CN112844353A - 一种生物质碳/金属复合光催化材料的制备方法及应用 - Google Patents

一种生物质碳/金属复合光催化材料的制备方法及应用 Download PDF

Info

Publication number
CN112844353A
CN112844353A CN202110137080.5A CN202110137080A CN112844353A CN 112844353 A CN112844353 A CN 112844353A CN 202110137080 A CN202110137080 A CN 202110137080A CN 112844353 A CN112844353 A CN 112844353A
Authority
CN
China
Prior art keywords
biomass carbon
photocatalytic material
composite photocatalytic
solution
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110137080.5A
Other languages
English (en)
Other versions
CN112844353B (zh
Inventor
马梦韶
郑钰镜
张冰慧
李玉成
慕毓
刘静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Forestry University
Original Assignee
Beijing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Forestry University filed Critical Beijing Forestry University
Priority to CN202110137080.5A priority Critical patent/CN112844353B/zh
Publication of CN112844353A publication Critical patent/CN112844353A/zh
Application granted granted Critical
Publication of CN112844353B publication Critical patent/CN112844353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及吸附催化双功能材料技术领域,提供了一种生物质碳/金属复合光催化材料的制备方法及应用。具体包括以下步骤:步骤1、处理农林废弃物;步骤2、制备生物质碳;步骤3、制备生物质碳/金属复合光催化材料。该材料可用于制药废水中抗生物药物的降解。本发明利用生物质碳的高吸附性和优良的导电性,将其与过渡金属氧化物复合,实现对抗生素药物的高效降解,具有制备工艺简单,降解效率高等优点。

Description

一种生物质碳/金属复合光催化材料的制备方法及应用
技术领域
本发明涉及吸附催化双功能材料技术领域,具体为一种生物质碳/金属复合光催化材料的制备方法及应用。
背景技术
生物质碳是一种以生物质为原料,在限氧条件下经高温碳化制备得到的固体材料。一方面,生物质碳原料来源广泛,能够较好地利用人类活动产生的废弃生物质,从而减少对环境的污染;另一方面,相对于利用煤、石油等化石资源生产的传统碳材料,生物质碳的应用能够缓解部分能源危机问题[1]。
光催化技术是近年迅速发展起来的,可以将太阳能转化为化学能,并进行环境净化的一种高级氧化技术,具有清洁无污染、反应条件温和、成本低等优点[2]。光催化技术是以光催化剂为基础,多数的光催化剂是半导体金属氧化物,但由于存在太阳能利用效率较低,以及电子~空穴复合效率较高导致光催化活性低的问题,限制了金属氧化物光催化剂的实际应用。
而生物质碳具有杰出的导电能力,将其与金属氧化物复合,能够提高光生载流子的传输和分离效率,从而提高光催化活性。其次还可以扩大光吸收范围,提高光催化剂对太阳能的利用效率。另外,生物质碳孔结构发达,比表面积大,吸附位点众多,因此能够显著提高光催化剂的吸附性能。
近年来复合光催化材料在降解有机污染物、处理污水、产生氢气等方面展现出了广阔的应用前景。
发明内容
本发明的目的在于提供一种生物质碳/金属复合光催化材料的制备方法及应用,通过将酸与农林废弃物混合后浸渍,经高温碳化得到生物质碳,再浸渍过渡金属氧化物的方法制备得到具有吸附催化双功能的复合光催化材料,然后将其应用于制药废水中抗生素药物的降解。具有无污染,可循环利用,制备过程简单,操作方便的优点,有望实现大规模工业化应用。
本发明提供了一种生物质碳/金属复合光催化材料的制备方法,包括以下步骤:
步骤1、处理农林废弃物:
用水洗涤农林废弃物,除去表面的灰尘和泥垢,再用去离子水洗涤,于80~110℃下干燥1~5h,然后将其置于粉碎机中粉碎,筛取40~60目粒径的粉末备用;
步骤2、制备生物质碳:
取一定量上述粉末与酸混合后浸渍,其中粉末与酸的用量比为3~9g∶9~27mL,然后放入马弗炉内焙烧2~6h,温度为400~700℃,得到黑色块状固体,研磨,得到黑色细小颗粒状的生物质碳。
步骤3、制备生物质碳/金属复合光催化材料:
取一定量过渡金属氧化物放在装有去离子水的小烧杯中,其中过渡金属氧化物溶液与生物质碳的用量比为5~25mL∶400~600mg,再于50~80℃下加热搅拌溶解,配置成浓度为0.1~4.5mol/L的溶液,然后与步骤2所得的生物质碳混合,于30~60℃下加热搅拌1~4h后得到浑浊溶液;接着进行水洗离心处理,离心机转速为1500~4500rpm,离心时间为5~15min;将离心得到的沉淀物用去离子水冲洗2~6次,然后将沉淀物于80~120℃下干燥1~4h,得到生物质碳/金属复合光催化材料。
步骤1中所述的农林废弃物为小麦秸秆、油菜秸秆、玉米秸秆、大豆秸秆中的一种。
步骤2中所述的酸为磷酸、柠檬酸、酒石酸、草酸中的一种。
步骤3中所述的过渡金属氧化物为氧化锌、氧化铁、氧化铜、二氧化钛中的一种。
本发明所述的方法制备的复合光催化材料应用于降解抗生素药物。其方法为:
将步骤3中得到的复合光催化材料与抗生素药物溶液混合,置于锥形瓶中,用锡纸包裹,避光搅拌10~60min。其中复合光催化材料与抗生素药物溶液的用量比为20~70mg∶20~70mL;抗生素药物溶液浓度为20~80mg/L。达到吸附平衡后取下锡纸,将锥形瓶置于模拟可见光源下反应0.5~24h,实现抗生素药物的深度降解。
所述的抗生物药物为青霉素、阿莫西林、四环素、环丙沙星中的一种。
本发明的有益效果为:
(1)本发明以农林废弃物为原料制备生物质碳,具有原料易得,成本低廉的特点,避免了资源浪费,减少了环境污染。
(2)本发明所提供的方法得到的复合光催化材料光催化活性高,对抗生素药物的降解效果好,光反应60min后对阿莫西林的降解率可达98%。
(3)本发明所提供的方法简单高效,操作方便,易于工业化生产。
附图说明
图1为实施例1制备的复合光催化材料的扫描电镜照片。
图2为实施例1制备的复合光催化材料降解阿莫西林的结果图。
具体实施方式
下面结合具体实施例来详述本发明的技术特点,但不能以此来限制本发明的保护范围。
实施例1:
一种生物质碳/金属复合光催化材料的制备方法:
步骤1、处理小麦秸秆:
用水洗涤小麦秸秆,除去表面的灰尘和泥垢,再用去离子水洗涤,于80℃下干燥1h。然后将其置于粉碎机中粉碎,筛取40目粒径的粉末备用。
步骤2、制备生物质碳:
取6g上述粉末与18mL磷酸混合后浸渍,放入马弗炉内焙烧4h,温度为600℃。得到黑色块状固体,研磨,得到黑色细小颗粒状生物质碳。
步骤3、制备生物质碳/金属复合光催化材料:
取0.6106g氧化锌放在装有15mL去离子水的小烧杯中,于75℃下加热搅拌溶解,配置成浓度为0.5mol/L的溶液,然后加入500mg步骤2所得的生物质碳,于56℃下加热搅拌2h后得到浑浊溶液;接着进行水洗离心处理,离心机转速为3000rpm,离心时间为5min;将离心得到的沉淀物用去离子水冲洗2次,然后将沉淀物于100℃下干燥1h,得到生物质碳/金属复合光催化材料。
将本实施例制备的复合光催化材料应用于降解阿莫西林,其方法为:
将50mg步骤3得到的复合光催化材料与50mL浓度为60mg/L的阿莫西林溶液混合,置于锥形瓶中,用锡纸包裹,避光搅拌30min。达到吸附平衡后取下锡纸,将锥形瓶置于模拟可见光源下反应1h,实现阿莫西林的深度降解。
结果表明:图1为该材料的扫描电镜照片,从图中可以看出,生物质碳呈片状结构,负载的金属呈颗粒状结构。图2可见该材料在90min内对60mg/L的阿莫西林溶液的降解率为98.11%。
实施例2:
步骤1、处理玉米秸秆:
用水洗涤玉米秸秆,除去表面的灰尘和泥垢,再用去离子水洗涤,于100℃下干燥2h。然后将其置于粉碎机中粉碎,筛取50目粒径的粉末备用。
步骤2、制备生物质碳:
取6g上述粉末与18mL草酸混合后浸渍,放入马弗炉内焙烧2h,温度为500℃。得到黑色块状固体,研磨,得到黑色细小颗粒状生物质碳。
步骤3、制备生物质碳/金属复合光催化材料:
取0.1193g氧化铜放在装有15mL去离子水的小烧杯中,于50℃下加热搅拌溶解,配置成浓度为0.1mol/L的溶液,然后加入500mg步骤2所得的生物质碳,于30℃下加热搅拌2h后得到浑浊溶液;接着进行水洗离心处理,离心机转速为3500rpm,离心时间为10min;将离心得到的沉淀物用去离子水冲洗3次,然后将沉淀物于100℃下干燥2h,得到生物质碳/金属复合光催化材料。
将本实施例制备的复合光催化材料应用于降解环丙沙星,其方法为:
将50mg步骤3得到的复合光催化材料与50mL浓度为20mg/L的环丙沙星溶液混合,置于锥形瓶中,用锡纸包裹,避光搅拌30min。达到吸附平衡后取下锡纸,将锥形瓶置于模拟可见光源下反应1h,实现环丙沙星的深度降解。
结果表明:该材料在90min内对20mg/L的环丙沙星溶液的降解率为83.12%。
实施例3:
步骤1、处理大豆秸秆:
用水洗涤大豆秸秆,除去表面的灰尘和泥垢,再用去离子水洗涤,于80℃下干燥1h。然后将其置于粉碎机中粉碎,筛取60目粒径的粉末备用。
步骤2、制备生物质碳:
取6g上述粉末与18mL柠檬酸混合后浸渍,放入马弗炉内焙烧6h,温度为700℃。得到黑色块状固体,研磨,得到黑色细小颗粒状生物质碳。
步骤3、制备生物质碳/金属复合光催化材料:
取2.9951g二氧化钛放在装有15mL去离子水的小烧杯中,在80℃下加热搅拌溶解,配置成浓度为2.5mol/L的溶液,然后加入500mg步骤2所得的生物质碳,在30℃下加热搅拌2h后得到浑浊溶液;接着进行水洗离心处理,离心机转速为3000rpm,离心时间为15min;将离心得到的沉淀物用去离子水冲洗3次,然后将沉淀物于100℃下干燥2h,得到生物质碳/金属复合光催化材料。
将本实施例制备的复合光催化材料应用于降解四环素,其方法为:
将50mg步骤3得到的复合光催化材料与50mL浓度为80mg/L的四环素溶液混合,置于锥形瓶中,用锡纸包裹,避光搅拌30min。达到吸附平衡后取下锡纸,将锥形瓶置于模拟可见光源下反应1h,实现四环素的深度降解。
结果表明:该材料在90min内对80mg/L的四环素溶液的降解率为94.74%。
本发明中[]内的数字分别相应地表示如下参考文献。这些文献的全部内容都全文引入本发明作为本发明说明书中的一部分。
[1]刘波.生物质炭/TiO2复合材料的制备及性能研究[D].北京林业大学,2017.
[2]梁兰兰.铋系半导体光催化剂的制备及其对水中痕量药物卡马西平的降解特性研究[D].长安大学,2019.

Claims (6)

1.一种生物质碳/金属复合光催化材料的制备方法,其特征在于,包括以下步骤:
步骤1、处理农林废弃物:
用水洗涤农林废弃物,除去表面的灰尘和泥垢,再用去离子水洗涤,于80~110℃下干燥1~5h,然后将其置于粉碎机中粉碎,筛取40~60目粒径的粉末备用;
步骤2、制备生物质碳:
取一定量上述粉末与酸混合后浸渍,其中粉末与酸的用量比为3~9g∶9~27mL,然后放入马弗炉内焙烧2~6h,温度为400~700℃,得到黑色块状固体,研磨,得到黑色细小颗粒状的生物质碳;
步骤3、制备生物质碳/金属复合光催化材料:
取一定量过渡金属氧化物放在装有去离子水的小烧杯中,其中过渡金属氧化物溶液与生物质碳的用量比为5~25mL∶400~600mg,再于50~80℃下加热搅拌溶解,配置成浓度为0.1~4.5mol/L的溶液,然后与步骤2所得的生物质碳混合,于30~60℃下加热搅拌1~4h后得到浑浊溶液;接着进行水洗离心处理,离心机转速为1500~4500rpm,离心时间为5~15min;将离心得到的沉淀物用去离子水冲洗2~6次,然后将沉淀物于80~120℃下干燥1~4h,得到生物质碳/金属复合光催化材料。
2.根据权利要求1所述的,其特征在于,步骤1中所述农林废弃物为小麦秸秆、油菜秸秆、玉米秸秆、大豆秸秆中的一种。
3.根据权利要求1所述的,其特征在于,步骤2中所述酸为磷酸、柠檬酸、酒石酸、草酸中的一种。
4.根据权利要求1所述的,其特征在于,步骤3中所述过渡金属氧化物为氧化锌、氧化铁、氧化铜、二氧化钛中的一种。
5.根据权利要求1~4任意一项所述的方法制备的复合光催化材料用于降解抗生物药物,其特征在于,将复合光催化材料与抗生素药物溶液混合,置于锥形瓶中,用锡纸包裹,避光搅拌10~60min;其中复合光催化材料与抗生素药物溶液的用量比为20~70mg∶20~70mL;抗生素药物溶液浓度为20~80mg/L;达到吸附平衡后取下锡纸,将锥形瓶置于模拟可见光源下反应0.5~24h,实现抗生素药物的深度降解。
6.根据权利要求5所述的抗生物药物为青霉素、阿莫西林、四环素、环丙沙星中的一种。
CN202110137080.5A 2021-02-01 2021-02-01 一种生物质碳/金属复合光催化材料的制备方法及应用 Active CN112844353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110137080.5A CN112844353B (zh) 2021-02-01 2021-02-01 一种生物质碳/金属复合光催化材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110137080.5A CN112844353B (zh) 2021-02-01 2021-02-01 一种生物质碳/金属复合光催化材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN112844353A true CN112844353A (zh) 2021-05-28
CN112844353B CN112844353B (zh) 2023-06-02

Family

ID=75987391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110137080.5A Active CN112844353B (zh) 2021-02-01 2021-02-01 一种生物质碳/金属复合光催化材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112844353B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114917922A (zh) * 2022-06-21 2022-08-19 杭州星宇炭素环保科技有限公司 一种可磁分离光催化再生活性炭及其制备方法
CN115947337A (zh) * 2023-03-01 2023-04-11 昆明理工大学 一种固废型生物炭的制备方法及其应用
CN116272995A (zh) * 2023-02-09 2023-06-23 广西民族大学 一种高效磁性污泥基生物炭材料及其制备方法与应用
CN116534949A (zh) * 2023-07-06 2023-08-04 江苏省农业科学院 抗菌催化金属&磁酸镧系氧化物复合材料在消除尾水中磷或/和抗性基因污染中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492435A (zh) * 2014-11-21 2015-04-08 上海应用技术学院 一种以(001)活性面为主的CuO/TiO2/石墨烯复合光催化剂及制备方法
CN104525177A (zh) * 2015-01-21 2015-04-22 山东省城市供排水水质监测中心 一种石墨烯/In2O3/TiO2复合光催化剂的制备方法
CN109607605A (zh) * 2018-12-19 2019-04-12 厦门大学 一种二氧化钛/碳纳米管复合纳米片的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492435A (zh) * 2014-11-21 2015-04-08 上海应用技术学院 一种以(001)活性面为主的CuO/TiO2/石墨烯复合光催化剂及制备方法
CN104525177A (zh) * 2015-01-21 2015-04-22 山东省城市供排水水质监测中心 一种石墨烯/In2O3/TiO2复合光催化剂的制备方法
CN109607605A (zh) * 2018-12-19 2019-04-12 厦门大学 一种二氧化钛/碳纳米管复合纳米片的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114917922A (zh) * 2022-06-21 2022-08-19 杭州星宇炭素环保科技有限公司 一种可磁分离光催化再生活性炭及其制备方法
CN116272995A (zh) * 2023-02-09 2023-06-23 广西民族大学 一种高效磁性污泥基生物炭材料及其制备方法与应用
CN115947337A (zh) * 2023-03-01 2023-04-11 昆明理工大学 一种固废型生物炭的制备方法及其应用
CN115947337B (zh) * 2023-03-01 2024-07-23 昆明理工大学 一种固废型生物炭的制备方法及其应用
CN116534949A (zh) * 2023-07-06 2023-08-04 江苏省农业科学院 抗菌催化金属&磁酸镧系氧化物复合材料在消除尾水中磷或/和抗性基因污染中的应用
CN116534949B (zh) * 2023-07-06 2023-09-08 江苏省农业科学院 抗菌催化金属&磁酸镧系氧化物复合材料在消除尾水中磷或/和抗性基因污染中的应用

Also Published As

Publication number Publication date
CN112844353B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN112844353B (zh) 一种生物质碳/金属复合光催化材料的制备方法及应用
Lai et al. Facile synthesis of CeO2/carbonate doped Bi2O2CO3 Z-scheme heterojunction for improved visible-light photocatalytic performance: Photodegradation of tetracycline and photocatalytic mechanism
Wang et al. Fabrication of noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple heterojunctions for efficient and robust photocatalyst hydrogen evolution under visible light irradiation
Liao et al. Water hyacinth powder-assisted preparation of defects-rich and flower-like BiOI/Bi5O7I heterojunctions with excellent visible light photocatalytic activity
Sun et al. Synthesis of g-C3N4/NiO-carbon microsphere composites for Co-reduction of CO2 by photocatalytic hydrogen production from water decomposition
CN105195131B (zh) 一种石墨烯量子点/钒掺杂介孔二氧化钛复合光催化剂的制备方法
Cui et al. Hollow core-shell potassium phosphomolybdate@ cadmium sulfide@ bismuth sulfide Z-Scheme tandem heterojunctions toward optimized photothermal-photocatalytic performance
CN104096540A (zh) 一种去除城市污泥中重金属和有机污染物的吸附催化材料的制备方法
CN112354532B (zh) 一种负载零价铁的生物炭材料的制备方法及其应用
CN105854865B (zh) 一种三维多孔结构石墨烯-二氧化铈复合物光催化剂
CN105148964B (zh) 一种三维还原氧化石墨烯‑Mn3O4/MnCO3纳米复合材料及其制备方法
CN112108150A (zh) 基于磁性Fe3O4修饰的玉米芯生物质碳点复合Bi2WO6光催化剂的制备方法及用途
CN108722425B (zh) 一种利用剩余污泥制备污泥基Fe-Zn三维粒子催化剂的方法
Huang et al. Investigation of pretreatment parameters for bioethanol production from Spirogyra using ZnO nanoparticles
Yang et al. MIL-125 (Ti)-derived double vacancy-induced enhanced visible-light-driven TiO2 pn homojunction for photocatalytic elimination of OFL and Cr (VI)
Hu Preparation of N-doped TiO2/biochar composite catalysts and its application for photoelectrochemical degradation of cephalosporin antibiotics
Hu et al. Hollow Fe3+-doped anatase titanium dioxide nanosphere for photocatalytic degradation of organic dyes
CN114452967A (zh) 一种应用于协同电化学活化过一硫酸盐高效降解水中吡虫啉的乙酸和球磨改性污泥生物炭
Xu et al. The reconstitution of reed cellulose by the hydrothermal carbonization and acid etching to improve the performance of photocatalytic degradation of antibiotics
Jin et al. Cu0@ CuOx-NC modified Zn2In2S5 for photo-self-Fenton system coupling H2O2 in-situ production and decomposition
Niu et al. Kitchen-waste-derived biochar modified nanocomposites with improved photocatalytic performances for degrading organic contaminants
Li et al. Synergistic effect of N doping and oxygen vacancies over TiO2 nanosheets with enhanced photocatalytic removal of tetracycline
CN117599776A (zh) 一种NCDs/WOx类芬顿光催化剂及其制备方法与应用
CN110586149B (zh) 钼酸铋/碳化钛异质结二维光催化材料及其制备方法和应用
Zhang et al. Two-step synthesis of coconut shell biochar-based ternary composite to efficiently remove organic pollutants by photocatalytic degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant