CN112876220B - 一种透明陶瓷光纤的制备方法 - Google Patents

一种透明陶瓷光纤的制备方法 Download PDF

Info

Publication number
CN112876220B
CN112876220B CN202110254436.3A CN202110254436A CN112876220B CN 112876220 B CN112876220 B CN 112876220B CN 202110254436 A CN202110254436 A CN 202110254436A CN 112876220 B CN112876220 B CN 112876220B
Authority
CN
China
Prior art keywords
optical fiber
ceramic
stirring
ceramic optical
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110254436.3A
Other languages
English (en)
Other versions
CN112876220A (zh
Inventor
张乐
刘明源
祝吕
姚庆
郗晓倩
邵岑
康健
周天元
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202110254436.3A priority Critical patent/CN112876220B/zh
Publication of CN112876220A publication Critical patent/CN112876220A/zh
Application granted granted Critical
Publication of CN112876220B publication Critical patent/CN112876220B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62263Fibres based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种透明陶瓷光纤的制备方法,该方法包括如下步骤:将分散剂、有机单体、交联剂加入到去离子水中配成预混液;向预混液中加入陶瓷粉体,球磨配成水基料体;过滤,向料体中依次加入单壁碳纳米管、粘结剂、增塑剂和表面活性剂,搅拌混合均匀;抽真空搅拌除气后加入引发剂,搅拌混合均匀;通过挤出孔挤出连续陶瓷光纤湿坯,将光纤湿坯干燥后进行煅烧排胶,随炉降至室温;真空烧结后随炉降至室温,再在空气气氛下退火得到透明陶瓷光纤初品;采用轨道角动量为‑5~+5的飞秒激光涡旋光束对透明陶瓷光纤初品表面和端面进行抛光处理,得到陶瓷光纤成品。该方法能制备出连续性长纤维,可提高光纤的均匀性、致密性和力学性能,实现精细结构大面积的加工。

Description

一种透明陶瓷光纤的制备方法
技术领域
本发明涉及透明陶瓷制备技术领域,具体涉及一种透明陶瓷光纤的制备方法。
背景技术
光纤激光器相比其他激光器具有更小、更轻、功率更高的优势,以光纤作为增益介质有利于开发更健全和更可靠的激光光学系统。目前,较成熟的光纤增益介质为石英玻璃光纤,在宽频带范围内可以实现高功率,但二氧化硅的低热导率会导致光纤在高功率下工作时产生较高的热梯度,从而导致机械应力变差和热透镜效应的产生,最终降低光束质量。加长光纤长度可以改善这些问题,但在单模模式下工作时,又会产生受激拉曼散射(SRS)和受激布里渊散射(SBS)等问题。因此,传统石英光纤很难满足未来对于激光功率的需求。
单晶光纤作为块状晶体与传统光纤的结合体,兼具了晶体优异的物理化学性质和传统光纤热管理的优势。目前,单晶光纤的主要制备方法是激光加热基座生长法、微下拉法和导模法,但以上均基于单晶熔融状态,制备温度在熔点以上,具有生产工艺复杂、使用设备要求高、能耗大、成本高等问题,极大的限制了光纤的大规模生产,且添加的一些掺杂元素,在区域细化过程中如果分布不均匀也会导致最终成品不透明。
与石英玻璃光纤相比,陶瓷光纤可以产生和承受更高的功率激光,具有更高的受激布里渊散射增益阈值;与单晶光纤相比,陶瓷光纤的晶化与烧结温度较低,结合现代纺丝工艺,可以得到连续的超大长径比的光纤,另外陶瓷支持高浓度的掺杂,有利于陶瓷光纤的工业化生产。
溶胶凝胶法制备陶瓷前驱体结合静电纺丝成型工艺是目前制备陶瓷光纤的有效方法,但是这种方法通常需要使用价格昂贵的金属醇盐或金属有机盐做前驱体,且光纤成品通常较短,均匀性和致密性也较差。授权公告号CN104451953B和CN110885244B分别公开介绍了一种透明陶瓷光纤的制备方法,分别采用注浆成型和凝胶注模成型的方法制备一定长度的陶瓷光纤,但这些方案并不能实现连续长纤维的制备,且二者均依赖于模具的设计,受到模具的限制,使得有机添加剂较多,不易去除,造成裂纹等缺陷,因此不能推广到工业化的生产。
另外,脆性是陶瓷光纤的一个致命弱点,由于陶瓷光纤超大的长径比,在外界条件下受到一定应力作用时容易产生裂纹甚至断裂而导致光纤失效,且透明陶瓷光纤对表面和内部缺陷极其敏感,抛光时间长、轻微划痕、表面粗糙度较高、抛光不均匀等都是影响光纤光学性能的重要因素。因此,常用的机械抛光、超声波抛光、流体抛光等方法便不适用于陶瓷光纤的表面抛光处理,也导致了陶瓷光纤在整体制备过程中难度极大。普通的激光抛光加工技术采用双光子聚合产生实心光斑聚焦于材料表面,为达到均匀抛光曲面的目的,对精密控制器件提出了严苛的要求,加工效率低,难以实现精细结构大面积的加工。
发明内容
本发明的目的在于提供一种透明陶瓷光纤的制备方法,该方法能制备出连续性长纤维,可提高光纤的均匀性、致密性和力学性能;能提高加工效率,实现精细结构大面积的加工。
为实现上述目的,本发明采用的技术方案是:一种透明陶瓷光纤的制备方法,采用挤出成型法,该方法包括如下步骤:
(1)将分散剂、有机单体、交联剂加入到去离子水中混合配制成预混液;
(2)向预混液中分多次加入陶瓷粉体,球磨,配成固含量为70~90wt%的水基料体;
(3)过滤水基料体后,向料体中依次加入纯度为95%的单壁碳纳米管、粘结剂、增塑剂和表面活性剂,搅拌混合均匀得到浆料;
(4)将步骤(3)得到的浆料抽真空搅拌除气,然后加入引发剂,搅拌混合均匀;
(5)将步骤(4)得到的浆料通过直径为0.01~5mm的挤出孔挤出连续陶瓷光纤湿坯,将光纤湿坯干燥后进行煅烧排胶,煅烧后随炉降至室温;
(6)排胶后的陶瓷光纤素坯真空烧结后随炉降至室温,再在空气气氛下退火得到透明陶瓷光纤初品;
(7)采用轨道角动量为-5~+5的飞秒激光涡旋光束对透明陶瓷光纤初品表面和端面进行抛光处理,得到陶瓷光纤成品。
优选的,步骤(1)中,分散剂为柠檬酸铵或聚丙烯酸;有机单体为丙烯酰胺、甲基丙烯酰胺、甲基丙烯酸中的一种,交联剂为N,N’-亚甲基双丙烯酰胺或硫代乙酰胺。
优选的,步骤(1)中,分散剂含量为陶瓷粉体的1~5wt%,有机单体与交联剂的质量比为(10~20):1,有机单体与交联剂的总含量为陶瓷粉体的2~3wt%。
优选的,步骤(2)中,陶瓷粉体基质为MgAl2O4、MgO、AlON、Al2O3、MgF2、CaF2、Gd2O3、YAG中的一种;陶瓷粉体平均分四次加入预混液中,每次加完混合均匀,直至全部加完后进行滚筒球磨;球磨具体参数为:选用Al2O3球,球料比为(1~3):1,球磨时间8~12h,球磨转速120~160r/min。
优选的,步骤(3)中,粘结剂为聚乙烯醇、纤维素醚、丙烯酸乳液中的一种;增塑剂为丙三醇或聚乙二醇;表面活性剂为植物油或机油。
优选的,步骤(3)中,单壁碳纳米管、粘结剂、增塑剂和表面活性剂的含量分别为陶瓷粉体的0.5~10wt%、5~20wt%、1~5wt%、0.1~2wt%。
优选的,步骤(4)中,抽真空搅拌具体参数为:真空度为-20~-5Mpa,搅拌速度为1000~2000r/min,搅拌时间为3~10min。
优选的,步骤(4)中,引发剂是浓度均为20~30%的过硫酸铵水溶液或过硫酸钠水溶液,引发剂加入量为陶瓷粉体的0.1~5wt.%。
优选的,步骤(5)中,将光纤湿坯于20~50℃下干燥3~12h后进行煅烧排胶,排胶机制为:在380℃保温8~10h,然后升温至600℃保温6~8h,最后升温至900℃保温6~8h。
优选的,步骤(6)中,真空烧结工艺为1720~1780℃保温20~30h;退火工艺为1450~1500℃保温8~10h。
与现有技术方案相比,本发明具有以下优点:
(1)本发明通过基础成型工艺,使制备出的陶瓷光纤呈连续性长纤维;通过改进原料配方,使得光纤力学性能得到大大提高;
(2)本发明采用具有光学轨道角动量的涡旋激光对光纤表面进行抛光处理,该方法抛光精度高,非接触式的加工使得光纤表面不留抛光渣滓,有效降低了表面粗糙度,具有矢量偏振方向的涡旋光束可均匀抛光超细纤维的整个表面,且抛光加工的陶瓷更显光泽漂亮,极具质感;通过改变激光功率、光束直径,灵活动态切换拓扑荷就可以实现不同力度对不同直径的光纤进行抛光处理,使得生产效率有数量级的提升,实现精细结构大面积的加工;
(3)本发明采用飞秒激光还可对透明陶瓷光纤内部进行加工,超高的光子数密度会引发多光子电离过程,材料瞬间电离成等离子体,从而实现透明光纤的加工过程;
(4)本发明制备的透明陶瓷光纤表面光滑、结构均匀、致密性好且抗弯强度高,进一步推动了光纤产业化发展的趋势。
附图说明
图1是本发明中涡旋光场矢量方向示意图;
图2是本发明中陶瓷光纤抛光处理示意图;
图3为本发明中实施例一所制备的陶瓷光纤成品的直线透过率示意图;
图4为本发明中实施例光纤素坯的弯曲强度数据图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。
以下实施例中所使用的抛光光束示意图如图1所示,为具有光场矢量的涡旋激光光束。
实施例一
一种透明陶瓷光纤的制备方法,采用挤出成型法,该方法包括如下步骤:
(1)将分散剂柠檬酸铵、有机单体丙烯酰胺、交联剂N,N’-亚甲基双丙烯酰胺加入到去离子水中混合配制成预混液;分散剂含量为YAG陶瓷粉体的1wt%,有机单体与交联剂的质量比为10:1,有机单体与交联剂的总含量为YAG陶瓷粉体的2wt%;
(2)向预混液中分四次加入YAG陶瓷粉体,每次加完混合均匀,直至全部加完后进行滚筒球磨,球磨,选用Al2O3球,球料比为2:1,球磨时间12h,球磨转速140r/min,最终配成固含量为70wt%的水基料体;
(3)过滤水基料体后,向料体中依次加入纯度为95%的单壁碳纳米管、丙烯酸乳液、丙三醇和植物油,搅拌混合均匀;单壁碳纳米管、丙烯酸乳液、丙三醇和植物油的含量分别为YAG陶瓷粉体的0.5wt%、5wt%、1wt%、0.1wt%;
(4)将步骤(3)得到的浆料抽真空搅拌除气,然后加入引发剂,引发剂为25%的过硫酸铵水溶液,引发剂加入量为YAG陶瓷粉体的0.1wt.%,搅拌混合均匀;抽真空搅拌具体参数为:真空度为-5Mpa,搅拌速度为1000r/min,搅拌时间为10min;
(5)将步骤(4)得到的浆料通过直径为0.01mm的挤出孔挤出连续陶瓷光纤湿坯,将光纤湿坯于20℃下干燥12h后进行煅烧排胶,排胶机制为:在380℃保温10h,然后升温至600℃保温7h,最后升温至900℃保温6h,煅烧后随炉降至室温;
(6)排胶后的陶瓷光纤素坯在1780℃下进行真空烧结20h,烧结后随炉降至室温,再在空气气氛下1450℃退火10h,得到透明陶瓷光纤初品;
(7)采用轨道角动量为±1的飞秒激光涡旋光束对透明陶瓷光纤初品表面和端面进行如图2所示的抛光处理,得到陶瓷光纤成品,对成品进行直线透过率表征,结果如图3所示。
从图3中可以看出,抛光后的陶瓷光纤透光率在1064nm处达到84.3%,接近YAG透明陶瓷的理论透过率84.5%。
实施例二
一种透明陶瓷光纤的制备方法,采用挤出成型法,该方法包括如下步骤:
(1)将分散剂柠檬酸铵、有机单体甲基丙烯酰胺、交联剂N,N’-亚甲基双丙烯酰胺加入到去离子水中混合配制成预混液;分散剂含量为MgO陶瓷粉体的3wt%,有机单体与交联剂的质量比为15:1,有机单体与交联剂的总含量为MgO陶瓷粉体的2wt%;
(2)向预混液中分四次加入MgO陶瓷粉体,每次加完混合均匀,直至全部加完后进行滚筒球磨,球磨,选用Al2O3球,球料比为1:1,球磨时间8h,球磨转速120r/min,最终配成固含量为80wt%的水基料体;
(3)过滤水基料体后,向料体中依次加入纯度为95%的单壁碳纳米管、聚乙烯醇、丙三醇和植物油,搅拌混合均匀;单壁碳纳米管、聚乙烯醇、丙三醇和植物油的含量分别为MgO陶瓷粉体的5wt%、10wt%、3wt%、1wt%;
(4)将步骤(3)得到的浆料抽真空搅拌除气,然后加入引发剂,引发剂为20%的过硫酸铵水溶液,引发剂加入量为MgO陶瓷粉体的2wt.%,搅拌混合均匀;抽真空搅拌具体参数为:真空度为-10Mpa,搅拌速度为1500r/min,搅拌时间为6min;
(5)将步骤(4)得到的浆料通过直径为0.4mm的挤出孔挤出连续陶瓷光纤湿坯,将光纤湿坯于40℃下干燥6h后进行煅烧排胶,排胶机制为:在380℃保温9h,然后升温至600℃保温8h,最后升温至900℃保温7h,煅烧后随炉降至室温;
(6)排胶后的陶瓷光纤素坯在1780℃下进行真空烧结25h,烧结后随炉降至室温,再在空气气氛下1480℃退火9h,得到透明陶瓷光纤初品;
(7)采用轨道角动量为±3的飞秒激光涡旋光束对透明陶瓷光纤初品表面和端面进行如图2所示的抛光处理,得到陶瓷光纤成品。
实施例三
一种透明陶瓷光纤的制备方法,采用挤出成型法,该方法包括如下步骤:
(1)将分散剂聚丙烯酸、有机单体甲基丙烯酸、交联剂硫代乙酰胺加入到去离子水中混合配制成预混液;分散剂含量为Al2O3陶瓷粉体的5wt%,有机单体与交联剂的质量比为20:1,有机单体与交联剂的总含量为Al2O3陶瓷粉体的3wt%;
(2)向预混液中分四次加入Al2O3陶瓷粉体,每次加完混合均匀,直至全部加完后进行滚筒球磨,球磨,选用Al2O3球,球料比为3:1,球磨时间10h,球磨转速160r/min,最终配成固含量为90wt%的水基料体;
(3)过滤水基料体后,向料体中依次加入纯度为95%的单壁碳纳米管、纤维素醚、聚乙二醇和机油,搅拌混合均匀;单壁碳纳米管、纤维素醚、聚乙二醇和机油的含量分别为Al2O3陶瓷粉体的10wt%、20wt%、5wt%、2wt%;
(4)将步骤(3)得到的浆料抽真空搅拌除气,然后加入引发剂,引发剂为30%的过硫酸钠水溶液,引发剂加入量为Al2O3陶瓷粉体的5wt.%,搅拌混合均匀;抽真空搅拌具体参数为:真空度为-20Mpa,搅拌速度为2000r/min,搅拌时间为3min;
(5)将步骤(4)得到的浆料通过直径为5mm的挤出孔挤出连续陶瓷光纤湿坯,将光纤湿坯于50℃下干燥3h后进行煅烧排胶,排胶机制为:在380℃保温8h,然后升温至600℃保温6h,最后升温至900℃保温8h,煅烧后随炉降至室温;
(6)排胶后的陶瓷光纤素坯在1720℃下进行真空烧结30h,烧结后随炉降至室温,再在空气气氛下1500℃退火8h,得到透明陶瓷光纤初品;
(7)采用轨道角动量为±5的飞秒激光涡旋光束对透明陶瓷光纤初品表面和端面进行如图2所示的抛光处理,得到陶瓷光纤成品。
对三个实施例中抛光后的陶瓷光纤按照GB/T 4741—1984《陶瓷材料抗弯强度试验方法》分别进行抗弯强度测试,测试结果如图4所示,从图中可以看出,随着涡旋光束的轨道角动量增加以及光纤直径的减小,弯曲强度得到明显提升,大大提高了陶瓷光纤的实用性。

Claims (10)

1.一种透明陶瓷光纤的制备方法,其特征在于,采用挤出成型法,该方法包括如下步骤:
(1)将分散剂、有机单体、交联剂加入到去离子水中混合配制成预混液;
(2)向预混液中分多次加入陶瓷粉体,球磨,配成固含量为70~90wt%的水基料体;
(3)过滤水基料体后,向料体中依次加入纯度为95%的单壁碳纳米管、粘结剂、增塑剂和表面活性剂,搅拌混合均匀得到浆料;
(4)将步骤(3)得到的浆料抽真空搅拌除气,然后加入引发剂,搅拌混合均匀;
(5)将步骤(4)得到的浆料通过直径为0.01~5mm的挤出孔挤出连续陶瓷光纤湿坯,将光纤湿坯干燥后进行煅烧排胶,煅烧后随炉降至室温;排胶机制为:在380℃保温8~10h,然后升温至600℃保温6~8h,最后升温至900℃保温6~8h;
(6)排胶后的陶瓷光纤素坯真空烧结后随炉降至室温,再在空气气氛下退火得到透明陶瓷光纤初品;
(7)采用轨道角动量为-5~+5的飞秒激光涡旋光束对透明陶瓷光纤初品表面和端面进行抛光处理,得到陶瓷光纤成品。
2.根据权利要求1所述的一种透明陶瓷光纤的制备方法,其特征在于,步骤(1)中,分散剂为柠檬酸铵或聚丙烯酸;有机单体为丙烯酰胺、甲基丙烯酰胺、甲基丙烯酸中的一种,交联剂为N,N’-亚甲基双丙烯酰胺或硫代乙酰胺。
3.根据权利要求2所述的一种透明陶瓷光纤的制备方法,其特征在于,步骤(1)中,分散剂含量为陶瓷粉体的1~5wt%,有机单体与交联剂的质量比为(10~20):1,有机单体与交联剂的总含量为陶瓷粉体的2~3wt%。
4.根据权利要求1或2所述的一种透明陶瓷光纤的制备方法,其特征在于,步骤(2)中,陶瓷粉体基质为MgAl2O4、MgO、AlON、Al2O3、MgF2、CaF2、Gd2O3、YAG中的一种;陶瓷粉体平均分四次加入预混液中,每次加完混合均匀,直至全部加完后进行滚筒球磨;球磨具体参数为:选用Al2O3球,球料比为(1~3):1,球磨时间8~12h,球磨转速120~160r/min。
5.根据权利要求1或2所述的一种透明陶瓷光纤的制备方法,其特征在于,步骤(3)中,粘结剂为聚乙烯醇、纤维素醚、丙烯酸乳液中的一种;增塑剂为丙三醇或聚乙二醇;表面活性剂为植物油或机油。
6.根据权利要求5所述的一种透明陶瓷光纤的制备方法,其特征在于,步骤(3)中,单壁碳纳米管、粘结剂、增塑剂和表面活性剂的含量分别为陶瓷粉体的0.5~10wt%、5~20wt%、1~5wt%、0.1~2wt%。
7.根据权利要求1或2所述的一种透明陶瓷光纤的制备方法,其特征在于,步骤(4)中,抽真空搅拌具体参数为:真空度为-20~-5Mpa,搅拌速度为1000~2000r/min,搅拌时间为3~10min。
8.根据权利要求1或2所述的一种透明陶瓷光纤的制备方法,其特征在于,步骤(4)中,引发剂是浓度均为20~30%的过硫酸铵水溶液或过硫酸钠水溶液,引发剂加入量为陶瓷粉体的0.1~5wt.%。
9.根据权利要求1或2所述的一种透明陶瓷光纤的制备方法,其特征在于,步骤(5)中,将光纤湿坯于20~50℃下干燥3~12h后进行煅烧排胶。
10.根据权利要求1或2所述的一种透明陶瓷光纤的制备方法,其特征在于,步骤(6)中,真空烧结工艺为1720~1780℃保温20~30h;退火工艺为1450~1500℃保温8~10h。
CN202110254436.3A 2021-03-09 2021-03-09 一种透明陶瓷光纤的制备方法 Active CN112876220B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110254436.3A CN112876220B (zh) 2021-03-09 2021-03-09 一种透明陶瓷光纤的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110254436.3A CN112876220B (zh) 2021-03-09 2021-03-09 一种透明陶瓷光纤的制备方法

Publications (2)

Publication Number Publication Date
CN112876220A CN112876220A (zh) 2021-06-01
CN112876220B true CN112876220B (zh) 2022-11-18

Family

ID=76053855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110254436.3A Active CN112876220B (zh) 2021-03-09 2021-03-09 一种透明陶瓷光纤的制备方法

Country Status (1)

Country Link
CN (1) CN112876220B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056729A (zh) * 2011-10-24 2013-04-24 苏州市信德威激光科技有限公司 利用激光抛光光纤端面及玻璃表面的装置及其工艺方法
CN102807338A (zh) * 2012-08-17 2012-12-05 天津大学 采用凝胶注模成型制备多孔碳纳米管宏观体的方法
CN109851379B (zh) * 2019-02-13 2020-12-08 清华大学 一种碳纳米管/陶瓷基复合材料的制备方法
CN110885244B (zh) * 2019-12-04 2020-10-30 南京工业大学 一种钇铝石榴石基透明陶瓷光纤的制备方法

Also Published As

Publication number Publication date
CN112876220A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN110885244B (zh) 一种钇铝石榴石基透明陶瓷光纤的制备方法
CN102060539B (zh) 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
CN103373811B (zh) 掺Yb石英光纤预制棒芯棒的制备方法
CN106145687B (zh) 一种高强度玻璃纤维
CN107721424B (zh) 一种凝胶注模成型制备yag透明陶瓷的方法
CN103524139B (zh) 低蠕变锆英石质溢流砖及其制备方法
CN111270347A (zh) 一种凝胶注模成型制备透明陶瓷光纤的方法
CN109704569B (zh) 一种zbya氟化物玻璃及其制备方法
CN111253154A (zh) 一种凝胶注模制备yag基芯壳结构棒状透明陶瓷的方法
CN112174668B (zh) 一种多层复合结构透明陶瓷的制备方法及其应用
CN107698140B (zh) 高均匀性、低折射率F-Yb掺杂石英芯棒玻璃及其制备方法
CN102023318A (zh) 超大模面积硅酸盐光纤的组成及其制备方法
CN112876220B (zh) 一种透明陶瓷光纤的制备方法
CN113773081A (zh) 一种透明陶瓷及其制备方法
CN104451953B (zh) 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法
Yu et al. Fabrication, microstructure and optical properties of large-sized Nd: YAG and composite Yb: YAG transparent ceramic slabs
CN108751991A (zh) 一种激光烧结制备Tb:Lu2O3陶瓷的方法
CN102033249B (zh) 超大模面积偏磷酸盐光纤的组成及其制备方法
CN101995587B (zh) 超大模面积氟磷酸盐光纤的组成及其制备方法
CN110204323A (zh) 一种节能型堇青石锆英石复相材料及其制备方法
CN115925409B (zh) 一种高光效高显指复合荧光陶瓷光纤及其制备方法
CN113045310B (zh) 一种am凝胶注模成型工艺制备锆酸镧钆透明陶瓷的方法
CN105016740A (zh) 一种陶瓷插芯的制备方法和一种脱脂烧结炉
CN116375347A (zh) 一种锗酸盐玻璃光纤的制备方法
CN113213931B (zh) 一种基于Isobam凝胶与熔融纺丝技术的透明陶瓷光纤制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant