至2.2kW,Ar/N2气流量比为1,总气压为0.25Pa,样品转架转速为2.5rpm。
⑸在Cr/CrAlN过渡层上沉积厚度为2.8μm的CrAlN层,沉积条件是指偏压为-50V,基底温度为300℃,CrAl靶靶功率为2.2kW,样品转架转速为5rpm,Ar/N2气流量比为0.8,总气压为0.2Pa,沉积时间为100min。
实施例3所制备的耐热蚀复合防护涂层800℃保温2min后取出水冷至室温,反复循环53次未出现涂层脱落、开裂等现象;在550℃的6.5wt.%NaCl+34.5wt.%KCl+59wt.%Na2SO4复合熔盐介质中保温5小时后取出降至室温,耐热蚀复合防护涂层表面热腐蚀氧化层厚度仅为0.88微米,表面光洁完整,未发现热腐蚀剥落坑。
以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种耐热蚀复合防护涂层,其特征在于,由设在以310S不锈钢为金属基体上的厚度为250μm的NiCr-Cr3C2涂层、NiCr-Cr3C2涂层上的厚度为180nm的Cr过渡层、设在Cr过渡层上的厚度为220nm的Cr/CrAlN过渡层和设在Cr/CrAlN过渡层层上的厚度为3.2μm的CrAlN层构成,
制备方法,包括以下步骤:
⑴将310s不锈钢表面打磨平整后,采用丙酮清洗液,在超声功率为800W、温度为25℃的条件下超声清洗15min,得到金属基体;
⑵利用超音速火焰喷涂技术在金属基体表面喷涂一层厚度为250μm的NiCr-Cr3C2涂层,超音速火焰喷涂的条件是指喷涂粉末为包覆型20%NiCr-80%Cr3C2商用粉末,氧气流量为180L·min-1,丙烷流量为16L·min-1,送粉速率为40g·min-1,喷涂距离为200mm;
⑶将NiCr-Cr3C2涂层的表面逐级打磨,分别用800、1000、1500和2000目砂纸分四级抛光,单次去除量为5μm,最后用粒度为1.5μm金刚石研磨膏抛至镜面、抛光至Ra≤0.2μm,且去除量≤50μm后,依次采用无水乙醇、丙酮作为清洗液,在超声功率为800W、温度为25℃的条件下超声清洗15min,然后氮气吹干;
⑷将步骤⑶所得的表面喷涂有NiCr-Cr3C2涂层的金属基体固定于闭合场非平衡磁控溅射系统样品架上,先用Ar+在偏压为-500V、时间为15min的条件下轰击清洗NiCr-Cr3C2涂层,再采用闭合场非平衡磁控溅射技术,以纯度为99.999%的Cr靶、AlCr靶为溅射靶材,AlCr靶为70%Cr-30%Al,通过控制偏压、靶功率、样品转架转速制备厚度为180nm的Cr过渡层和厚度为220nm的Cr/CrAlN过渡层;
其中:Cr过渡层沉积条件是指偏压为-70V,背景真空为2×10-4Pa,基底温度为270℃,Cr靶靶功率为1.2kW,沉积10min,样品转架转速为5rpm;Cr/CrAlN过渡层沉积条件是指Cr靶与CrAl靶相对放置,偏压为-50V,基底温度为280℃,在25min内Cr靶功率由1.2kW线性降至0W,CrAl靶靶功率由0W线性增加至2.5kW,Ar/N2气流量比为1,总气压为0.25Pa,样品转架转速为2.5rpm;
⑸在Cr/CrAlN过渡层上沉积厚度为3.2μm的CrAlN层,沉积条件是指偏压为-50V,基底温度为300℃,CrAl靶靶功率为2.5kW,样品转架转速为5rpm,Ar/N2气流量比为1,总气压为0.2Pa,沉积时间为100min。
2.权利要求1所述耐热蚀复合防护涂层的制备方法,其特征在于,包括以下步骤:
⑴将310s不锈钢表面打磨平整后,采用丙酮清洗液,在超声功率为800W、温度为25℃的条件下超声清洗15min,得到金属基体;
⑵利用超音速火焰喷涂技术在金属基体表面喷涂一层厚度为250μm的NiCr-Cr3C2涂层,超音速火焰喷涂的条件是指喷涂粉末为包覆型20%NiCr-80%Cr3C2商用粉末,氧气流量为180L·min-1,丙烷流量为16L·min-1,送粉速率为40g·min-1,喷涂距离为200mm;
⑶将NiCr-Cr3C2涂层的表面逐级打磨,分别用800、1000、1500和2000目砂纸分四级抛光,单次去除量为5μm,最后用粒度为1.5μm金刚石研磨膏抛至镜面、抛光至Ra≤0.2μm,且去除量≤50μm后,依次采用无水乙醇、丙酮作为清洗液,在超声功率为800W、温度为25℃的条件下超声清洗15min,然后氮气吹干;
⑷将步骤⑶所得的表面喷涂有NiCr-Cr3C2涂层的金属基体固定于闭合场非平衡磁控溅射系统样品架上,先用Ar+在偏压为-500V、时间为15min的条件下轰击清洗NiCr-Cr3C2涂层,再采用闭合场非平衡磁控溅射技术,以纯度为99.999%的Cr靶、AlCr靶为溅射靶材,AlCr靶为70%Cr-30%Al,通过控制偏压、靶功率、样品转架转速制备厚度为180nm的Cr过渡层和厚度为220nm的Cr/CrAlN过渡层;
其中:Cr过渡层沉积条件是指偏压为-70V,背景真空为2×10-4Pa,基底温度为270℃,Cr靶靶功率为1.2kW,沉积10min,样品转架转速为5rpm;Cr/CrAlN过渡层沉积条件是指Cr靶与CrAl靶相对放置,偏压为-50V,基底温度为280℃,在25min内Cr靶功率由1.2kW线性降至0W,CrAl靶靶功率由0W线性增加至2.5kW,Ar/N2气流量比为1,总气压为0.25Pa,样品转架转速为2.5rpm;
⑸在Cr/CrAlN过渡层上沉积厚度为3.2μm的CrAlN层,沉积条件是指偏压为-50V,基底温度为300℃,CrAl靶靶功率为2.5kW,样品转架转速为5rpm,Ar/N2气流量比为1,总气压为0.2Pa,沉积时间为100min。
CN202110033426.7A 2021-01-12 2021-01-12 一种耐热蚀复合防护涂层及其制备方法 Active CN112877637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110033426.7A CN112877637B (zh) 2021-01-12 2021-01-12 一种耐热蚀复合防护涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110033426.7A CN112877637B (zh) 2021-01-12 2021-01-12 一种耐热蚀复合防护涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN112877637A CN112877637A (zh) 2021-06-01
CN112877637B true CN112877637B (zh) 2022-02-08

Family

ID=76044570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110033426.7A Active CN112877637B (zh) 2021-01-12 2021-01-12 一种耐热蚀复合防护涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN112877637B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105839049A (zh) * 2016-04-07 2016-08-10 南京航空航天大学 一种钛铝合金表面抗高温氧化、耐磨损AlCrN涂层及其制备方法
CN106191772A (zh) * 2016-08-09 2016-12-07 上海理工大学 一种含有多相AlCrN纳米插入层的高硬度CrAlN涂层及其制备方法
CN106435584A (zh) * 2016-10-18 2017-02-22 安徽工业大学 一种热喷涂‑pvd复合涂层及其制备方法
CN106894020A (zh) * 2017-03-24 2017-06-27 纳狮新材料股份有限公司 复合涂层螺杆及其制备方法
CN108130533A (zh) * 2017-12-21 2018-06-08 安徽工业大学 一种具有高抗磨耐蚀硬密封球阀及制备方法
CN110629194A (zh) * 2019-10-31 2019-12-31 浙江工业大学 一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法
CN212223077U (zh) * 2020-05-21 2020-12-25 北京金轮坤天特种机械有限公司 一种钛合金轴类件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017094440A1 (ja) * 2015-12-02 2018-04-12 三菱日立ツール株式会社 硬質皮膜、硬質皮膜被覆部材及びその製造方法、及び硬質皮膜の製造に用いるターゲット及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105839049A (zh) * 2016-04-07 2016-08-10 南京航空航天大学 一种钛铝合金表面抗高温氧化、耐磨损AlCrN涂层及其制备方法
CN106191772A (zh) * 2016-08-09 2016-12-07 上海理工大学 一种含有多相AlCrN纳米插入层的高硬度CrAlN涂层及其制备方法
CN106435584A (zh) * 2016-10-18 2017-02-22 安徽工业大学 一种热喷涂‑pvd复合涂层及其制备方法
CN106894020A (zh) * 2017-03-24 2017-06-27 纳狮新材料股份有限公司 复合涂层螺杆及其制备方法
CN108130533A (zh) * 2017-12-21 2018-06-08 安徽工业大学 一种具有高抗磨耐蚀硬密封球阀及制备方法
CN110629194A (zh) * 2019-10-31 2019-12-31 浙江工业大学 一种以Cr/CrAlN为过渡层在不锈钢表面制备金刚石薄膜的方法
CN212223077U (zh) * 2020-05-21 2020-12-25 北京金轮坤天特种机械有限公司 一种钛合金轴类件

Also Published As

Publication number Publication date
CN112877637A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US4321311A (en) Columnar grain ceramic thermal barrier coatings
CN102400099B (zh) 核裂变堆燃料包壳表面CrAlSiN梯度涂层制备工艺
US4405659A (en) Method for producing columnar grain ceramic thermal barrier coatings
US4414249A (en) Method for producing metallic articles having durable ceramic thermal barrier coatings
US4405660A (en) Method for producing metallic articles having durable ceramic thermal barrier coatings
US4321310A (en) Columnar grain ceramic thermal barrier coatings on polished substrates
CN103567374B (zh) 用于铝压铸模具的涂层材料以及制备该涂层材料的方法
CN106893987B (zh) 一种物理气相沉积Ta-C涂层的制备方法及Ta-C涂层
CN111218638B (zh) 一种球阀硬密封面耐磨蚀复合防护涂层及其制备方法
CN113025966B (zh) 一种提高热锻模具寿命的Zr基高熵合金涂层及其制备方法
CN1066781C (zh) 滑动部件及其制造方法
CN112877637B (zh) 一种耐热蚀复合防护涂层及其制备方法
CN113930722A (zh) 高红硬性AlCrN/AlTiN纳米多层涂层及其制备方法
CN103938157A (zh) 一种ZrNbAlN超晶格涂层及制备方法
CN114875271B (zh) 一种不粘涂层及其应用和制备方法
CN114990485A (zh) 一种超耐磨的复合涂层及制备方法和在牙板模具上的应用
CN115074665A (zh) 一种耐冲压、耐磨、自润滑的模具涂层及制备方法与应用
CN114000118B (zh) 一种钛合金表面硬度梯度分布层厚可调的氮化层制备方法
CN112941463B (zh) 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN113293347A (zh) 一种钛硅硬质复合涂层及制备方法
CN110860673B (zh) 附着在压铸模具表面的CrYBN复合涂层、压铸模具及制备方法
CN111676460B (zh) 汽车轮胎钢圈的防污表面处理工艺
US5928750A (en) Sputtered thermally cycled texture layers formed of high melting point materials
CN115287599B (zh) 一种高耐磨CoFeTaB/MgCuY非晶/非晶多层膜及其制备方法
CN115233153B (zh) 海洋环境用钛合金表面涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant