CN112876728B - 化纤气凝胶的制备方法及其应用 - Google Patents

化纤气凝胶的制备方法及其应用 Download PDF

Info

Publication number
CN112876728B
CN112876728B CN202110155865.5A CN202110155865A CN112876728B CN 112876728 B CN112876728 B CN 112876728B CN 202110155865 A CN202110155865 A CN 202110155865A CN 112876728 B CN112876728 B CN 112876728B
Authority
CN
China
Prior art keywords
chemical fiber
fiber
aerogel
dispersion liquid
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110155865.5A
Other languages
English (en)
Other versions
CN112876728A (zh
Inventor
邱凤仙
甘丽平
岳学杰
张涛
杨冬亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202110155865.5A priority Critical patent/CN112876728B/zh
Publication of CN112876728A publication Critical patent/CN112876728A/zh
Application granted granted Critical
Publication of CN112876728B publication Critical patent/CN112876728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0482Elimination of a frozen liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明属于多孔功能性材料技术领域,涉及一种化纤气凝胶的制备方法,包括:按每0.4升溶剂加入0.017~0.27 mol碱计,得分散液;按每升分散液中加入1~15g化纤,10~55℃搅拌12~168 h,得化纤分散液;将化纤分散液倒置于分子量为8000~14000的透析袋内,先后在去离子水和体积比为1:5的叔丁醇水溶液中各浸泡8~12 h,重复2~5次,得化纤凝胶;将化纤凝胶于‑196~‑20℃冷冻10~24 h,在‑55℃冻干24~48 h,即得。本发明所得气凝胶空气中表现超亲水亲油,水下超亲油的特殊润湿性能,将其用作油水分离材料,应用于处理有机物或油污染。也为废弃化纤衣物的处理提供新途径,能够降低废弃衣物对环境的危害,实现废物资源的循环利用。

Description

化纤气凝胶的制备方法及其应用
技术领域
本发明属于多孔功能性材料技术领域,涉及气凝胶,尤其涉及一种化纤气凝胶的制备方法及其应用。
背景技术
随着人口和收入水平的提高,纺织品的消费量稳步增长和时装周期的急剧加快,纺织废料已然成为各地垃圾填埋场中主要废料来源。作为主要的城市废物之一,纺织纤维的管理方式主要通过填埋或被火化等以获取能源,而这种不适当的废物管理方法会导致温室气体和土壤污染。在倡导循环经济的今天,废弃衣物的回收和再利用备受关注。因此,合理利用废弃的化纤衣物,提取可用资源达到再生循环,降低废弃衣物的危害是有必要的。
气凝胶是指通过溶胶凝胶法,用一定的干燥方式使气体取代凝胶中的液相而形成的一种纳米级多孔固态材料,具有高孔隙率、高连续性、低密度、大比表面积等优点,是去除油类和有机污染物、油水分离的最佳候选材料之一。迄今为止,各种气凝胶,如碳气凝胶、二氧化硅气凝胶、纳米纤维素基气凝胶,均被尝试用于油水的高效分离。然而,大多数气凝胶不仅效率低、污染严重,且需要复杂的合成工艺或昂贵的材料。
因此,寻找制备方法简单,制造具有多孔、特殊润湿性和高效率功能气凝胶是实现油水乳液分离的一个挑战。本发明选用来自废弃化纤衣物的纤维,通过溶解,溶胶凝胶法,冷冻干燥制备具有纳米级多孔结构的气凝胶。该材料在去除油和有机污染物、分离油水乳液领域具有广阔的应用前景。
发明内容
针对上述现有技术中存在的不足,本发明的一个目的是提供一种化纤气凝胶的制备方法。
本发明的目的通过下述技术方案实现:
一种化纤气凝胶的制备方法,包括以下步骤:
a) 按每0.4升溶剂加入 0.017~0.27 mol碱计,得分散液;按每升分散液中加入1~15g化纤,10~55℃搅拌12~168 h,得化纤分散液;
b) 将化纤分散液倒置于分子量为8000~14000的透析袋内,先后在去离子水和体积比为1:5的叔丁醇水溶液中各浸泡8~12 h,重复2~5次,得化纤凝胶;
c) 将化纤凝胶于-196~-20℃冷冻10~24 h,在-55℃冻干24~48 h,得到化纤气凝胶。
本发明较优公开例中,步骤a)中所述的碱为氢氧化钠或氢氧化钾。
本发明较优公开例中,步骤a)中所述化纤为芳纶、氨纶、腈纶、丙纶或氯纶中的任一种或几种组合,来源为废弃化纤衣物,用之前以乙醇和水洗净,并剪碎。
本发明较优公开例中,步骤a)中所述溶剂为二甲基亚砜、二甲基甲酰胺、二甲苯中的任一种或几种的混合物。
本发明较优公开例中,步骤b)中所述透析袋为纤维素透析袋、再生纤维素透析袋、玻璃丝透析膜中的任一种。
根据本发明所述方法制得的化纤气凝胶,具有化纤交叉粘结形成的纳米纤维三维网状结构;孔径100~200 nm,直径为10~200 nm;纤维长径比为100~10000。
本发明的另一目的在于公开所制得气凝胶的应用,将其用作油水分离材料,应用于处理有机物或油污染。
有益效果
本发明公开一种化纤制备的气凝胶及其制备方法和应用,该材料所得气凝胶具有化纤交叉粘结形成的纳米纤维三维网状结构。孔径为100~200 nm,高温400℃下分解,空气中表现超亲水亲油,水下超亲油的特殊润湿性能。制备的气凝胶乳液分离效率达98 %,在去除油和有机污染物、分离油水乳液领域具有广阔的应用前景。同时,本发明为废弃化纤衣物的处理提供了新途径,能够降低废弃衣物对环境的危害,实现废物资源的循环利用。
附图说明
图1. 分散后的芳纶纤维TEM图。
具体实施方式
下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
实施例1
一种化纤气凝胶的制备方法,具体步骤如下:
a) 按每0.4升二甲基亚砜加入 0.017 mol氢氧化钠,得分散液;按每升分散液中加入1 g 用乙醇和水洗净,并剪碎的芳纶,25 ℃搅拌120 h,得芳纶纳米纤维分散液;
b) 将芳纶纳米纤维分散液倒置于分子量为14000的再生纤维素透析袋内,先后去离子水和体积比为1:5的叔丁醇水溶液中各浸泡8 h,重复4次,得芳纶纤维水凝胶;
c) 将芳纶纤维气凝胶置于-5 ℃冷冻24 h,然后于-55 ℃冷冻干燥48 h,得到芳纶气凝胶。
将0.1 wt %司班溶解在水中,并加入1 wt %的石油醚,用高速均质器(5000rpm,5min)乳化混合物,再用超声进行均质化处理(5min),得水包油乳液。
将所制得直径19 mm,厚度5 mm的芳纶气凝胶夹在两个垂直玻璃管之间,倒入上述水包油乳液,分离效率达98.2%。
如图1所示,所制得的芳纶纤维直径为12nm,长度为2~4μm,长径比达到160~320.
实施例2
一种化纤气凝胶的制备方法,具体步骤如下:
a) 按每0.4升二甲基甲酰胺加入0.2 mol氢氧化钠,得芳纶分散液;按衣物分散液中加入用乙醇和水洗净,并剪碎的10 g氨纶,25 ℃搅拌120 h,得氨纶纳米纤维分散液;
b) 将步骤a所得的氨纶纳米纤维分散液倒置分子量为12000的玻璃丝透析膜内,先后去离子水和体积比为1:5的叔丁醇水溶液中各浸泡8 h,重复5次,得氨纶纤维水凝胶;
c) 将步骤b所得的芳纶纤维凝胶置于-5 ℃冷冻10~24 h,然后将冷冻所得样品于-55 ℃冷冻干燥48 h,得到氨纶气凝胶。
将0.1 wt %司班溶解在水中,并加入1 wt %的三氯甲烷,用高速均质器(5000rpm,5min)乳化混合物,再用超声进行均质化处理(5min),得水包油乳液。
将所制得直径19 mm,厚度5 mm的氨纶气凝胶夹在两个垂直玻璃管之间,倒入上述水包油乳液,分离效率达98.6%。
实施例3
一种化纤气凝胶的制备方法,具体步骤如下:
a) 按每0.4升二甲基甲酰胺加入 0.17 mol氢氧化钾,得分散液;按每升分散液中加入10 g用乙醇和水洗净,并剪碎的腈纶,25 ℃搅拌120 h,得腈纶纳米纤维分散液;
b) 将腈纶纳米纤维分散液倒置分子量为8000的纤维素透析袋内,先后去离子水和体积比为1:5的叔丁醇水溶液中各浸泡8 h,重复4次,得腈纶纤维水凝胶;
c) 将腈纶纤维气凝胶置于-5 ℃冷冻24 h,然后将冷冻所得样品于-55 ℃冷冻干燥48 h,得到腈纶气凝胶。
将0.1 wt %吐温80溶解在水中,并加入2 wt %的甲苯,用高速均质器(5000rpm,5min)乳化混合物,再用超声进行均质化处理(5min),得水包油乳液。
将所制得直径19 mm,厚度15 mm的腈纶气凝胶夹在两个垂直玻璃管之间,倒入上述水包油乳液,分离效率达98.7%。
实施例4
一种化纤气凝胶的制备方法,具体步骤如下:
a) 按每0.4升二甲苯加入 0.17 mol氢氧化钾,得分散液;按每升分散液中加入10g丙纶,25 ℃搅拌120 h,得丙纶纳米纤维分散液;
b) 将丙纶纳米纤维分散液倒置分子量为14000的再生纤维素透析袋内,先后去离子水和体积比为1:5的叔丁醇水溶液中各浸泡8 h,重复4次,得丙纶纤维水凝胶;
c) 将丙纶纤维水凝胶置于-5 ℃冷冻24 h,然后将冷冻所得样品于-55 ℃冷冻干燥48h,得到丙纶气凝胶。
将0.1 wt %吐温80溶解在水中,并加入2 wt %的正己烷,用高速均质器(5000rpm,5min)乳化混合物,再用超声进行均质化处理(5min),得水包油乳液。
将所制得直径19 mm,厚度20 mm的丙纶气凝胶夹在两个垂直玻璃管之间,倒入上述水包油乳液,分离效率达98.3%。
实施例5
一种化纤气凝胶的制备方法,具体步骤如下:
a) 按每0.4升二甲基甲酰胺加入 0.17 mol氢氧化钾,得分散液;按每升分散液中加入5g氯纶,25 ℃搅拌120 h,得丙纶纳米纤维分散液;
b) 将氯纶纳米纤维分散液倒置分子量为16000的玻璃丝透析膜内,先后去离子水和体积比为1:5的叔丁醇水溶液中各浸泡8 h,重复4次,得氯纶纤维水凝胶;
c) 将氯纶纤维水凝胶置于-5 ℃冷冻24 h,然后将冷冻所得样品于-55 ℃冷冻干燥48h,得到丙纶气凝胶。
将0.1 wt %吐温80溶解在水中,并加入2 wt %的正己烷,用高速均质器(5000rpm,5min)乳化混合物,再用超声进行均质化处理(5min),得水包油乳液。
将所制得直径19 mm,厚度20 mm的氯纶气凝胶夹在两个垂直玻璃管之间,倒入上述水包油乳液,分离效率达98.5%。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.一种化纤气凝胶的制备方法,其特征在于,包括以下步骤:
a) 按每0.4升溶剂加入 0.017~0.27 mol碱计,得分散液;按每升分散液中加入1~15g化纤,10~55℃搅拌12~168 h,得化纤分散液;
b) 将化纤分散液倒置于分子量为8000~14000的透析袋内,先后在去离子水和体积比为1:5的叔丁醇水溶液中各浸泡8~12 h,重复2~5次,得化纤凝胶;
c) 将化纤凝胶于-196~-20℃冷冻10~24 h,在-55℃冻干24~48 h,得到化纤气凝胶。
2.根据权利要求1所述化纤气凝胶的制备方法,其特征在于:步骤a)中所述的碱为氢氧化钠或氢氧化钾。
3.根据权利要求1所述化纤气凝胶的制备方法,其特征在于:步骤a)中所述化纤为芳纶、氨纶、腈纶、丙纶或氯纶中的任一种或几种组合,来源为废弃化纤衣物,用之前以乙醇和水洗净,并剪碎。
4.根据权利要求1所述化纤气凝胶的制备方法,其特征在于:步骤a)中所述溶剂为二甲基亚砜、二甲基甲酰胺、二甲苯中的任一种或几种的混合物。
5.根据权利要求1所述化纤气凝胶的制备方法,其特征在于:步骤b)中所述透析袋为纤维素透析袋、再生纤维素透析袋、玻璃丝透析膜中的任一种。
6.根据权利要求1-5任一所述方法制备得到的化纤气凝胶。
7.根据权利要求6所述的化纤气凝胶,其特征在于:具有化纤交叉粘结形成的纳米纤维三维网状结构;孔径100~200 nm,直径为10~200 nm;纤维长径比为100~10000。
8.一种权利要求6所述化纤气凝胶的应用,其特征在于:将其用作油水分离材料。
CN202110155865.5A 2021-02-04 2021-02-04 化纤气凝胶的制备方法及其应用 Active CN112876728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110155865.5A CN112876728B (zh) 2021-02-04 2021-02-04 化纤气凝胶的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110155865.5A CN112876728B (zh) 2021-02-04 2021-02-04 化纤气凝胶的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN112876728A CN112876728A (zh) 2021-06-01
CN112876728B true CN112876728B (zh) 2022-09-13

Family

ID=76057270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110155865.5A Active CN112876728B (zh) 2021-02-04 2021-02-04 化纤气凝胶的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112876728B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977763B (zh) * 2017-04-20 2019-10-08 哈尔滨工业大学 一种芳纶纳米纤维气凝胶的制备方法
CN109912835A (zh) * 2019-03-06 2019-06-21 中国科学院过程工程研究所 一种涤棉混纺织物制备纤维素气凝胶的方法
CN110982111B (zh) * 2019-12-16 2022-05-31 中国科学院苏州纳米技术与纳米仿生研究所 3d打印芳纶气凝胶、其制备方法及应用
CN111205506B (zh) * 2020-03-20 2021-09-07 四川大学 一种废旧纺织品阻燃气凝胶的制备方法
CN111333900B (zh) * 2020-04-28 2022-04-26 陕西科技大学 一种芳纶纳米纤维气凝胶及其制备方法

Also Published As

Publication number Publication date
CN112876728A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Yue et al. Hybrid aerogels derived from banana peel and waste paper for efficient oil absorption and emulsion separation
Kukkar et al. Recent advances in carbon nanotube sponge–based sorption technologies for mitigation of marine oil spills
Shan et al. Superhydrophobic and superoleophilic polystyrene/carbon nanotubes foam for oil/water separation
Chen et al. Carbon‐based sorbents with three‐dimensional architectures for water remediation
CN106890605B (zh) 一种三维石墨烯复合气凝胶及其制备方法
Zhang et al. Cellulose acetate monolith with hierarchical micro/nano-porous structure showing superior hydrophobicity for oil/water separation
Gan et al. Aramid nanofiber aerogel membrane extract from waste plastic for efficient separation of surfactant-stabilized oil-in-water emulsions
Zhang et al. Superhydrophilic and underwater superoleophobic Ti foam with robust nanoarray structures of TiO2 for effective oil-in-water emulsion separation
CN109985529A (zh) 一种两亲性油水分离滤膜的制备方法和使用方法
CN109621923A (zh) 一种超疏水亲油海绵材料及其制备方法和油水分离应用
CN110201422A (zh) 一步制备超疏水油水分离网膜的方法
CN109647295B (zh) 一种海藻酸钠/n-琥珀酰壳聚糖复合气凝胶及其制备方法和应用
CN105544019A (zh) 一种高吸油聚丙烯腈中空活性碳纤维及其制备方法
Qiao et al. Anisotropic cellulose nanocrystalline sponge sheets with ultrahigh water fluxes and oil/water selectivity
CN112642406A (zh) 一种木纤维基复合海绵及其制备方法
Lyu et al. Self-cleaning superhydrophobic aerogels from waste hemp noil for ultrafast oil absorption and highly efficient PM removal
CN105536554A (zh) 一种基于液体表面张力差异分离有机混合液体的分离膜的制备方法和应用
CN112876728B (zh) 化纤气凝胶的制备方法及其应用
Wang et al. Facile construction of multifunctional bio-aerogel for efficient separation of surfactant-stabilized oil-in-water emulsions and co-existing organic pollutant
CN105906909B (zh) 一种高密度聚乙烯油水分离材料及其制备方法
CN101891292B (zh) 一种快速吸附去除水中微量多环芳烃的方法
Zhou et al. Natural Juncus effusus fiber-based separator with 3D porous structure for oil/water emulsion separation
Sam et al. Porous carbon materials for adsorption: a mini-review
CN108341990A (zh) 一种简单、低成本超疏水复合材料的制备方法
Samavati et al. Membrane Fabrication by Solid Waste: Opportunities and Challenges

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant