CN112877581A - 一种改进钕铁硼铸片的制备方法 - Google Patents

一种改进钕铁硼铸片的制备方法 Download PDF

Info

Publication number
CN112877581A
CN112877581A CN202110036074.0A CN202110036074A CN112877581A CN 112877581 A CN112877581 A CN 112877581A CN 202110036074 A CN202110036074 A CN 202110036074A CN 112877581 A CN112877581 A CN 112877581A
Authority
CN
China
Prior art keywords
iron boron
neodymium iron
cast sheet
nucleation
alloy particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110036074.0A
Other languages
English (en)
Other versions
CN112877581B (zh
Inventor
王瑜
夏峰
孙彩娜
冯永怀
李艳丽
高娇
刘吉祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Jinshan Magnetic Material Co ltd
Original Assignee
Baotou Jinshan Magnetic Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Jinshan Magnetic Material Co ltd filed Critical Baotou Jinshan Magnetic Material Co ltd
Priority to CN202110036074.0A priority Critical patent/CN112877581B/zh
Publication of CN112877581A publication Critical patent/CN112877581A/zh
Priority to JP2021104810A priority patent/JP7194780B2/ja
Priority to US17/360,540 priority patent/US11731193B2/en
Priority to EP21204110.7A priority patent/EP4026632B1/en
Application granted granted Critical
Publication of CN112877581B publication Critical patent/CN112877581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/048Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Hard Magnetic Materials (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于涉及一种改进烧结钕铁硼铸片的制备方法,首先,制取烧结钕铁硼铸片使用的形核辅助合金颗粒,各元素重量比例范围为:Pr‑Nd 26.68‑28%,Fe 70‑72.5%,B 0.90‑1%,Pr‑Nd两种元素中Pr元素占比0‑30%重量百分比;将上述配制好的物料先通过常规工艺熔炼浇注获得合金片,再将合金片采用机械破碎法破碎成直径大小为1‑10mm的颗粒,作为烧结钕铁硼铸片使用的形核辅助合金颗粒;其次,制取钕铁硼铸片:先将配制好的中间料按照常规烧结钕铁硼熔炼工艺进行熔炼,熔化成钢液后精炼;全部熔化后将形核辅助合金颗粒加入,形核辅助合金按照重量比3‑6%添加;加入后降低功率150‑250KW熔炼3‑15分钟即进行浇注,获得钕铁硼铸片。制取的钕铁硼铸片金相质量有了明显提高,用该铸片制成的磁体成品内禀矫顽力Hcj明显提高。

Description

一种改进钕铁硼铸片的制备方法
技术领域
本发明属于稀土永磁材料制备技术领域,尤其涉及一种改进烧结钕铁硼铸片的制备方法。
背景技术
烧结Nd-Fe-B永磁材料自1983年发明以来,得到极大发展与应用,已迅速发展成为重要的产业。大量研究工作实现了高磁能积磁体的商业化生产,磁性能得到快速提高。但受制于钕铁硼粉末冶金工艺的制约,进一步提高磁性能需要靠材料显微组织结构的改进,而且主要取决于烧结钕铁硼制备过程中生产铸片的工序,该工序获得的合金铸片显微组织会遗传到最终成品中,直接影响着磁体成品最终显微组织。但钕铁硼合金铸片显微组织的改善非常困难,目前高温合金材料制备技术从理论到实践都不完善。
发明内容
烧结钕铁硼成品传统生产工艺流程包括:配料、铸片、制粉、成型、烧结、机加工、(电镀)等工序;其中铸片环节将配置好的物料一次性进行熔炼,获得合金铸片。
本发明提出了一种通过添加形核辅助合金来制备钕铁硼铸片的方法,用于改善钕铁硼合金铸片的显微组织结构,在相同配方前提下较大幅度提高磁体性能。
本发明涉及一种改进烧结钕铁硼铸片的制备方法,具体工艺方法如下:
1首先制取烧结钕铁硼铸片使用的形核辅助合金颗粒(简称A料)
1.1)形核辅助合金颗粒元素重量比例范围分别为:Pr-Nd 26.68-28%,Fe 70-72.5%,B 0.90-1%。其中,所述Pr-Nd两种元素中Pr元素占比0-30%重量百分比。形核辅助合金颗粒中 Fe元素可用部分Co元素替代,Co元素在A料中占比比例0-5%重量百分比。通过常规配制、熔炼、浇注得到成分比例接近(Pr-Nd)2Fe14B的合金片,该合金片中以四方相为主,富钕相很少;晶粒度大小为5-30um。
1.2)将合金片采用机械破碎法或氢破碎法破碎成直径大小为1-10mm的颗粒,作为烧结钕铁硼铸片使用的形核辅助合金颗粒。优选机械破碎。如采用氢破碎法时,脱氢要尽可能充分,小于1000ppm,更优选小于600ppm,以减小对熔炼时的影响。
2制取钕铁硼合金铸片(简称C料)
2.1)按照铸片牌号设计合金成分:由于形核辅助合金颗粒最后要加入到物料中,形核辅助合金的加入会影响最终合金成分,所以要获得最终钕铁硼合金铸片成分,首先要设计计算未添加形核辅助合金颗粒之前的物料成分,即中间料的成分。形核辅助合金按照重量比3-6%添加,优选5%。
2.2)将上述中间料先按照常规烧结钕铁硼熔炼工艺进行熔炼,熔化成钢液后精炼;待全部熔化后将形核辅助合金颗粒加入;加入后要降低功率150-250KW熔炼3-15分钟,进行浇注,获得最终钕铁硼合金铸片。
本发明具体工作原理在于:
1、形核辅助合金中元素成分重量比例范围:Pr-Nd 26.68-28%,Fe 70-72.5%,B0.90-1%,该成分比例决定了形核辅助合金以Nd2Fe14B四方相为主,富钕相基本没有,晶粒度较大 5-30um;经过破碎后,获得(Pr-Nd)2Fe14B合金颗粒;以四方相形核辅助合金作为形核点,更有利于钕铁硼铸片在浇注过程中形成四方相的柱状晶。
2、制取钕铁硼铸片过程中,相对于浇注时刻点来说,加入形核辅助合金颗粒A料不能过早,否则温度过高,A料完全与中间料熔为一体,失去分开添加的意义;加入形核辅助合金A料也不能过晚,否则形核辅助合金仍为固体小晶粒,起不到形核作用。形核辅助合金需要正好处于刚接近软化状态,原子团簇处于短程有序,各原子虽然处于高度活跃状态,但还未逃离晶格对它的束缚。这样浇注过程中,中间料钢液中的原子才能依靠形核辅助合金固有的晶体结构形核生长,获得想要的显微组织结构。
3、形核辅助合金添加的时机在中间料熔化并熔炼10-20分钟后加入;加入后要降低功率 150-250KW熔炼3-15分钟进行浇注,以使钢液中形核辅助合金软化但不能完全处于自由原子状态。
本发明具有以下技术效果:采用本工艺技术后,铸片金相质量有了明显提高,用该铸片制取的磁体成品内禀矫顽力Hcj明显提高。
附图说明
图1采用本发明技术与传统工艺获得的铸片金相对比:(a)为采用形核辅助技术的金相图片,(b)为采用传统工艺金相图片;
图2采用形核辅助技术与采用传统工艺获得铸片金相对比:(a)为采用形核辅助技术的金相图片,(b)为采用传统工艺金相图片。
具体实施方式
为了使本领域技术人员更好地理解本发明创造的技术方案,下面结合附图对本发明进行详细描述,本部分的描述仅是示范性和解释性,不应对本发明的保护范围有任何的限制作用。
实施例1:
1、本实施例中形核辅助合金(A料)配方设计为:Pr-Nd28Fe69.5Co1.5B1,添加重量比例5%;据此设计计算未添加形核辅助合金之前的合金成分,得到中间料成分为:
Pr-Nd25.9Dy4.42FebalCo1.5B0.98M0.96(M=Al、Cu、Nb、Ga);其中M为杂质元素,ba1代表余量
中间料在最终钕铁硼铸片(C料)中占比为95%。最终配方钕铁硼铸片(C料)设计为(重量比):Pr-Nd26Dy4.2FebalCo1.58B0.98 M0.90(M=Al、Cu、Nb、Ga)
2、熔炼形核辅助合金(A料):将配制好的A料加入熔炼坩埚,抽真空≤0.5Pa,低功率加热烘料20分钟;最大功率580KW到目测炉料熔化,功率降低100KW熔炼12分钟,钢液温度在1430-1450℃范围内将钢液浇出,浇注时熔炼炉铜辊轮转速约30-35转/min,对应钢液甩处线速度为0.96-1.12m/s,获得厚度为0.25-1毫米的铸片。
将铸片采用机械破碎法成粒度直径大小约1-10mm颗粒作为形核辅助合金颗粒。
3、炼制钕铁硼铸片(C料):将配制好的中间料570Kg加入熔炼坩埚,抽真空≤0.5Pa,低功率加热烘料20分钟;最大功率580KW到炉料熔化,将熔炼功率略下调至480KW熔炼20 分钟,通过顶端配置的后加料专用工装将形核辅助合金A料加入,加入后功率下调至300KW熔炼15分钟,使钢液中形核辅助合金A软化但不能完全处于自由原子状态。在温度1390-1400℃范围内将钢液浇出,浇注时熔炼炉铜辊轮转速约40-45转/min,对应钢液甩处线速度为 1.28-1.44m/s,获得厚度为0.15-0.35毫米的铸片C料。
最终相同成分采用本发明技术与传统工艺获得铸片的金相图对比(a为采用形核辅助技术的金相图片,b为采用传统工艺金相图片。)
再将钕铁硼铸片经常规破碎制粉、压制成型、烧结,得到钕铁硼成品。相同成分不同工艺获得钕铁硼成品性能对比表如下表1所示(1-1#~1-3#为采用本发明技术的钕铁硼磁体的性能,1-4#~1-6#~为采用传统工艺制备的钕铁硼磁体性能)。表1相同成分不同工艺获得钕铁硼成品性能对比表
Figure BDA0002894355710000031
从图1和表1中可以看出,采用本工艺技术后,铸片金相质量有了明显提高,磁体成品内禀矫顽力Hcj明显提高,剩磁略有下降。
实施例2:
1、本实施例中形核辅助合金(A料)配方设计:Pr-Nd28Fe69.09Co2B0.91,添加重量比例5%;据此设计计算未添加形核辅助合金之前的合金成分,得到中间料成分为:
Pr-Nd29.47Tb1.05FebalCo2.0B0.93 M0.59(M=Al、Cu、Zr、Ga);中间料在最终(C料)中占比为95%。
最终配方(C料)设计为(重量比):Pr-Nd29.4Tb1FebalCo2.0B0.93 M0.55(M=Al、Cu、Zr、Ga)
2、熔炼形核辅助合金(A料):将配制好的A料加入熔炼坩埚,抽真空≤0.5Pa,加热低功率烘料20分钟;最大功率580KW到目测炉料熔化,功率降低20-50KW熔炼5-10分钟,钢液温度在1450-1480℃范围内将钢液浇出,浇注时熔炼炉铜辊轮转速约30-35转/min,对应钢液甩处线速度为0.96-1.12m/s,获得厚度为0.25-1毫米的铸片。
将铸片采用机械破碎法成粒度约1-10mm颗粒作为形核辅助合金。
3、炼制钕铁硼铸片(C料):将配制好的中间料570Kg加入熔炼坩埚,抽真空≤0.5Pa,,低功率加热烘料20分钟;最大功率580KW加热到炉料熔化;将熔炼功率略下调至450KW 熔炼10-12分钟,通过顶端配置的后加料专用工装将形核辅助合金A料加入,加入后功率下调至300KW熔炼3-5分钟使钢液中形核辅助合金A软化但不能完全处于自由原子状态。在温度1410-1420℃范围内将钢液浇出,浇注时熔炼炉铜辊轮转速约40-45转/min,对应钢液甩处线速度为1.28-1.44m/s,获得厚度为0.15-0.35毫米的铸片C料。
从图2中可以看出,采用形核辅助技术后,铸片金相质量有了明显提高,四方相柱状晶生长更加充分,穿透更好,有利于磁体矫顽力的提高。
再将钕铁硼铸片经常规破碎制粉、压制成型、烧结,得到钕铁硼成品。相同成分不同工艺获得钕铁硼成品性能对比表如下表2所示(2-1#~2-3#为采用本工艺技术钕铁硼成品性能, 2-4#~2-6#为采用传统工艺制备的钕铁硼成品性能。)
表2相同成分不同工艺获得钕铁硼成品性能对比表
Figure BDA0002894355710000041
从图2和表2中可以看出,采用本工艺技术后,铸片金相质量有了明显提高,钕铁硼成品内禀矫顽力Hcj明显提高,剩磁略有下降。

Claims (5)

1.一种改进烧结钕铁硼铸片的制备方法,其特征在于,该方法具体工艺步骤如下:
1首先制取烧结钕铁硼铸片使用的形核辅助合金颗粒
1.1)形核辅助合金颗粒元素重量比例范围分别为:Pr-Nd 26.68-28%,Fe 70-72.5%,B0.90-1%;其中,所述Pr-Nd两种元素中Pr元素占比0-30%重量百分比;通过常规配制、熔炼、浇注得到成分原子百分比接近(Pr-Nd)2Fe14B的合金片;
1.2)将所述合金片破碎成直径大小为1-10mm的颗粒,作为制取烧结钕铁硼铸片使用的形核辅助合金颗粒;
2制取钕铁硼铸片
2.1)根据想制取的钕铁硼铸片牌号和形核辅助合金颗粒的添加量来设计中间料成分配比,其中形核辅助合金颗粒添加量为重量比3-6%;
2.2)将所述中间料配比好以后,先按照常规烧结钕铁硼熔炼工艺进行熔炼,熔化成钢液后精炼;待全部熔化后将所述形核辅助合金颗粒加入;加入后要降低功率150-250KW熔炼3-15分钟后进行浇注,获得最终钕铁硼铸片。
2.一种根据权利要求1所述改进烧结钕铁硼铸片的制备方法,其特征在于:步骤1.2中,所述形核辅助合金颗粒为采用机械破碎法或氢破碎法破碎获得。
3.一种根据权利要求2所述改进烧结钕铁硼铸片的制备方法,其特征在于:采用所述氢破碎法时,脱氢要尽可能充分,所述形核辅助合金颗粒中氢含量小于1000ppm。
4.一种根据权利要求1-3中任意一种所述改进烧结钕铁硼铸片的制备方法,其特征在于:步骤2.1中,所述形核辅助合金颗粒按照重量比5%添加。
5.一种根据权利要求1-3中任意一种所述改进烧结钕铁硼铸片的制备方法,其特征在于:步骤1.1中,所述形核辅助合金颗粒中Fe元素可用部分Co元素替代,Co元素在A料中所占比例0-5%重量百分比。
CN202110036074.0A 2021-01-12 2021-01-12 一种改进烧结钕铁硼铸片的制备方法 Active CN112877581B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110036074.0A CN112877581B (zh) 2021-01-12 2021-01-12 一种改进烧结钕铁硼铸片的制备方法
JP2021104810A JP7194780B2 (ja) 2021-01-12 2021-06-24 改良型焼結ネオジム鉄ボロン鋳片の調製方法
US17/360,540 US11731193B2 (en) 2021-01-12 2021-06-28 Preparation method of improved sintered neodymium-iron-boron (Nd—Fe—B) casting strip
EP21204110.7A EP4026632B1 (en) 2021-01-12 2021-10-22 Preparation method of improved sintered neodymium-iron-boron (nd-fe-b) casting strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110036074.0A CN112877581B (zh) 2021-01-12 2021-01-12 一种改进烧结钕铁硼铸片的制备方法

Publications (2)

Publication Number Publication Date
CN112877581A true CN112877581A (zh) 2021-06-01
CN112877581B CN112877581B (zh) 2021-12-28

Family

ID=76044223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110036074.0A Active CN112877581B (zh) 2021-01-12 2021-01-12 一种改进烧结钕铁硼铸片的制备方法

Country Status (4)

Country Link
US (1) US11731193B2 (zh)
EP (1) EP4026632B1 (zh)
JP (1) JP7194780B2 (zh)
CN (1) CN112877581B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339683A (ja) * 1992-06-11 1993-12-21 Hitachi Metals Ltd 永久磁石合金およびその製造方法
CN103103442A (zh) * 2013-02-28 2013-05-15 包头稀土研究院 主辅合金法制备钕铁硼的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064465A (en) * 1990-11-29 1991-11-12 Industrial Technology Research Institute Process for preparing rare earth-iron-boron alloy powders
US7846273B2 (en) * 2005-10-31 2010-12-07 Showa Denko K.K. R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
WO2014156181A1 (ja) * 2013-03-29 2014-10-02 中央電気工業株式会社 R-t-b系磁石用原料合金およびその製造方法
CN103617855A (zh) * 2013-11-30 2014-03-05 宁波科星材料科技有限公司 一种具有优良磁体性能的钕铁硼磁性材料
CN104752048B (zh) * 2013-12-30 2017-10-31 北京中科三环高技术股份有限公司 一种烧结钕铁硼永磁体的制作方法
CN105845425A (zh) * 2016-01-08 2016-08-10 宁波宏垒磁业有限公司 一种钕铁硼磁体的制备方法
CN106128673B (zh) * 2016-06-22 2018-03-30 烟台首钢磁性材料股份有限公司 一种烧结钕铁硼磁体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339683A (ja) * 1992-06-11 1993-12-21 Hitachi Metals Ltd 永久磁石合金およびその製造方法
CN103103442A (zh) * 2013-02-28 2013-05-15 包头稀土研究院 主辅合金法制备钕铁硼的方法

Also Published As

Publication number Publication date
JP2022108247A (ja) 2022-07-25
US20220219228A1 (en) 2022-07-14
EP4026632B1 (en) 2023-11-08
JP7194780B2 (ja) 2022-12-22
EP4026632A1 (en) 2022-07-13
EP4026632C0 (en) 2023-11-08
US11731193B2 (en) 2023-08-22
CN112877581B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
US11195645B2 (en) Ce-containing sintered rare-earth permanent magnet with having high toughness and high coercivity, and preparation method therefor
CN103456451B (zh) 一种室温高磁能积耐腐蚀烧结钕铁硼的制备方法
CN105741995B (zh) 一种高性能烧结钕铁硼永磁体及其制备方法
CN108133799B (zh) 一种高性能纳米晶热变形钕铁硼永磁体及其制备方法
US5908513A (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US20220044853A1 (en) NdFeB alloy powder for forming high-coercivity sintered NdFeB magnets and use thereof
CN104599801A (zh) 一种稀土永磁材料及其制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN109732046B (zh) 一种烧结钕铁硼磁体及其制备方法
JPWO2020015389A5 (zh)
CN101673605B (zh) 各向异性纳米/非晶复相块体永磁材料及其制备方法
CN109786097A (zh) 一种驱动电机专用高性能钕铁硼永磁体的制备方法
CN112877581B (zh) 一种改进烧结钕铁硼铸片的制备方法
TW202235640A (zh) 主輔合金系釹鐵硼磁體材料及其製備方法
CN106409456B (zh) 一种提高磁性能的稀土永磁制备工艺
CN108133797B (zh) 一种抑制CeFe2相的混合稀土铁硼磁体的制备方法
CN115747664B (zh) 一种强磁感纳米晶高硅钢丝材及其制备方法
CN106710769B (zh) 一种Nd-Fe-B永磁薄带磁体及其制备方法
TWI776781B (zh) 一種雙殼層釹鐵硼磁體及其製備方法
JPH01175207A (ja) 永久磁石の製造方法
CN116779268A (zh) 一种高耐蚀不锈烧结钕铁硼磁体及其制备方法
CN118231132A (zh) 一种低熔点合金钕铁硼晶界扩散源及其涂覆方法
CN115976423A (zh) 一种HfFe纳米粉复合钕铁硼磁体及其制备方法
CN108364737A (zh) 一种提高烧结铈铁硼磁体磁性能的制备方法
JPH023207A (ja) 永久磁石

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant