CN112876270B - 一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法 - Google Patents

一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法 Download PDF

Info

Publication number
CN112876270B
CN112876270B CN202110104504.8A CN202110104504A CN112876270B CN 112876270 B CN112876270 B CN 112876270B CN 202110104504 A CN202110104504 A CN 202110104504A CN 112876270 B CN112876270 B CN 112876270B
Authority
CN
China
Prior art keywords
microwave dielectric
dielectric ceramic
ceramic
sintering
whisker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110104504.8A
Other languages
English (en)
Other versions
CN112876270A (zh
Inventor
丁涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Dingding Ceramic Technology Co ltd
Shandong Dingding Technology Development Co ltd
Original Assignee
Shenzhen Dingding Ceramic Technology Co ltd
Shandong Dingding Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Dingding Ceramic Technology Co ltd, Shandong Dingding Technology Development Co ltd filed Critical Shenzhen Dingding Ceramic Technology Co ltd
Priority to CN202110104504.8A priority Critical patent/CN112876270B/zh
Publication of CN112876270A publication Critical patent/CN112876270A/zh
Application granted granted Critical
Publication of CN112876270B publication Critical patent/CN112876270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本申请涉及电子陶瓷领域,具体公开了一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法。微波介质陶瓷包括主晶相、增强助剂、高导热助剂、陶瓷烧结助剂、陶瓷温度系数调整掺杂剂,主晶相包括MgTiO3、CaTiO3;增强助剂选自MgTiO3晶须、CaTiO3晶须、MgO晶须、CaO晶须、TiO2晶须。微波介质陶瓷注射喂料和微波介质陶瓷的制备包括:将MgTiO3、CaTiO3、陶瓷烧结助剂、陶瓷温度系数调整掺杂剂进行球磨混合得到前驱体粉,将前驱体粉、增强助剂、高导热助剂进行密炼得到微波介质陶瓷注射喂料,进而经注射成型、烧结得到微波介质陶瓷。本申请的微波介质陶瓷能够满足5G基站中介质波导滤波器的使用要求。

Description

一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法
技术领域
本申请涉及电子陶瓷的领域,更具体地说,它涉及一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法。
背景技术
微波介质陶瓷也称微波介质材料,属于一种功能电子陶瓷,具有介电常数高、损耗低、频率温度系数小等特点,可以用于介质谐振器、介质滤波器、介质双工器、陶瓷介质天线、GPS天线等陶瓷射频器件的生产制造。
现有的微波介质陶瓷按照应用场景不同可分为低介电常数材料、中介电常数材料、高介电常数材料等类型。一般的,低介电常数材料的介电常数在30以下,包括Al2O3体系、MgTiO3-CaTiO3体系、AB2O6体系等;中介电常数材料的介电常数在30~80,包括(Zr,Sn)TiO4体系,CaTiO3-LaAlO3体系、BaO-TiO2体系等;高介电常数材料的介电常数在80以上,包括BaO-R2O3-TiO2体系(R为稀土元素)、CaO-Li2O-R2O3-TiO2体系等。
之前的4G网络通讯阶段使用的滤波器主要有两种形式,第一种为金属腔,第二种为介质谐振器和金属腔的组合。介质谐振器的结构比较简单,一般为圆柱状或者圆环状,主要采用各种微波介质陶瓷制作而成。作为4G网络通讯阶段中介质谐振器的制作材料,要求微波介质陶瓷应该具有稳定的室温介电常数和低的介电损耗,在-40~85℃温度范围内具备良好的材料稳定性、可靠性。
但随着5G通讯的开启,用于基站的滤波器的形式发生了很大的改变。5G基站上大量使用介质波导滤波器。相比于普通的滤波器,介质波导滤波器的形式更加小型化,结构复杂化,对微波介质材料的强度要求更高。同时,由于5G基站的功耗较大,导致介质波导滤波器的工作温度范围大幅升高,达到-40~115℃,容易在微波介质陶瓷的内部产生内应力,造成裂纹。由此可见,5G滤波器对微波介质陶瓷提出了新的、更苛刻的要求。
发明内容
本申请提供一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法,制得的微波介质陶瓷具有较高的强度,能够满足5G基站中介质波导滤波器的使用要求。
第一方面,本申请提供一种微波介质陶瓷,采用如下的技术方案:
一种微波介质陶瓷,包括主晶相、增强助剂、高导热助剂、陶瓷烧结助剂、陶瓷温度系数调整掺杂剂,其中,
主晶相包括摩尔比为(4~99.5):1的MgTiO3和CaTiO3
增强助剂占整个微波介质陶瓷总重量的1~10%,选自MgTiO3晶须、CaTiO3晶须、MgO晶须、CaO晶须、TiO2晶须中的一种或者多种;
高导热助剂占整个微波介质陶瓷总重量的1~8%;
陶瓷烧结助剂占整个微波介质陶瓷总重量的5~20%;
陶瓷温度系数调整掺杂剂占整个微波介质陶瓷总重量的0.1~3%。
通过采用上述方案,本申请的微波介质陶瓷属于MgTiO3-CaTiO3体系,在微波介质陶瓷中加入适量的晶须,使得微波介质陶瓷内部能够形成网状结构,从而有效增加微波介质陶瓷的强度。高导热助剂的加入,一方面,能够有效改善微波介质陶瓷的导热性能,另一方面,通过改善导热性能来改善微波介质陶瓷内部温度梯度问题,从而减轻微波介质陶瓷的内应力,减小裂纹的产生,进一步增加微波介质陶瓷的强度。4G基站中使用的微波介质陶瓷的抗弯强度普遍在80~120Mpa,而本申请制得的微波介质陶瓷的抗弯强度能够达到130~300Mpa,具有显著的提升。
用于滤波器的微波介质陶瓷的其他性能表征参数还有:εr,相对介电常数,反应微波介质材料的贮电能力,数值越大,贮电能力越强;Q×f值,品质因子,反应微波介质材料的介电损耗,数值越大,损耗越小;Tf,频率温度系数,每变化1℃时物体固有频率的变化率,反应微波介质材料的稳定性,数值越小,稳定性越高;λ,导热系数,数值越大,导热能力越强。目前,用于2.6GHz和3.5GHz频段介质波导滤波器生产制造的微波介质陶瓷,其εr一般在19~21之间,Q×f值>50000,Tf(-40~25℃)<10ppm/℃,Tf(25~125℃)<5ppm/℃,λ在4~5W/m·K。而本申请制得的微波介质陶瓷,εr在15~25范围内可调,Q×f值在55000~112000之间,Tf(-40~25℃)<9ppm/℃,Tf(25~125℃)在-3.5~-5.5ppm/℃之间,λ在5~25W/m·K之间,能够满足5G滤波器的使用要求。
可选的,主晶相中MgTiO3:CaTiO3的摩尔比可以为(4~30):1、(30~60):1、(60~99.5):1等。
可选的,所述高导热助剂选自SiC、SiC晶须、AlN、AlN晶须、Al2O3、Al2O3晶须、Si3N4、Si3N4晶须中的一种或多种。
通过采用上述方案,当高导热助剂选择晶须时,在提升微波介质陶瓷的导热性能的同时,还能配合作为增强助剂的晶须,促进微波介质陶瓷的内部的网状结构的形成,从而进一步提升微波介质陶瓷的强度。
可选的,所述增强助剂和高导热助剂中涉及的晶须长度为2~35um,晶须直径为0.5~2μm。
通过采用上述方案,恰当的晶须长径比能够提高晶须在微波介质陶瓷中的分散性,从而有利于网状结构的形成,进一步保证微波介质陶瓷的强度。
可选的,所述增强助剂选择MgO晶须,长度7um,添加量2.5%。
可选的,陶瓷烧结助剂选自V2O5、SiO2、ZnO、WO3、MnO2中的一种或者多种;陶瓷温度系数调整掺杂剂选自La2O3、Y2O3、SrTiO3、Sm2O3、Cr2O3、CeO2、Nd2O3、Ho2O3中的一种或多种。
第二方面,本申请提供一种上述微波介质陶瓷的制备方法,包括有以下步骤:
球磨混合:将MgTiO3、CaTiO3、陶瓷烧结助剂、陶瓷温度系数调整掺杂剂进行球磨混合、干燥、造粒,得到前驱体粉;
密炼:将前驱体粉、增强助剂、高导热助剂进行密炼和造粒,得到微波介质陶瓷注射喂料;注射成型:将微波介质陶瓷注射喂料注射成型,得到生坯;
脱脂、排胶、烧结:生坯经脱脂、排胶、烧结,得到微波介质陶瓷。
现有的5G基站用介质波导滤波器多用干压的方式成型,但本申请的发明人认为,干压时会因为粉体间的摩擦力,导致在压力方向产生压力梯度差,最终导致微波介质陶瓷密度不均匀,在使用过程中会产生内应力,而使微波介质陶瓷的内部出现裂纹,这个问题在干压产品的厚度较大时尤其严重。为此,本申请的发明人提出采用注射成型的方案来制备微波介质陶瓷,配合配方的调整,能够进一步有效改善裂纹问题,从而提高微波介质陶瓷的强度。而且,相比于之前的干压的形式,由于注射成型时材料为浆状,从而有利于晶须的进一步分散,促使晶须在微波介质陶瓷中形成均匀的网状结构。
再者,将作为增强助剂的晶须采用密炼的方式与前驱体粉进行混合,密炼时会加入部分有机物作为常规的密炼助剂,而且,密炼时会加热,加热使密炼助剂溶解,溶解后的密炼助剂具有较高的粘稠度,便于晶须在浆料中的分散,难于产生沉淀,而在密炼完毕降温后,密炼浆料会在很短的时间内凝固,同样阻止了晶须的沉降,以上都有利于晶须在微波介质陶瓷内的分散。而其他的方式如球磨、砂磨等方式:第一,容易造成晶须的断裂;第二,晶须具有一定的长度,球磨过程中容易团聚,砂磨会引起堵料;第三,球磨或者砂磨的浆料粘度很低,容易沉降;第四,球磨或者砂磨的浆料使用喷雾干燥的方式干燥时,晶须会堵塞喷头喷料口。
可选的,所述球磨混合步骤中,球磨后的粉体粒径控制在D50=1~2μm。
可选的,所述球磨混合步骤的具体操作可以为:将MgTiO3、CaTiO3、陶瓷烧结助剂、陶瓷温度系数调整掺杂剂加入至球磨罐中,按照w粉体:w球=1:(1~7)的比例加入直径为
Figure BDA0002916812630000041
的锆球,按照w粉体:w溶剂=1:(0.5~5)的比例加入纯水或者无水乙醇或者纯水与无水乙醇的混合物,加入占粉体重量0.5~1.5%的聚丙烯酸胺分散剂,球磨3~15h,球磨转速100~500rpm,粉体粒径控制在D50=1~2um,喷雾干燥,得到前驱体粉,喷雾干燥进风温度160~250℃,出风温度80~130℃。
可选的,所述密炼步骤中,密炼温度为50~200℃,密炼时间为1~8h。
可选的,所述密炼步骤的具体操作可以为:将密炼机的混料仓的加热温度设置为50~200℃,待温度到达后,加入常用的密炼助剂:粘接剂、增塑剂、润滑剂、交联剂,待密炼助剂完全融化后,加入前驱体粉,搅拌30min~2h,直至前驱体粉与密炼助剂混合均匀,再逐步加入增强助剂、高导热助剂,增强助剂、高导热助剂的加入速率为50~200g/min,增强助剂、高导热助剂完全加完后,搅拌30min~2h,然后,将所有物料加入到密炼设备中充分剪切,挤压,密炼时间为1~8h,待物料均匀后,将物料加入至造粒机中进行造粒,得到颗粒状的粒度在1~3mm的微波介质陶瓷注射喂料。
可选的,所述粘接剂选择石蜡、聚丙烯中的一种,添加量占无机粉体(前驱体粉、增强助剂和高导热助剂)总质量的10~40%。
可选的,所述增塑剂选择邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二辛脂(DOP)中的一种,添加量占无机粉体(前驱体粉、增强助剂和高导热助剂)总质量的1~6%。
可选的,所述润滑剂选择硬脂酸,添加量占无机粉体(前驱体粉、增强助剂和高导热助剂)总质量的1~5%。
可选的,所述交联剂选择油酸,添加剂占无机粉体总质量的1~7%。
可选的,所述脱脂、排胶、烧结步骤中,烧结温度为1250~1400℃,烧结时间为2~6h。
可选的,所述MgTiO3的制备包括有以下步骤:将包含MgCO3和TiO2在内的原料进行球磨混合、干燥、烧结,得到MgTiO3;所述CaTiO3的制备包括有以下步骤:将包含CaCO3和TiO2在内的原料进行球磨混合、干燥、烧结,得到CaTiO3
可选的,所述MgTiO3的制备包括有以下步骤:将MgCO3和TiO2组成的粉体添加至球磨罐中,按照w粉体:w球=1:(1~7)的比例加入直径为
Figure BDA0002916812630000042
的锆球,按照w粉体:w溶剂=1:(0.5~5)的比例加入纯水或者无水乙醇或者纯水与无水乙醇混合物,加入占粉体重量0.5~1.5%的丙烯酸类分散剂,球磨3~15h,球磨转速100~500rpm,球磨结束后出料烘干,过100目筛,将得到的粉体装入匣钵置于烧结炉中,于1050~1250℃下热处理2~5h后过60目筛,得到MgTiO3粉体。
可选的,所述CaTiO3的制备包括有以下步骤:将CaCO3和TiO2组成的粉体添加至球磨罐中,按照w粉体:w球=1:(1~7)的比例加入直径为
Figure BDA0002916812630000052
的锆球,按照w粉体:w溶剂=1:(0.5~5)的比例加入纯水或者无水乙醇或者纯水与无水乙醇混合物,加入占粉体重量0.5~1.5%的丙烯酸类分散剂,球磨3~15h,球磨转速100~500rpm,球磨结束后出料烘干,过100目筛,将得到的粉体装入匣钵置于烧结炉中,于1050~1250℃下热处理2~5h后过60目筛,得到CaTiO3粉体。
第三方面,本申请提供了上述的一种微波介质陶瓷注射喂料。该种微波介质陶瓷注射喂料经过注射成型、脱脂、排胶、烧结,即可得到微波介质陶瓷,该微波介质陶瓷能够满足5G滤波器的使用要求。
综上所述,本申请具有以下有益效果:
1、在微波介质陶瓷的配方中加入适量晶须,使得微波介质陶瓷内部能够形成网状结构,从而有效增加强度;
2、在微波介质陶瓷的配方加入粉状或须状的高导热助剂,在增强微波介质陶瓷强度的同时提高微波介质陶瓷的导热系数;
3、与之前干压成型的方式不同,本申请采用注射成型的方案来制备微波介质陶瓷,配合配方的调整,能够进一步有效改善裂纹问题,从而提高微波介质陶瓷的强度;
4、相比于之前的干压的形式,由于注射成型时材料为浆状,从而有利于晶须的进一步分散,促使晶须在微波介质陶瓷中形成均匀的网状结构;
5、将作为增强助剂的晶须采用密炼的方式与前驱体粉进行混合,能够有效提升晶须在微波介质陶瓷内的分散性;
6对晶须的长度以及直径进行了限定,有利于解决晶须在微波介质陶瓷中的均匀分散问题;7、本专利制得的MgTiO3-CaTiO3体系的微波介质陶瓷,εr在15~25范围内可调,Q×f值在55000~112000之间,Tf(-40~25℃)<9ppm/℃,Tf(25~125℃)在-3.5~-5.5ppm/℃之间,抗弯强度为130~300Mpa,λ在5~25W/m·K之间,能够满足5G滤波器的使用要求。
具体实施方式
以下对本申请作进一步详细说明。
原料介绍
以下实施例中采用的原料的出处列于表1。
表1原料的出处
Figure BDA0002916812630000051
Figure BDA0002916812630000061
制备例
制备例1
制备MgTiO3:将2.1078kg的MgCO3和1.9968kg的TiO2组成的共计4.1046kg的粉体添加至球磨罐中,加入4kg直径为
Figure BDA0002916812630000062
的锆球,加入2kg无水乙醇,加入0.0205kg丙烯酸类分散剂,球磨15h,球磨转速100rpm,球磨结束后出料烘干,过100目筛,将得到的粉体装入匣钵置于烧结炉中,于1050℃下热处理5h,之后,过60目筛,得到MgTiO3
制备例2
制备CaTiO3:将2.5023kg的CaCO3和1.9968kg的TiO2组成的共计4.4991kg的粉体添加至球磨罐中,加入4.5kg直径为
Figure BDA0002916812630000063
的锆球,加入2.2596kg无水乙醇,加入0.0225kg丙烯酸类分散剂,球磨15h,球磨转速100rpm,球磨结束后出料烘干,过100目筛,将得到的粉体装入匣钵置于烧结炉中,于1050℃下热处理5h,之后,过60目筛,得到CaTiO3
制备例3
制备MgTiO3:将2.1078kg的MgCO3和1.9968kg的TiO2组成的共计4.1046kg的粉体添加至球磨罐中,加入20kg直径为
Figure BDA0002916812630000064
的锆球,加入4kg无水乙醇的纯水溶液(无水乙醇的体积分数为10%),加入0.0410kg丙烯酸类分散剂,球磨8h,球磨转速250rpm,球磨结束后出料烘干,过100目筛,将得到的粉体装入匣钵置于烧结炉中,于1150℃下热处理2h,之后,过60目筛,得到MgTiO3
制备例4
制备CaTiO3:将2.5023kg的CaCO3和1.9968kg的TiO2组成的共计4.4991kg的粉体添加至球磨罐中,加入22.5kg直径为
Figure BDA0002916812630000072
的锆球,加入13.5kg无水乙醇的纯水溶液(无水乙醇的体积分数为10%),加入0.05kg丙烯酸类分散剂,球磨8h,球磨转速250rpm,球磨结束后出料烘干,过100目筛,将得到的粉体装入匣钵置于烧结炉中,于1150℃下热处理2h,之后,过60目筛,得到CaTiO3
制备例5
制备MgTiO3:将2.1078kg的MgCO3和1.9968kg的TiO2组成的共计4.1046kg的粉体添加至球磨罐中,加入28.5kg直径为
Figure BDA0002916812630000073
的锆球,加入20.5kg纯水,加入0.0616kg丙烯酸类分散剂,球磨3h,球磨转速500rpm,球磨结束后出料烘干,过100目筛,将得到的粉体装入匣钵置于烧结炉中,于1250℃下热处理3h,之后,过60目筛,得到MgTiO3
制备例6
制备CaTiO3:将2.5023kg的CaCO3和1.9968kg的TiO2组成的共计4.4991kg的粉体添加至球磨罐中,加入31.5kg直径为
Figure BDA0002916812630000071
的锆球,加入22.5kg纯水,加入0.0675kg丙烯酸类分散剂,球磨3h,球磨转速500rpm,球磨结束后出料烘干,过100目筛,将得到的粉体装入匣钵置于烧结炉中,于1250℃下热处理3h,之后,过60目筛,得到CaTiO3
实施例
实施例1
一种微波介质陶瓷注射喂料,采用制备例1制得的MgTiO3和制备例2制得的CaTiO3,该微波介质陶瓷注射喂料的制备方法包括有以下步骤:
(1)球磨混合:将2.9033kg的MgTiO3、0.6417kg的CaTiO3、1kg的V2O5、0.0025kg的La2O3、0.0025kg的Y2O3共计4.55kg加入至球磨罐中,加入4.55kg直径为
Figure BDA0002916812630000074
的锆球,加入22.75kg纯水,加入0.0228kg聚丙烯酸胺分散剂,球磨15h,球磨转速100rpm,粉体粒径控制在D50=1um,喷雾干燥,得到前驱体粉,喷雾干燥进风温度160℃,出风温度80℃;
(2)密炼:将密炼机的混料仓加热温度设置为50℃,待温度到达后加入0.5kg石蜡、0.3kg的DBP、0.05kg的硬脂酸、0.35kg的油酸,完全融化后,加入步骤(1)得到的全部的前驱体粉,搅拌30min,直至前驱体粉与所添加的有机物混合均匀,再按50g/min的速率逐步加入0.05kg的CaO晶须、0.2kg的SiC、0.2kg的AlN,之后,搅拌30min,然后,将所有物料进入到密炼设备中充分剪切,挤压,密炼时间1h,待物料均匀后,将物料添加至造粒机中造粒,得到颗粒状的微波介质陶瓷注射喂料。
实施例2
一种微波介质陶瓷,采用实施例1的微波介质陶瓷注射喂料,该微波介质陶瓷的制备方法包括有以下步骤:
(1)注射成型:将微波介质陶瓷注射添加至注射机内,分别通过圆柱体模具和测试力学性能模具成型用于测试微波材料电性能的圆柱形的生坯和力学性能的平板的生坯,其中,注射压力为20T,注射速度为3S,溶胶温度为50℃,模具温度为50℃,射胶时间为1S,冷却时间为1S;
(2)脱脂、排胶、烧结:生坯经过热脱脂、酸脱脂、排胶、烧结,得到微波介质陶瓷,其中,总脱脂时间为12h,最高脱脂温度为300℃,排胶温度为400℃,排胶时间为4h,烧结温度为1250℃,烧结时间为2h,烧结气氛为空气气氛。
实施例3
一种微波介质陶瓷注射喂料,采用制备例3制得的MgTiO3和制备例4制得的CaTiO3,该微波介质陶瓷注射喂料的制备方法包括有以下步骤:
(1)球磨混合:将3.8224kg的MgTiO3、0.1127kg的CaTiO3、0.75kg的SiO2、0.04kg的Nd2O3共计4.725kg加入至球磨罐中,加入24kg直径为
Figure BDA0002916812630000081
的锆球,加入3.8kg无水乙醇的纯水溶液(无水乙醇的体积分数为10%),加入0.05kg聚丙烯酸胺分散剂,球磨8h,球磨转速300rpm,粉体粒径控制在D50=1.5um,喷雾干燥,得到前驱体粉,喷雾干燥进风温度230℃,出风温度110℃;
(2)密炼:将密炼机的混料仓加热温度设置为150℃,待温度到达后加入1kg聚丙烯、0.1kg的DOP、0.1kg的硬脂酸、0.15kg的油酸,完全融化后,加入步骤(1)得到的全部的前驱体粉,搅拌1h,直至前驱体粉与所添加的有机物混合均匀,再按80g/min的速率逐步加入0.125kg的MgO晶须、0.15kg的Al2O3晶须,之后,搅拌1h,然后,将所有物料进入到密炼设备中充分剪切,挤压,密炼时间5h,待物料均匀后,将物料添加至造粒机中造粒,得到颗粒状的微波介质陶瓷注射喂料。
实施例4
一种微波介质陶瓷,采用实施例3的微波介质陶瓷注射喂料,该微波介质陶瓷的制备方法包括有以下步骤:
(1)注射成型:将微波介质陶瓷注射添加至注射机内,分别通过圆柱体模具和测试力学性能模具成型用于测试微波材料电性能的圆柱形的生坯和力学性能的平板的生坯,其中,注射压力为100T,注射速度为10S,溶胶温度为100℃,模具温度为150℃,射胶时间为10S,冷却时间为10S;
(2)脱脂、排胶、烧结:生坯经过热脱脂、酸脱脂、排胶、烧结,得到微波介质陶瓷,其中,总脱脂时间为20h,最高脱脂温度为350℃,排胶温度为500℃,排胶时间为10h,烧结温度为1300℃,烧结时间为5h,烧结气氛为空气气氛。
实施例5
一种微波介质陶瓷注射喂料,采用制备例3制得的MgTiO3和制备例4制得的CaTiO3,该微波介质陶瓷注射喂料的制备方法包括有以下步骤:
(1)球磨混合:将3.7941kg的MgTiO3、0.0559kg的CaTiO3、0.5kg的ZnO,0.05kg的CeO2、0.05kg的SrTiO3共计4.45kg加入至球磨罐中,加入14kg直径为
Figure BDA0002916812630000091
的锆球,加入14kg无水乙醇的纯水溶液(无水乙醇的体积分数为10%),加入0.2225kg聚丙烯酸胺分散剂,球磨6h,球磨转速400rpm,粉体粒径控制在D50=1.5um,喷雾干燥,得到前驱体粉,喷雾干燥进风温度200℃,出风温度90℃;
(2)密炼:将密炼机的混料仓加热温度设置为150℃,待温度到达后加入1.5kg石蜡、0.2kg的DOP、0.15kg的硬脂酸、0.25kg的油酸,完全融化后,加入步骤(1)得到的全部的前驱体粉,搅拌1h,直至前驱体粉与所添加的有机物混合均匀,再按80g/min的速率逐步加入0.15kg的MgTiO3晶须、0.15kg的CaTiO3晶须、0.1kg的SiC晶须、0.15kg的Al2O3,之后,搅拌1h,然后,将所有物料进入到密炼设备中充分剪切,挤压,密炼时间5h,待物料均匀后,将物料添加至造粒机中造粒,得到颗粒状的微波介质陶瓷注射喂料。
实施例6
一种微波介质陶瓷,采用实施例5的微波介质陶瓷注射喂料,该微波介质陶瓷的制备方法包括有以下步骤:
(1)注射成型:将微波介质陶瓷注射添加至注射机内,分别通过圆柱体模具和测试力学性能模具成型用于测试微波材料电性能的圆柱形的生坯和力学性能的平板的生坯,其中,注射压力为100T,注射速度为10S,溶胶温度为100℃,模具温度为150℃,射胶时间为10S,冷却时间为10S;
(2)脱脂、排胶、烧结:生坯经过热脱脂、酸脱脂、排胶、烧结,得到微波介质陶瓷,其中,总脱脂时间为20h,最高脱脂温度为350℃,排胶温度为500℃,排胶时间为10h,烧结温度为1300℃,烧结时间为5h,烧结气氛为空气气氛。
实施例7
一种微波介质陶瓷注射喂料,采用制备例5制得的MgTiO3和制备例6制得的CaTiO3,该微波介质陶瓷注射喂料的制备方法包括有以下步骤:
(1)球磨混合:将4.0143kg的MgTiO3、0.0357kg的CaTiO3、0.15kg的WO3、0.1kg的MnO2、0.05kg的Sm2O3、0.05kg的Cr2O3、0.05kg的Ho2O3共计4.45kg加入至球磨罐中,加入32kg直径为
Figure BDA0002916812630000101
的锆球,加入2.225kg无水乙醇,加入0.6675kg聚丙烯酸胺分散剂,球磨3h,球磨转速500rpm,粉体粒径控制在D50=2um,喷雾干燥,得到前驱体粉,喷雾干燥进风温度250℃,出风温度130℃;
(2)密炼:将密炼机的混料仓加热温度设置为200℃,待温度到达后加入2kg石蜡、0.05kg的DOP、0.25kg的硬脂酸、0.05kg的油酸,完全融化后,加入步骤(1)得到的全部的前驱体粉,搅拌2h,直至前驱体粉与所添加的有机物混合均匀,再按200g/min的速率逐步加入0.5kg的TiO2晶须、0.025kg的Si3N4晶须、0.025kg的AlN晶须,之后,搅拌2h,然后,将所有物料进入到密炼设备中充分剪切,挤压,密炼时间8h,待物料均匀后,将物料添加至造粒机中造粒,得到颗粒状的微波介质陶瓷注射喂料。
实施例8
一种微波介质陶瓷,采用实施例7的微波介质陶瓷注射喂料,该微波介质陶瓷的制备方法包括有以下步骤:
(1)注射成型:将微波介质陶瓷注射添加至注射机内,分别通过圆柱体模具和测试力学性能模具成型用于测试微波材料电性能的圆柱形的生坯和力学性能的平板的生坯,其中,注射压力为200T,注射速度为20S,溶胶温度为200℃,模具温度为250℃,射胶时间为15S,冷却时间为12S;
(2)脱脂、排胶、烧结:生坯经过热脱脂、酸脱脂、排胶、烧结,得到微波介质陶瓷,其中,总脱脂时间为24h,最高脱脂温度为450℃,排胶温度为600℃,排胶时间为12h,烧结温度为1400℃,烧结时间为6h,烧结气氛为空气气氛。
实施例9
一种微波介质陶瓷,与实施例2的区别在于:同配方的微波介质陶瓷制备成干压粉体,在20Mpa下干压制成相应的生坯。干压粉体制备工艺如下:
(1)球磨混合:将2.9033kg的MgTiO3、0.6417kg的CaTiO3、1kg的V2O5、0.0025kg的La2O3、0.0025kg的Y2O3、0.05kg的CaO晶须、0.2kg的SiC、0.2kg的AlN共计5kg加入至球磨罐中,加入5kg直径为
Figure BDA0002916812630000112
的锆球,加入25kg纯水,加入0.0250kg聚丙烯酸胺分散剂,球磨15h,球磨转速100rpm,球磨完后加入浓度为8%的聚乙烯醇胶水1250g,继续用100rpm的转速球磨15min;
(2)喷雾造粒:球磨完毕后出料,喷雾造粒,得到有聚乙烯醇有机物包裹的干压造粒粉,喷雾造粒进风温度160℃,出风温度80℃。
实施例10
一种微波介质陶瓷,与实施例2的区别在于:不加入SiC和AlN。
对比例
对比例1
一种微波介质陶瓷,与实施例2的区别在于:不加入CaO晶须。
对比例2
一种微波介质陶瓷,与实施例2的区别在于:不加入CaO晶须、SiC和AlN;同配方的微波介质陶瓷制备成干压粉体,注射注射,在20Mpa下干压制成相应的生坯。干压粉制备工艺如下:
(1)球磨混合:将2.9033kg的MgTiO3、0.6417kg的CaTiO3、1kg的V2O5、0.0025kg的La2O3、0.0025kg的Y2O3共计4.55kg加入至球磨罐中,加入4.55kg直径为
Figure BDA0002916812630000113
的锆球,加入22.75kg纯水,加入0.0228kg聚丙烯酸胺分散剂,球磨15h,球磨转速100rpm,球磨完后加入浓度为8%的聚乙烯醇胶水1250g,继续用100rpm的转速球磨15min;
(2)喷雾造粒:球磨完毕后出料,喷雾造粒,得到有聚乙烯醇有机物包裹的干压造粒粉,喷雾造粒进风温度160℃,出风温度80℃。
性能检测
将实施例2、4、6、8~10和对比例1~2制得的圆柱形的微波介质陶瓷样品进行CNC去披锋处理,并手动将圆柱形的样品上下底面抛光,得到电性能测试样品;将实施例2、4、6、8~10和对比例1~2制得的平板的微波介质陶瓷样品进行CNC去披锋和减薄处理,并双面研磨抛光,得到力学性能测试样品。电性能测试和力学性能测试结果如表2所示。
表2性能测试结果
Figure BDA0002916812630000111
Figure BDA0002916812630000121
前文已经提及,之前4G基站中使用的微波介质陶瓷的抗弯强度普遍在80~120Mpa,而用于2.6GHz和3.5GHz频段介质波导滤波器生产制造的微波介质陶瓷的εr一般在19~21之间,Q×f值>50000,Tf(-40~25℃)<10ppm/℃,Tf(25~125℃)<5ppm/℃,λ在4~5W/m·K。而根据表2可以看出,本申请制得的微波介质陶瓷,抗弯强度能够达到130~300Mpa,具有显著提升,εr在15~25范围内可调,Q×f值在55000~112000之间,Tf(-40~25℃)<9ppm/℃,Tf(25~125℃)在-3.5~-5.5ppm/℃之间,λ在5~25W/m·K之间,能够满足5G滤波器的使用要求。本申请的微波介质陶瓷在强度方面的显著提升得益于:晶须的加入、晶须分散性的保障以及采用注射成型代替干压成型。而能够晶须分散性又是得益于:采用注射成型,材料为更加易于分散的浆状;晶须采用密炼的方式与前驱体粉进行混合,有效避免晶须沉降;对晶须的长度、直径进行了恰当的限定。
根据实施例2和对比例1可以进一步看出,作为增强助剂的晶须的加入能够显著提升微波介质陶瓷的强度,这与晶须能够在微波介质陶瓷内部形成网状结构有关。同时由于对比例1中采用球磨的方式加入晶须,晶须在材料中分布不均匀且团聚严重,材料在烧结时内部会出现较多缺陷,导致微波介质陶瓷的Q×f值较低。
根据实施例2和实施例9可以进一步看出,相比于干压成型,注射成型能够有效提升微波介质陶瓷的强度。这是因为,干压时会因为粉体间的摩擦力,导致在压力方向产生压力梯度差,最终导致微波介质陶瓷密度不均匀,在使用过程中会产生内应力,而使微波介质陶瓷的内部出现裂纹。相比之下,本申请采用注射成型,一方面,由于注射成型过程中,材料呈浆料状,为液态,液体材料加压时,不会存在压力梯度差,能够避免干压带来的内应力问题,另一方面,由于注射成型时材料为浆状,从而有利于作为增强助剂的晶须的进一步分散,促使晶须在微波介质陶瓷中形成均匀的网状结构,进一步提升微波介质陶瓷的强度。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。

Claims (7)

1.一种微波介质陶瓷,其特征在于,包括主晶相、增强助剂、高导热助剂、陶瓷烧结助剂、陶瓷温度系数调整掺杂剂,其中,
主晶相包括摩尔比为(4~99.5):1的MgTiO3和CaTiO3
增强助剂占整个微波介质陶瓷总重量的1~10%,选自MgTiO3晶须、CaTiO3晶须、MgO晶须、CaO晶须、TiO2晶须中的一种或者多种;
高导热助剂占整个微波介质陶瓷总重量的1~8%;
陶瓷烧结助剂占整个微波介质陶瓷总重量的5~20%;
陶瓷温度系数调整掺杂剂占整个微波介质陶瓷总重量的0.1~3%;
所述高导热助剂选自SiC、SiC晶须、AlN、AlN晶须、Al2O3、Al2O3晶须、Si3N4、Si3N4晶须中的一种或多种;
陶瓷烧结助剂选自V2O5、SiO2、ZnO、WO3、MnO2中的一种或者多种;
陶瓷温度系数调整掺杂剂选自La2O3、Y2O3、SrTiO3、Sm2O3、Cr2O3、CeO2、Nd2O3、Ho2O3中的一种或多种
所述微波介质陶瓷的制备包括有以下步骤:
球磨混合:将MgTiO3、CaTiO3、陶瓷烧结助剂、陶瓷温度系数调整掺杂剂进行球磨混合、干燥、造粒,得到前驱体粉;
密炼:将前驱体粉、增强助剂、高导热助剂进行密炼和造粒,得到微波介质陶瓷注射喂料;
注射成型:将微波介质陶瓷注射喂料注射成型,得到生坯;
脱脂、排胶、烧结:生坯经脱脂、排胶、烧结,得到微波介质陶瓷。
2.根据权利要求1所述的一种微波介质陶瓷,其特征在于:涉及的晶须长度为2~35um,晶须直径为0.5~2μm。
3.根据权利要求1所述的一种微波介质陶瓷,其特征在于:所述球磨混合步骤中,球磨后的粉体粒径控制在D50=1~2μm。
4.根据权利要求1所述的一种微波介质陶瓷,其特征在于:所述密炼步骤中,密炼温度为50~200℃,密炼时间为1~8h。
5.根据权利要求1所述的一种微波介质陶瓷,其特征在于:所述脱脂、排胶、烧结步骤中,烧结温度为1250~1400℃,烧结时间为2~6h。
6.根据权利要求1所述的一种微波介质陶瓷,其特征在于:
所述MgTiO3的制备包括有以下步骤:将包含MgCO3和TiO2在内的原料进行球磨混合、干燥、烧结,得到MgTiO3
所述CaTiO3的制备包括有以下步骤:将包含CaCO3和TiO2在内的原料进行球磨混合、干燥、烧结,得到CaTiO3
7.一种权利要求1~6任意一项中得到的微波介质陶瓷注射喂料。
CN202110104504.8A 2021-01-26 2021-01-26 一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法 Active CN112876270B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110104504.8A CN112876270B (zh) 2021-01-26 2021-01-26 一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110104504.8A CN112876270B (zh) 2021-01-26 2021-01-26 一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN112876270A CN112876270A (zh) 2021-06-01
CN112876270B true CN112876270B (zh) 2023-04-07

Family

ID=76052038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110104504.8A Active CN112876270B (zh) 2021-01-26 2021-01-26 一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112876270B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112174665B (zh) * 2020-09-25 2022-07-26 西华大学 5g基站用介电常数精准可控的滤波器陶瓷及其制备方法
CN113354409A (zh) * 2021-06-07 2021-09-07 臻金新材(深圳)有限公司 微波介质陶瓷及其制备方法
CN114276132B (zh) * 2022-01-07 2023-04-28 超瓷材料技术(深圳)有限公司 一种高固相含量微波介质陶瓷注射成型喂料及其制备方法和应用
CN114920551B (zh) * 2022-04-18 2023-07-11 浙江钛迩赛新材料有限公司 5g陶瓷滤波器材料增强以降低开裂失效的方法
CN115286411B (zh) * 2022-08-12 2024-01-02 辽宁科技大学 一种二氧化钛晶须强化氧化镁陶瓷基板材料及制备方法
CN115490512B (zh) * 2022-09-19 2023-10-20 大富科技(安徽)股份有限公司 5g微波介质陶瓷材料及其制备方法、微波介质陶瓷器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292363A (zh) * 2000-10-20 2001-04-25 清华大学 碳化硅晶须强韧化氮化硅基陶瓷轧辊材料的制造方法
CN100448798C (zh) * 2007-04-29 2009-01-07 北京科技大学 一种制备碳化硅晶须增强碳化硅复合材料零件的方法
CN103086733B (zh) * 2013-01-16 2014-04-02 汕头大学 一种AlN晶须/Al2O3陶瓷基复合材料基板及其制备工艺
WO2017113218A1 (zh) * 2015-12-30 2017-07-06 深圳市大富科技股份有限公司 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN111548145A (zh) * 2020-05-30 2020-08-18 张保林 微波介质陶瓷滤波器注塑成型方法及其陶瓷滤波器
CN111732429A (zh) * 2020-05-31 2020-10-02 深圳陶陶科技有限公司 一种微波介质陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN112876270A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN112876270B (zh) 一种微波介质陶瓷注射喂料、微波介质陶瓷及其制备方法
CN101560104B (zh) 碳化硅陶瓷管或棒的制备方法
CN100445235C (zh) 一种氮化铝增强碳化硅陶瓷及其制备方法
JP2021011421A (ja) 低損失ガーネットフェライト材料の調製方法
CN113105231B (zh) 一种微波介质陶瓷材料及其制备方法
CN110483042B (zh) 一种新型的单相微波介质陶瓷材料及其制备方法
KR101729054B1 (ko) 분무 건조법을 이용한 알루미나 과립의 제조방법
CN111763083A (zh) 一种低温烧结型超低损耗微波介电陶瓷及其制备方法和应用
US11858093B2 (en) Composite binding agent grinding wheel and preparation method thereof
CN110372369B (zh) 一种具有高介、低损耗的ptfe/clst复合介质材料及其制备方法
CN112939596B (zh) 微波介质陶瓷及其制备方法
CN116854472B (zh) 一种微波介质材料及其制备方法
CN111995384B (zh) 一种高固含量高性能注射成型镍锌铁氧体颗粒料及烧结磁体的制备方法
CN111908897B (zh) MgO基微波陶瓷介质材料及其制备方法
CN113336539A (zh) 微波介质陶瓷材料、制备方法及应用
CN105693220B (zh) 一种正温度系数硅酸盐微波介质陶瓷材料及其制备方法
CN111302785A (zh) 一种高性能微波介质陶瓷及其光固化制造方法
CN100412033C (zh) 一种大尺寸储能介质陶瓷的制备方法
CN114394842A (zh) 一种烧结的致密高锆砖的制备方法
CN113735569A (zh) 一种氧化镁氮化硼复合微球的制备方法
CN113582694A (zh) 一种采用Isobam体系凝胶注模成型钇铝石榴石型微波介质陶瓷的方法
CN114276132B (zh) 一种高固相含量微波介质陶瓷注射成型喂料及其制备方法和应用
KR102598040B1 (ko) 구형 알루미나 과립의 제조방법
CN108341690A (zh) 一种陶瓷/树脂复合粉体及其制备方法和应用
CN115894011B (zh) 一种微波介质陶瓷滤波器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant