CN112875656B - 碳包覆硒化锰纳米球制备方法及其应用 - Google Patents

碳包覆硒化锰纳米球制备方法及其应用 Download PDF

Info

Publication number
CN112875656B
CN112875656B CN202110153038.2A CN202110153038A CN112875656B CN 112875656 B CN112875656 B CN 112875656B CN 202110153038 A CN202110153038 A CN 202110153038A CN 112875656 B CN112875656 B CN 112875656B
Authority
CN
China
Prior art keywords
carbon
powder
nanospheres
coated
manganese selenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110153038.2A
Other languages
English (en)
Other versions
CN112875656A (zh
Inventor
高伟
高千粟
刘晶函
冯嘉诚
殷红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202110153038.2A priority Critical patent/CN112875656B/zh
Publication of CN112875656A publication Critical patent/CN112875656A/zh
Application granted granted Critical
Publication of CN112875656B publication Critical patent/CN112875656B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供碳包覆硒化锰纳米球制备方法及其应用。采用直流电弧法,以锰粉、硒粉和碳粉为原料,按摩尔比为1:1:(0.5‑2)的比例混合均匀放入直流电弧放电装置反应室内的阳极铜锅中,在氩气氛围下,以电流为60‑160A的条件起弧,反应后经冷却钝化在顶盖和水冷壁收集到的黄绿色粉末为碳包覆硒化锰球纳米球,纳米球直径为20‑100nm,碳壳层厚度为7‑10nm。本发明还公开了其在超级电容器方面的应用,将碳包覆硒化锰纳米球涂覆在泡沫镍上,在1A/g的电流密度下,其质量比电容为452.4F/g。

Description

碳包覆硒化锰纳米球制备方法及其应用
技术领域
本发明属于无机纳米材料制备的技术领域,特别涉及了一种简单制备碳包覆硒化锰纳米球的方法。
背景技术
硒化锰是一种典型的过渡金属硒化物,共有三种晶体结构:α-MnSe(岩盐矿结构),β-MnSe(纤锌矿结构)和γ-MnSe(闪锌矿结构),其中α相是热力学最稳定的相。硒化锰具有良好的导电性,主要应用在电容器电极材料、钠离子电池电极材料、稀磁半导体材料、温差电材料和太阳能电池等方面。目前MnSe的制备方法有溶剂热法、水热法、化学气相沉积法等。例如,Javed等人采用溶剂热法制备出α-MnSe纳米微花(Chem.Eng.J.,2020,382,122814);Sahoo等人采用水热法合成出α-MnSe纳米颗粒(Electrochim.Acta,2018,268,403-410)。传统的硒化锰合成方法往往面临原材料复杂、耗时长、反应温度较高、需同时添加多种有机溶剂、环境不友好、产出率低或产物团聚较严重等缺点。
碳包覆是一种常见的材料改性手段,单质碳是一种很好的导电剂,通过包覆作用可以增加原材料导电性,碳的稳定性也可以保护原材料结构不被破坏,同时还能够提供稳定的化学和电化学反应界面。因此,对原材料进行碳包覆可以有效提升材料电化学性能,例如,Pan等人以葡萄糖为碳源用液相烧结法对MnO2粉末进行碳包覆,与包覆前相比使其比容量提升了64.6%(Chin.J.Mater.Res.,2019,33(07),530-536);Liu等人以多巴胺酸盐为碳源用高温热分解法对NiCo2S4纳米粒子进行碳包覆,在电流密度为5A/g时比容量高达925F/g(南充:西华师范大学,2019)。常用的碳包覆手段有聚多巴胺包覆法、间苯二酚-甲醛树脂包覆法、糖类包覆法等,但以上方法无法一步制备出碳包覆材料且具有操作复杂、成本高、环境不友好、碳层薄等缺点。本发明提供一种直流电弧法,可一步制备出碳包覆材料,且相较于以上合成方法具有操作简单、成本低、环境友好、合成速度快等优点。
发明内容
本发明主要提供了一种操作简单、成本低的可一步制备碳包覆硒化锰纳米球的方法,且合成出的产物产量高、纯度高,可用作超级电容器电极材料。
本发明以锰粉、硒粉和碳粉为原料,采用直流电弧等离子体放电装置,具体技术方案如下:
1.直流电弧设备启动前,首先按1:1:(0.5-2)的摩尔比称量锰粉、硒粉与碳粉,然后在玛瑙研钵中将混合粉末充分研磨使其混合均匀且颗粒大小相近。研磨后将混合粉末放入定制的压片模具中,并将模具放入压片装置中,粉末被压制成圆柱形块体。
2.将块体放入阳极铜锅中,阴极钨棒垂直固定于铜锅上,且其尖端在铜锅中心位置,并与块体保持1-2cm距离,密封反应室。
3.将反应室气压抽至小于10Pa,然后通入氩气反复洗气两次以上,洗气结束后通入10-60kPa的氩气。
4.启动仪器的冷却循环系统,打开直流弧焊机开关,设置电流参数为60-160A,引弧成功后使钨棒尖端与块体保持0.6-1cm的距离,反应10-15min,关闭直流弧焊机开关,终止反应,经冷却钝化后在顶盖和水冷壁处得到纯净的碳包覆硒化锰纳米球。
本发明制备碳包覆硒化锰纳米球的优点在于:原材料成本低、制备方法操作简单、合成时间短、可重复性高;合成样品纯度高、结晶性好;可一步获得碳包覆的硒化锰纳米球。
附图说明
图1本发明直流电弧等离子体放电装置结构图。
图2碳包覆硒化锰纳米球的X射线衍射(XRD)谱图。
图3碳包覆硒化锰纳米球的扫描电子显微镜(SEM)图。
图4碳包覆硒化锰纳米球的(a)透射电子显微镜(TEM)图,(b)高分辨透射电子显微镜(HRTEM)图。
图5碳包覆硒化锰纳米球非晶态层的电子能量损失谱(EELS)图。
图6(a)不同扫描速率下碳包覆硒化锰纳米球电极的CV曲线图,(b)不同电流密度下碳包覆硒化锰纳米球电极的恒电流充放电(GCD)曲线图。
具体实施方式
为使本领域技术人员更好地理解本发明,现结合附图及较佳实施例更加具体地描述本发明。
实施例1直流电弧等离子体放电装置结构。
结合图1说明本发明制备碳包覆硒化锰纳米球的直流电弧等离子体放电装置结构。图1中,1为直流电弧等离子体放电装置的玻璃罩,2为水冷壁的顶盖,3为水冷壁,4为由钨棒构成的阴极,5为反应原料压块,6为由铜锅构成的阳极,7为阳极进水口,8为阳极出水口,9为水冷壁进水口,10为水冷壁出水口,11为进气口,12为出气口。
实施例2制备最佳碳包覆硒化锰纳米球的全过程及电化学性能测试。
首先按1:1:1的摩尔比称量锰粉、硒粉与碳粉,其中锰粉质量为0.5648g,硒粉质量为0.8117g,碳粉为0.1235g。然后在玛瑙研钵中将混合粉末充分研磨使其混合均匀且颗粒大小相近。研磨后将混合粉末放入定制的压片模具中,并将模具放入压片装置中,粉末被压制成圆柱形块体。再将圆柱形块体放入阳极铜锅中,并将作为阴极的钨棒垂直固定于铜锅上,调整阴极钨棒,使其尖端在块体中心位置,且与块体保持1-2cm距离。
用真空泵将反应室气压抽至小于10Pa,然后通入氩气反复洗气两次以上。洗气结束后通入氩气,使反应室内气体压强保持60kPa。启动设备的冷却循环系统,打开直流弧焊机开关,设置电流参数为140A,进行引弧,引弧成功后使钨棒尖端与块体保持0.6cm的距离,起弧反应10min后,关闭直流弧焊机开关,终止反应。在氩气氛围下冷却、钝化2h后在顶盖和水冷壁附近收集到的黄绿色粉末为碳包覆硒化锰纳米球。
将制备的碳包覆硒化锰纳米球作为活性物质,以乙炔黑为导电剂,PTFE(聚四氟乙烯)为粘结剂,酒精为溶剂,按活性物质:导电剂:粘结剂=8:1:1的质量比混合,涂覆在泡沫镍上作为工作电极。以铂片为对电极,汞/氧化汞为参比电极,6M的氢氧化钾溶液为电解液,在电化学工作站上进行电化学测试。
图2是上述方法制备的碳包覆硒化锰纳米球的X射线衍射(XRD)谱图。通过和标准卡片JCPDS No.11-0683谱图比对,制备出的MnSe纳米晶是立方相的α-MnSe。从图中我们可以看出,样品的衍射峰峰位与卡片谱图峰位吻合,且无其他杂峰出现,表示样品纯度很高。碳包覆后衍射峰的峰型并未宽化,峰型尖锐,衍射谱的背底基线较为平直,无非晶包,表明样品的结晶性较好。
图3是碳包覆硒化锰纳米球的扫描电子显微镜(SEM)图。从图中我们可以看出,样品为粒度分布均匀的纳米球,其直径为20-100nm,纳米球表面光滑且高度聚集。
图4a是碳包覆硒化锰纳米球的透射电子显微镜(TEM)图。从图中我们可以看到单个碳包覆硒化锰纳米球,其直径大约为40nm。图4b是单个碳包覆硒化锰纳米球的高分辨透射电子显微镜(HRTEM)图。从图中我们可以看出晶体晶格间距d值为0.2666nm,为α-MnSe的(200)面,且外层包覆着一层非晶物质,壳层厚度约为10nm。
图5是碳包覆硒化锰纳米球非晶态层的能量损失谱(EELS)图。谱图显示了碳K-边信号,这表明非晶态外壳是由非晶碳组成的。
图6a是不同扫描速率下碳包覆硒化锰纳米球电极的CV曲线。在氢氧化钾溶液中,碳包覆硒化锰纳米球电极在不同扫描速率(10–50mV/s)下的循环伏安曲线显示出可逆的氧化还原峰,这属于法拉第(电池型)电极的特征,可归因于法拉第氧化还原反应。图6b是不同电流密度下碳包覆硒化锰纳米球电极的恒电流充放电(GCD)曲线,在放电过程中观察到了明显的电压平台,这与其CV结果一致,再次表明了法拉第行为。根据质量比电容计算公式可得出,在电流密度为1A/g下其质量比电容为452.4F/g。
以上所述仅为本发明的是实施例,并非因此限制本发明的范围,凡是对本发明的技术方案进行等效结构或等效流程变换,或直接或间接运用在其他相关技术领域,均应落入本发明的专利保护范围内。

Claims (2)

1.碳包覆硒化锰纳米球制备方法,其特征在于:将锰粉、硒粉和碳粉按照摩尔比为1:1:(0.5-2)的比例混合均匀并压块;将块体置于直流电弧放电装置反应室内的阳极铜锅中,阴极钨棒垂直固定于铜锅上,且与块体保持适当距离;将反应室抽成真空后通入氩气,气压为10-60kPa,铜锅及水冷壁中通入循环冷却水,保持电流为60-160A,反应10-15min;在氩气环境中降温、钝化,于顶盖及水冷壁处收集到的黄绿色粉末为碳包覆硒化锰球纳米球。
2.根据权利要求1所述的碳包覆硒化锰纳米球制备方法,其特征在于:锰粉、硒粉和碳粉的纯度为99.99%或以上。
CN202110153038.2A 2021-02-03 2021-02-03 碳包覆硒化锰纳米球制备方法及其应用 Expired - Fee Related CN112875656B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110153038.2A CN112875656B (zh) 2021-02-03 2021-02-03 碳包覆硒化锰纳米球制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110153038.2A CN112875656B (zh) 2021-02-03 2021-02-03 碳包覆硒化锰纳米球制备方法及其应用

Publications (2)

Publication Number Publication Date
CN112875656A CN112875656A (zh) 2021-06-01
CN112875656B true CN112875656B (zh) 2022-03-11

Family

ID=76057077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110153038.2A Expired - Fee Related CN112875656B (zh) 2021-02-03 2021-02-03 碳包覆硒化锰纳米球制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112875656B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110128432A (ko) * 2010-05-24 2011-11-30 한국기계연구원 열전재료와 이를 원료로 한 복합재료 및 이들의 제조방법
CN103794762A (zh) * 2014-01-23 2014-05-14 上海海事大学 一种碳包覆不同种类纳米晶的低温氧化制备方法
CN104347876A (zh) * 2014-10-20 2015-02-11 安徽工业大学 一种带有硫化铝外壳的二硫化钼纳米粉末材料及其制备方法
CN104692342A (zh) * 2015-02-17 2015-06-10 吉林大学 一种硒化亚锡纳米球的制备方法
CN106283173A (zh) * 2016-07-21 2017-01-04 昆明理工大学 一种降低碲化铋多晶晶格热导率的方法
CN106315548A (zh) * 2016-07-28 2017-01-11 中国地质大学(北京) 一种碳纤维@二硒化钼纳米片核壳复合结构及其制备方法
CN108176393A (zh) * 2017-12-27 2018-06-19 肇庆市华师大光电产业研究院 一种有序、高密度Ag-Al2O3-MoS2纳米结构的制备方法
KR20180134001A (ko) * 2017-06-08 2018-12-18 부경대학교 산학협력단 셀렌화구리계-그래핀 다결정 복합체, 이의 제조 방법 및 열전소재
CN110828818A (zh) * 2019-09-29 2020-02-21 郑州大学 碳包覆硒化锰中空立方体三维材料的制备方法及应用
WO2021005538A1 (en) * 2019-07-09 2021-01-14 Saudi Arabian Oil Company Methods for the production of nanocomposites for high temperature electrochemical energy storage devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601763B2 (en) * 2015-03-27 2017-03-21 Nanotek Instruments, Inc. Process for mass-producing silicon nanowires and silicon nanowire-graphene hybrid particulates

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110128432A (ko) * 2010-05-24 2011-11-30 한국기계연구원 열전재료와 이를 원료로 한 복합재료 및 이들의 제조방법
CN103794762A (zh) * 2014-01-23 2014-05-14 上海海事大学 一种碳包覆不同种类纳米晶的低温氧化制备方法
CN104347876A (zh) * 2014-10-20 2015-02-11 安徽工业大学 一种带有硫化铝外壳的二硫化钼纳米粉末材料及其制备方法
CN104692342A (zh) * 2015-02-17 2015-06-10 吉林大学 一种硒化亚锡纳米球的制备方法
CN106283173A (zh) * 2016-07-21 2017-01-04 昆明理工大学 一种降低碲化铋多晶晶格热导率的方法
CN106315548A (zh) * 2016-07-28 2017-01-11 中国地质大学(北京) 一种碳纤维@二硒化钼纳米片核壳复合结构及其制备方法
KR20180134001A (ko) * 2017-06-08 2018-12-18 부경대학교 산학협력단 셀렌화구리계-그래핀 다결정 복합체, 이의 제조 방법 및 열전소재
CN108176393A (zh) * 2017-12-27 2018-06-19 肇庆市华师大光电产业研究院 一种有序、高密度Ag-Al2O3-MoS2纳米结构的制备方法
WO2021005538A1 (en) * 2019-07-09 2021-01-14 Saudi Arabian Oil Company Methods for the production of nanocomposites for high temperature electrochemical energy storage devices
CN110828818A (zh) * 2019-09-29 2020-02-21 郑州大学 碳包覆硒化锰中空立方体三维材料的制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
All ternary metal selenide Nanostructures for high energy flexible charge storage devices;Balamurugan,J;《NANO ENERGY》;20191130;第65卷;全文 *
Embedding alpha-MnSe nanodots in nitrogen-doped electrospinning carbon nanofibers to enhanced storage properties of lithium-ion batteries;Zhou,P;《JOURNAL OF ALLOYS AND COMPOUNDS》;20190815;全文 *
新型聚丙烯腈包覆硒化钴/碳复合材料的制备及其在锂离子电池中的应用;陈筱;《华东理工大学学报(自然科学版)》;20190619;全文 *
碳包覆氧化镍纳米颗粒的制备与电化学性能;张旭东等;《稀有金属材料与工程》;20190415(第04期);全文 *
高性能锰基负极复合材料的设计制备与锂/钠电性能研究;刘代伙;《中国博士学位论文全文数据库》;20181215(第12期);全文 *

Also Published As

Publication number Publication date
CN112875656A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Li et al. A novel NiCo 2 O 4 anode morphology for lithium-ion batteries
Wang et al. A novel alcohol-thermal synthesis method of calcium zincates negative electrode materials for Ni–Zn secondary batteries
Hu et al. Synthesis of SnS 2 ultrathin nanosheets as anode materials for potassium ion batteries
CN108899480A (zh) 一种长循环寿命高比容量镍钴铝正极材料及其制备方法
Zhao et al. Facile synthesis of high tap density ZnO microspheres as advanced anode material for alkaline nickel-zinc rechargeable batteries
Xu et al. The enhanced high cut-off voltage electrochemical performances of LiNi0. 5Co0. 2Mn0. 3O2 by the CeO2 modification
US20230331584A1 (en) Preparation method for nanosized lithium cobalt oxide cathode material and application thereof
CN108630445B (zh) 一种由碱活化含氮杂环类金属配合物制备超级电容器碳材料的方法及其应用
CN108172782A (zh) 一种具有壳-核结构碳包裹多孔氧化亚钴纳米材料的制备方法及应用
Gao et al. Constructing Ni–Co PBA derived 3D/1D/2D NiO/NiCo 2 O 4/NiMn-LDH hierarchical heterostructures for ultrahigh rate capability in hybrid supercapacitors
CN112875657B (zh) 硒化锰/还原氧化石墨烯纳米复合材料制备方法及其应用
CN107055490B (zh) 一种多孔纳米氮化钒微晶的制备方法
TWI651272B (zh) 一種富鋰-鋰鎳錳氧化物陰極複合材料的製備方法及其用途
CN106887572A (zh) 一种锑‑碳复合材料及其制备方法和应用
Khalaji et al. Facile synthesis, characterization and electrochemical performance of nickel oxide nanoparticles prepared by thermal decomposition
CN113903909A (zh) 一种钴纳米涂层改性的富镍低钴单晶多元正极材料及其制备方法
Ren et al. Hydrothermal synthesis of β-Ni (OH) 2 nanoplates as electrochemical pseudocapacitor materials
CN109449433A (zh) 一种稀土掺杂钛酸锂超薄纳米片负极材料的制备方法
Li et al. Self-assembled monodisperse FeSe 2 microflowers as an advanced anode material for sodium ion batteries
Ding et al. High performance of Pb-doped Li4Ti5O12 as an anode material for lithium ion batteries
CN112875656B (zh) 碳包覆硒化锰纳米球制备方法及其应用
Zhang et al. Multiscale strain alleviation of Ni-rich cathode guided by in situ environmental transmission electron microscopy during the solid-state synthesis
Xia et al. Influence of complexing agents on the structure and electrochemical properties of LiNi0. 80Co0. 15Al0. 05O2 cathode synthesized by sol-gel method: a comparative study
CN113506689B (zh) 一种MOFs衍生的NiO电极材料的制备方法
CN113206250B (zh) 一种半导体负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220311

CF01 Termination of patent right due to non-payment of annual fee