CN112831505A - 一种三七WRKY转录因子基因PnWRKY15及应用 - Google Patents

一种三七WRKY转录因子基因PnWRKY15及应用 Download PDF

Info

Publication number
CN112831505A
CN112831505A CN202110278790.XA CN202110278790A CN112831505A CN 112831505 A CN112831505 A CN 112831505A CN 202110278790 A CN202110278790 A CN 202110278790A CN 112831505 A CN112831505 A CN 112831505A
Authority
CN
China
Prior art keywords
pnwrky15
gene
plant
transcription factor
tobacco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110278790.XA
Other languages
English (en)
Other versions
CN112831505B (zh
Inventor
刘迪秋
郑锂蕾
苏琳琳
梁婷婷
曲媛
崔秀明
葛锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202110278790.XA priority Critical patent/CN112831505B/zh
Publication of CN112831505A publication Critical patent/CN112831505A/zh
Application granted granted Critical
Publication of CN112831505B publication Critical patent/CN112831505B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种三七WRKY转录因子基因PnWRKY15,其核苷酸序列如SEQ ID NO:1所示,本发明通过功能基因组学相关技术研究证实PnWRKY15基因具有提高植物抗真菌的功能,将本发明抗真菌的PnWRKY15基因构建到植物表达载体上并转入烟草中过量表达,转基因烟草植株具有很强的抗真菌侵染能力,实验结果显示超表达PnWRKY15的转基因烟草叶片总蛋白明显抑制厚垣镰刀菌和致密链格孢的菌丝生长。

Description

一种三七WRKY转录因子基因PnWRKY15及应用
技术领域
本发明涉及分子生物学以及基因工程相关技术研究领域,特别是一种具有抗真菌侵染能力的三七WRKY转录因子基因PnWRKY15及应用。
背景技术
植物在生长发育过程中,经常遭遇来自外界的各种自然灾害和病虫害,从而导致生长发育不良,生长受阻、产量减少甚至死亡。当植物面对病原物入侵或其它逆境时,会以一种高度可变且时序性的方式对转录组进行大规模重新编程以应对胁迫,而这种赋予植物对不同环境条件具有可塑性适应的调控反应是多种转录因子网络作用的结果。转录因子(transcription factor,TF)是一类能够结合在基因上游特异序列,并调控基因转录的蛋白质。植物体内有bHLH、bZIP、Zinc-finger、MYB等多种转录因子蛋白家族,其中WRKY转录因子备受瞩目。
WRKY转录因子是植物特有的一类转录因子家族,作为一类DNA结合蛋白,是植物最大的转录因子家族之一。编码 WRKY蛋白的第一个cDNA是从甘薯(Ipomoea batatas)中克隆的。目前已经从拟南芥(Arabidopsis thaliana),大麦(Hordeum vulgare),烟草(Nicotiana tabacum)等多种植物中分离了大量WRKY基因。每个WRKY转录因子的蛋白序列含都有一至三个保守结构域,该保守结构域大小约为60个氨基酸,在N末端具有一段高度保守的‘WRKYGQK’七肽序列,在C端具有高度保守的锌指结构基序CX4-7-CX23-28-HX1-2-(H/C)。WRKY转录因子的DNA结合结构域通常与包含((C/T)TGAC(C/T))基序的顺式作用元件W-box结合(Jiang J,Ma S,Ye N, et al. WRKY transcription factors in plantresponses to stresses. Journal of Integrative Plant Biology, 2017, 59(2):86-101.)。
WRKY蛋白可以与其靶基因启动子中的W-box元件结合,并激活或抑制下游基因的表达,或与其他转录因子相互作用从而调节植物的抗病防卫反应(Jiang J, Ma S, Ye N,et al. WRKY transcription factors in plant responses to stresses: WRKY inplant responses to stresses. Journal of Integrative Plant Biology, 2017, 59(2):86-101; Hussain R, Sheikh A, Haider I, et al. Arabidopsis WRKY50 and TGAtranscription factors synergistically activate expression of PR1. Frontiersin Plant Science, 2018, 9: 930.)。TGAC是W-box 的核心序列,且高度保守,一旦其中某一核苷酸发生改变都会导致WRKY蛋白与之结合的能力的降低,甚至丧失(谢政文, 王连军,陈锦洋, 等. 植物WRKY 转录因子及其生物学功能研究进展. 中国农业科技导报, 2016,18(3): 46-54.)。
WRKY转录因子通过调控植物转录组重新编程以应对不同病原物的入侵,其对抗病反应相关基因的转录调控是植物对病原体防卫反应的关键组成部分,在植物防卫反应中起重要作用。植物中的WRKY基因家族包含许多调节植物生长和发育以及防卫反应的成员(WuZJ, Li XH, Liu ZW, et al. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. MolGenet Genomics, 2016, 291(1): 255-269.)。例如在草莓FaWRKY1负调控果实对炭疽菌(Colletotrichum acutatum)的抗性(Higuera JJ, Garrido-Gala J, Lekhbou A, et al.The strawberry FaWRKY1 transcription factor negatively regulates resistanceto Colletotrichum acutatum in fruit upon Infection. Front Plant Sci, 2019,10: 480.)。此外,水杨酸介导的活性氧信号传导增强了JcWRKY转基因烟草对苜蓿炭腐病病原菌的抗性(Agarwal P, Patel K, Agarwal PK. Ectopic expression of JcWRKYconfers enhanced resistance in transgenic tobacco against Macrophomina phaseolina. DNA Cell Biol, 2018, 37(4): 298-307.)。
三七(Panax notoginseng)为五加科人参属多年生草本植物,是云南省的重要中药材,具有消肿定痛、活血散瘀、止血补血、提高机体免疫力等功效,药用价值极高,市场需求量日益增加。但三七生长周期长,性喜温暖阴湿,病害严重,特别是真菌病害,严重危害三七产量和药材的品质。WRKY参与应答多种生物和非生物胁迫,是植物防御系统的重要组成部分,因此对三七中WRKY转录因子基因的发掘以及功能分析具有重要的研究及其应用价值。
发明内容
本发明目的是提供一种三七WRKY转录因子基因PnWRKY15及其在提高烟草对厚垣镰刀菌(Fusarium chlamydosporum)和致密链格孢(Alternaria compacta)抗性中的应用。
本发明从三七中克隆获得的具有抗真菌活性的WRKY转录因子的全长基因,WRKY转录因子基因PnWRKY15核苷酸序列如SEQ ID NO:1所示,该基因cDNA全长序列为960 bp,包含一个420 bp的开放阅读框、214 bp的5’非翻译区、326 bp的3’非翻译区,编码如SEQ ID NO:2所示氨基酸序列的蛋白质。
本发明中PnWRKY15基因的编码区是序列表SEQ ID NO:1中第215-634位所示的核苷酸序列。
本发明分离克隆三七的一个抗真菌相关基因的完整cDNA片段,利用根癌农杆菌(Agrobacterium tumefaciens)介导将目的基因转入受体植物中并过量表达,通过进一步实验验证该基因是否具有抗真菌的活性,为后期利用该基因改良烟草及其他植物抵御真菌病害的能力奠定基础,发明人将这个基因命名为PnWRKY15
上述PnWRKY15基因可以应用于提高烟草的抗真菌特性,具体操作如下:
(1)采用扩增PnWRKY15的特异引物,从三七根中提取总RNA,通过逆转录-聚合酶链式反应(reverse transcription-polymerase chain reaction,RT-PCR)扩增出PnWRKY15的编码区,然后将其连接到pGEM-T载体上,经测序获得具有目的基因的克隆;
(2)用限制性内切酶EcoRⅠ和BamHⅠ酶切pGEM-T-PnWRKY15载体,通过胶回收得到目的基因片段,用同样的内切酶酶切植物表达载体pCAMBIA2300S,胶回收获得所需载体大片段,再将所获得PnWRKY15基因片段与pCAMBIA2300S片段连接,构建植物超表达载体,之后将所构建的重组载体通过根癌农杆菌介导转入烟草中表达;
(3)以重组载体T-DNA上具有的抗性标记筛选转化子,并通过PCR以及RT-PCR检测得到真正的转基因植株,分析转基因植株叶片抑制真菌生长的能力,最后筛选出对真菌抗性明显增强的转基因植株。
本发明为提高植物对真菌病害的抗性提供了一种新的方法,通过基因工程手段培育抗病植物可以克服传统育种的不足,不仅育种周期缩短,而且操作简单,容易获得高抗材料。本发明来自三七的PnWRKY15基因能增强植物对真菌的抗性,将该基因导入烟草中,可以产生具有真菌抗性的新品种和新材料。利用基因工程技术培育抗性植物品种和材料具有明显的优势和不可取代的重要性;它不仅可以为大规模生产农作物、药材、园艺植物等提供方便,大量减少化学农药的使用,还可以为农业生产节约成本、减小环境污染,因此本发明具有广阔的市场应用前景。
附图说明
图1是本发明PnWRKY15转基因烟草基因组DNA的PCR检测结果图,图中:Marker为DL15000 DNA Marker (大连宝生物);阳性对照为质粒pGEM-T-PnWRKY15为模板的PCR产物;WT为非转基因烟草(野生型)总DNA为模板的PCR产物;
图2是本发明阳性PnWRKY15转基因烟草中PnWRKY15转录水平的表达分析结果图;图中:Marker是DL15000 DNA Marker (大连宝生物);WT是非转基因烟草总RNA逆转录cDNA为模板的PCR产物;阳性对照是质粒pGEM-T-PnWRKY15为模板的PCR产物;
图3是本发明PnWRKY15转基因烟草对两种病原真菌的抑制活性分析结果;图中a、b分别是转基因烟草叶片总蛋白对厚垣镰刀菌、致密链格孢的抑制效果;WT为野生型烟草,3、15、22为PnWRKY15转基因烟草;Buffer为空白对照,即无蛋白对照(用于提取蛋白的缓冲液)。
具体实施方式
下面通过附图和实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容,实施例中方法如无特殊说明均为常规方法,使用的试剂如无特殊说明均为常规市售试剂或按常规方法配制的试剂。
实施例1:PnWRKY15全长基因克隆以及序列分析
取一年生三七的根部提取总RNA,用液氮将三七根研磨成粉末,然后转入离心管中,采用异硫氰酸胍法提取总RNA,采用逆转录酶M-MLV (promega)以总RNA为模板合成cDNA第一链,反应体系和操作过程为:取5μg Total RNA,依次加入50ng oligo(dT)、2μL dNTP(2.5 mM each)、DEPC水加至反应体积为14.5μL;混匀后,70℃加热变性5min后迅速在冰上冷却5min,然后依次加入4μL 5×First-stand buffer、0.5μL RNasin(200U)、1μL M-MLV(200U),混匀并短时离心,42℃温浴1.5h,取出后70℃加热10min,终止反应;cDNA第一链合成后置于-20℃保存备用。
以合成的第一链cDNA为模板,扩增目的基因PnWRKY15,所用上下游引物序列分别为5’ATGACTGATACTTCTCCCAAGTCT3’及5’TCATGCATGCCTCCTAAGGG3’。采用AdvantageTM 2 PCREnzyme(Clontech)扩增出目的基因;PCR反应条件:95℃ 5min;94℃ 30s,60℃ 30s,72℃50s,32个循环;72℃ 7min;反应体系(20μL)为0.5μL cDNA、2μL 10×Advantage 2 PCRBuffer、0.4μL 50×dNTP Mix(10mM each)、0.4μL 正向引物(10 μM)、0.4μL 反向引物(10μM)、0.4μL Advantage 2 PCR Polymerase Mix、15.9μL PCR-Grade water;PCR结束后,取5μL用于琼脂糖凝胶电泳,以检测扩增产物的特异性以及大小。
对PCR产物进行TA克隆,使用的试剂盒为pGEM-T easy Vector System I(Promega, USA),反应体系和操作过程为:取1.5μL PCR产物,依次加入1μL pGEM-T Vector(50ng/μL)和2.5μL 2×Ligation solution I,混匀后置于16℃过夜反应。采用热激转化法将连接产物转入大肠杆菌DH5α中。使用含有氨苄青霉素(ampicillin,Amp)的LB固体培养基筛选阳性克隆,挑选若干个单菌落,摇菌后用扩增PnWRKY15的特异引物鉴定出多克隆位点插入PnWRKY15的克隆,将所鉴定的克隆进行测序,最终获得的PnWRKY15全长cDNA为960bp,通过NCBI ORF finder(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)分析发现其包含一个420bp的开放读码框(见序列表),PnWRKY15编码一个含139个氨基酸的蛋白质,其分子量约为15.87KDa,等电点约为7.51,且具有1个WRKYGQK保守结构域。
实施例2:植物超表达载体构建
采用SanPrep柱式质粒DNA小量抽提试剂盒(上海生工)提取插入PnWRKY15的大肠杆菌质粒pGEM-T-PnWRKY15以及植物表达载体pCAMBIA2300S的质粒,取1μL用于琼脂糖凝胶电泳以检测所提取质粒的完整性及浓度高低;用限制性内切酶EcoRⅠ(TaKaRa)和BamHⅠ(TaKaRa)分别对质粒pGEM-T-PnWRKY15和pCAMBIA2300S进行双酶切(100μL体系),反应体系和操作过程为:分别取20μL pGEM-T-PnWRKY15和pCAMBIA2300S质粒、依次加入10μL 10×Hbuffer、5μL EcoRI、5μL BamHI、60μL ddH2O,混匀后短时离心,置于37℃过夜反应。将所有酶切产物点于琼脂糖凝胶中进行电泳,然后对PnWRKY15片段和pCAMBIA2300S载体大片段分别进行胶回收,整个过程使用SanPrep柱式DNA胶回收试剂盒(上海生工);取1μL回收产物通过琼脂糖凝胶电泳检测回收片段的大小以及浓度,置于-20℃保存备用。
利用T4 DNA Ligase(TaKaRa),将回收的PnWRKY15 DNA片段和pCAMBIA2300S载体片段连接起来,反应体系(20μL)和操作过程为:取10 μL PnWRKY15 DNA片段依次加入2μLpCAMBIA2300S载体DNA、2μL 10×T4 DNA Ligase Buffer、1μL T4 DNA Ligase、5μL ddH2O,混匀后短时离心,然后16℃水浴过夜反应。接着采用热激转化法将连接产物转入大肠杆菌DH5α中,用含有50mg/L卡那霉素(kanamycin,Km)的固体培养基筛选阳性克隆。挑选单菌落摇菌,以菌液为模板用扩增PnWRKY15的特异引物进行PCR,挑选出PnWRKY15与pCAMBIA2300S成功连接的克隆,所检测的菌株若为阳性,加入甘油并置于-80℃保存备用。
提取并纯化上述大肠杆菌中的pCAMBIA2300S-PnWRKY15质粒。随后用液氮冻融法将上述构建的植物表达载体pCAMBIA2300S-PnWRKY15转入根癌农杆菌LBA4404感受态细胞中。操作步骤为:取2μg pCAMBIA2300S-PnWRKY15质粒加入含有200μL感受态细胞的离心管中,轻轻混匀后冰浴5min,随后转入液氮中冷冻1min,然后迅速置于37℃水浴5min,之后立即冰浴2min,加入800μL LB液体培养基于28℃振荡培养4h。将活化后的农杆菌涂于含有50mg/L Km的LB固体培养基上,28℃静止培养。挑选单菌落摇菌,再用扩增PnWRKY15的特异性引物进行PCR,检测pCAMBIA2300S-PnWRKY15是否转入农杆菌中,对于阳性克隆,加入甘油后置于-80℃保存备用。
实施例3:农杆菌介导的植物遗传转化以及转基因植物筛选
本实验的转基因受体是烟草(Nicotiana tabacum),将烟草种子用75%的酒精浸泡30s,用无菌水洗涤后用0.1 %的HgCl2浸泡8min,然后再用无菌水洗涤若干次,播种于1/2MS培养基上,28℃暗培养6d,发芽后转至光照培养箱(25℃,16h/d光照),以后每月用MS培养基继代一次。
从-80℃冰箱中取出保存的含有pCAMBIA2300S-PnWRKY15质粒的农杆菌LBA4404菌种,接种于5mL含有50mg/L Km和20mg/L利福平的LB液体培养基中,28℃培养至培养基浑浊。吸取1mL浑浊的菌液至含有50mg/L Km的LB固体培养基上,28℃培养48h;随后将LB固体培养基上的农杆菌刮下适量接种于附加有20mg/L的乙酰丁香酮的MGL液体培养基中,28℃振荡培养2-3h以活化农杆菌。
取烟草无菌苗叶片切成1cm2左右的叶盘,完全浸泡于上述含有活化农杆菌的MGL液体培养基中,浸染时间为15min,用无菌滤纸吸干叶片表面的菌液,将叶盘置于共培养基上进行室温培养,烟草转化的共培养基为MS+0.02mg/L 6-BA+2.1mg/L NAA+30g/L sucrose+6g/L琼脂,22℃无光条件下共培养2天。
将共培养后的叶盘转到加有抗生素的MS筛选培养基中分化成苗,同时筛选转基因植株。烟草筛选培养基为MS+0.5mg/L 6-BA+0.1mg/L NAA+30g/L sucrose+6g/L琼脂+50mg/L Km+200 mg/L 头孢霉素(cefotaxime sodium salt,Cef);筛选培养时将培养瓶转移至光照培养箱培养(25℃,16 h/d光照,8 h/d黑暗),待烟草长出芽后用含有50mg/L Km和200mg/L Cef的MS培养基继代培养。
采用CTAB法提取转基因烟草植株叶片的基因组DNA,取1μL DNA通过琼脂糖凝胶电泳检测其完整性和浓度,以转基因植株的基因组DNA为模板用扩增PnWRKY15的特异引物进行PCR,PCR结束后,取8μL产物用于琼脂糖凝胶电泳以检测阳性转基因植株,部分烟草转基因植株的扩增结果如图1所示,PnWRKY15转基因烟草共筛选到39株阳性转基因植株。
实施例4:PnWRKY15转基因烟草的表达分析以及抑菌活性分析
取阳性转基因单株以及非转基因烟草(野生型)的嫩叶提取总RNA,逆转录生成第一链cDNA,并以此为模板用扩增PnWRKY15的特异引物进行PCR,分析各转基因单株中PnWRKY15的表达水平,总RNA提取以及RT-PCR的方法与实施例1中相同,PCR结束之后,取8μL用于琼脂糖凝胶电泳,部分单株的检测结果如图2所示,共检测到27个转基因单株中PnWRKY15在转录水平大量表达,这些单株的编号为1~27。
将实验室保存的几种真菌接种于PDA固体培养基(200g/L马铃薯,15g/L琼脂,20g/L葡萄糖)上,28℃暗培养,待菌落生长至直径约为2~3cm时添加蛋白,分析转基因植株叶片总蛋白对几种病原真菌的抑制活性。为了防止其它杂菌污染所提取的蛋白,整个植物蛋白提取过程均是无菌操作。首先取1g转基因烟草单株(编号分别为3、15、22)及野生型叶片放入研钵中,加入1mL蛋白提取液(1M NaCl,0.1M 乙酸钠,1% PVP(化学名称:聚乙烯吡咯烷酮),pH6.0),充分研磨。转入1.5mL离心管中,混匀后4℃静置过夜。4℃离心30min (12,000g/min),取上清于新的1.5mL离心管中,并取适量用紫外分光光度仪测定总蛋白浓度。将转基因和野生型植株的总蛋白浓度调整至0.2μg/μL,然后分别取20μL滴于各真菌培养基的无菌滤纸上。在每个真菌的平板上除了添加不同转基因烟草植株的总蛋白,同时平行添加野生型烟草的总蛋白和空白对照(蛋白提取液)。28℃培养几天后观察真菌生长的情况,并评价PnWRKY15转基因烟草的抑菌活性,结果如图3所示,PnWRKY15转基因烟草蛋白对厚垣镰刀菌和致密链格孢的生长具有明显的抑制作用。
序列表
<110> 昆明理工大学
<120> 一种三七WRKY转录因子基因PnWRKY15及应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 960
<212> DNA
<213> 三七(Panax notoginseng)
<400> 1
tggaaaaaat cataaaggaa aggaggccaa tccatcaaaa gaaaatattt tataatttcc 60
agacacacag tctctcgatc tctctctctc ggtcacacag acacacagac tctcgatctc 120
tctctctcgg tctttgtgtc tagctaggtt aaccaaaggt aggagctagg taagtagatt 180
cagaaagcag ccacctacca tcagccatga gcccatgact gatacttctc ccaagtctcc 240
taacactgaa gaatccacct ctatggaata ttcaagggag gaggaacaat tagatataga 300
tagaggagta ctgagtacca ggttggtgct acccgaagat ggtttcgaat ggaggaaata 360
tggacaaaag ttcatcaaaa atattggaaa aacgaggagt tatttcaaat gccaaaagag 420
caattgtata gccaagaaga aagtggagtg gtcagtctca gagcctggta acctgaaaat 480
tgtatatgaa gcagaacaca atcatttatc ccctcgagaa acttctacca ctacaacagc 540
agcaacagca aatccatatg acttgttgac tcaagttctt ggagataatc aaacatcaac 600
ttcttcttat tattccctta ggaggcatgc atgatataaa ttgatcattt gaatatatat 660
atatatatat atatatatat agggaaccct tctctaacga acttgtttgt caacgaaccg 720
gctaaggaac ccttctctaa cgaacctgtt tgtcgatcta tcgctatagt atagaaaaac 780
gacgccaaga ctatgtcgac ggttcgtact gttgttatag ctctcagaaa atcaattttt 840
ctatgattta acgacgaatg aaccgtcgct ttagtcaatt cgtctttgat tcacattttc 900
tggttcgtta gaaaaaattt ccatatatat gtatatcttt ctttggtata tactagctct 960
<210> 2
<211> 139
<212> PRT
<213> 三七(Panax notoginseng)
<400> 2
Met Thr Asp Thr Ser Pro Lys Ser Pro Asn Thr Glu Glu Ser Thr Ser
1 5 10 15
Met Glu Tyr Ser Arg Glu Glu Glu Gln Leu Asp Ile Asp Arg Gly Val
20 25 30
Leu Ser Thr Arg Leu Val Leu Pro Glu Asp Gly Phe Glu Trp Arg Lys
35 40 45
Tyr Gly Gln Lys Phe Ile Lys Asn Ile Gly Lys Thr Arg Ser Tyr Phe
50 55 60
Lys Cys Gln Lys Ser Asn Cys Ile Ala Lys Lys Lys Val Glu Trp Ser
65 70 75 80
Val Ser Glu Pro Gly Asn Leu Lys Ile Val Tyr Glu Ala Glu His Asn
85 90 95
His Leu Ser Pro Arg Glu Thr Ser Thr Thr Thr Thr Ala Ala Thr Ala
100 105 110
Asn Pro Tyr Asp Leu Leu Thr Gln Val Leu Gly Asp Asn Gln Thr Ser
115 120 125
Thr Ser Ser Tyr Tyr Ser Leu Arg Arg His Ala
130 135
<210> 3
<211> 24
<212> DNA
<213> 人工序列(Artificial)
<400> 3
atgactgata cttctcccaa gtct 24
<210> 4
<211> 20
<212> DNA
<213> 人工序列(Artificial)
<400> 4
tcatgcatgc ctcctaaggg 20

Claims (2)

1.一种三七WRKY转录因子基因PnWRKY15,其特征在于:核苷酸序列如SEQ ID NO:1所示。
2.权利要求1所述的三七WRKY转录因子基因PnWRKY15在提高烟草对厚垣镰刀菌(Fusarium chlamydosporum)、致密链格孢(Alternaria compacta)抗性中的应用。
CN202110278790.XA 2021-03-16 2021-03-16 一种三七WRKY转录因子基因PnWRKY15及应用 Active CN112831505B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110278790.XA CN112831505B (zh) 2021-03-16 2021-03-16 一种三七WRKY转录因子基因PnWRKY15及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110278790.XA CN112831505B (zh) 2021-03-16 2021-03-16 一种三七WRKY转录因子基因PnWRKY15及应用

Publications (2)

Publication Number Publication Date
CN112831505A true CN112831505A (zh) 2021-05-25
CN112831505B CN112831505B (zh) 2023-04-11

Family

ID=75930240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110278790.XA Active CN112831505B (zh) 2021-03-16 2021-03-16 一种三七WRKY转录因子基因PnWRKY15及应用

Country Status (1)

Country Link
CN (1) CN112831505B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410321A (zh) * 2020-11-26 2021-02-26 昆明理工大学 一种β-葡萄糖苷酶Ttbgl3及其应用
CN112831504A (zh) * 2021-03-16 2021-05-25 昆明理工大学 三七WRKY转录因子基因PnWRKY9及其应用
CN113549639A (zh) * 2021-07-21 2021-10-26 云南中烟工业有限责任公司 一种降低烟叶总蛋白及烟气苯酚含量的调控基因
CN116064586A (zh) * 2022-11-01 2023-05-05 广东省农业科学院果树研究所 一种番木瓜CpWRKY50基因及其提高番木瓜炭疽病抗性的用途

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076775A1 (en) * 2000-03-17 2002-06-20 Crane Virginia C. WRKY transcription factors and methods of use
WO2007120820A2 (en) * 2006-04-12 2007-10-25 Mendel Biotechnology, Inc. Plant disease resistance genes and proteins
CN101386856A (zh) * 2008-10-21 2009-03-18 华中农业大学 水稻抗病相关基因OsWRKY45-2和它在改良水稻抗病性中的应用
CN104878041A (zh) * 2015-05-14 2015-09-02 昆明理工大学 漾濞大泡核桃转录因子基因JsWRKY1的应用
CN105037521A (zh) * 2015-08-11 2015-11-11 中国农业科学院生物技术研究所 一种与植物抗逆性相关蛋白TaWrky48及其编码基因与应用
CN105441460A (zh) * 2016-01-06 2016-03-30 昆明理工大学 一种岷江百合WRKY转录因子基因LrWRKY1及应用
CN110256549A (zh) * 2019-07-29 2019-09-20 九圣禾种业股份有限公司 植物抗病蛋白GhWRKY40与编码基因及其应用
CN110734482A (zh) * 2019-11-13 2020-01-31 昆明理工大学 一种岷江百合WRKY转录因子基因LrWRKY4及应用
CN110747202A (zh) * 2019-11-13 2020-02-04 昆明理工大学 一种岷江百合WRKY转录因子基因LrWRKY11及应用
CN110818782A (zh) * 2019-11-13 2020-02-21 昆明理工大学 一种岷江百合WRKY转录因子基因LrWRKY3及应用
CN110818783A (zh) * 2019-11-13 2020-02-21 昆明理工大学 一种岷江百合WRKY转录因子基因LrWRKY2及应用
CN112725351A (zh) * 2021-03-23 2021-04-30 上海师范大学 基因OsWRKY43在水稻抗白叶枯病中的应用
CN112831504A (zh) * 2021-03-16 2021-05-25 昆明理工大学 三七WRKY转录因子基因PnWRKY9及其应用
CN114480473A (zh) * 2020-10-23 2022-05-13 中国科学院分子植物科学卓越创新中心 调控植物对菌核病抗病性的新型基因及其应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076775A1 (en) * 2000-03-17 2002-06-20 Crane Virginia C. WRKY transcription factors and methods of use
WO2007120820A2 (en) * 2006-04-12 2007-10-25 Mendel Biotechnology, Inc. Plant disease resistance genes and proteins
CN101386856A (zh) * 2008-10-21 2009-03-18 华中农业大学 水稻抗病相关基因OsWRKY45-2和它在改良水稻抗病性中的应用
CN104878041A (zh) * 2015-05-14 2015-09-02 昆明理工大学 漾濞大泡核桃转录因子基因JsWRKY1的应用
CN105037521A (zh) * 2015-08-11 2015-11-11 中国农业科学院生物技术研究所 一种与植物抗逆性相关蛋白TaWrky48及其编码基因与应用
CN105441460A (zh) * 2016-01-06 2016-03-30 昆明理工大学 一种岷江百合WRKY转录因子基因LrWRKY1及应用
CN110256549A (zh) * 2019-07-29 2019-09-20 九圣禾种业股份有限公司 植物抗病蛋白GhWRKY40与编码基因及其应用
CN110734482A (zh) * 2019-11-13 2020-01-31 昆明理工大学 一种岷江百合WRKY转录因子基因LrWRKY4及应用
CN110747202A (zh) * 2019-11-13 2020-02-04 昆明理工大学 一种岷江百合WRKY转录因子基因LrWRKY11及应用
CN110818782A (zh) * 2019-11-13 2020-02-21 昆明理工大学 一种岷江百合WRKY转录因子基因LrWRKY3及应用
CN110818783A (zh) * 2019-11-13 2020-02-21 昆明理工大学 一种岷江百合WRKY转录因子基因LrWRKY2及应用
CN114480473A (zh) * 2020-10-23 2022-05-13 中国科学院分子植物科学卓越创新中心 调控植物对菌核病抗病性的新型基因及其应用
CN112831504A (zh) * 2021-03-16 2021-05-25 昆明理工大学 三七WRKY转录因子基因PnWRKY9及其应用
CN112725351A (zh) * 2021-03-23 2021-04-30 上海师范大学 基因OsWRKY43在水稻抗白叶枯病中的应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LILEI ZHENG等: "Panax notoginseng WRKY Transcription Factor 9 Is a Positive Regulator in Responding to Root Rot Pathogen Fusarium solani" *
LIU,D.等: "Panax notoginseng WRKY transcription factor (WRKY15) mRNA, complete cds" *
LIU,D.等: "WRKY transcription factor [Panax notoginseng]" *
LU YAO等: "A WRKY transcription factor, PgWRKY4X, positively regulates ginsenoside biosynthesis by activating squalene epoxidase transcription in Panax ginseng" *
王国东;陈朝银;李金晶;普丽梅;关瑞攀;葛锋;刘迪秋;: "漾濞大泡核桃JsWRKY1过表达增强转基因烟草对胶孢炭疽菌的抗性" *
邱炳玲: "三七茉莉酸响应WRKY转录因子的分离与分析" *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410321A (zh) * 2020-11-26 2021-02-26 昆明理工大学 一种β-葡萄糖苷酶Ttbgl3及其应用
CN112410321B (zh) * 2020-11-26 2022-01-28 昆明理工大学 一种β-葡萄糖苷酶Ttbgl3及其应用
CN112831504A (zh) * 2021-03-16 2021-05-25 昆明理工大学 三七WRKY转录因子基因PnWRKY9及其应用
CN112831504B (zh) * 2021-03-16 2023-03-24 昆明理工大学 三七WRKY转录因子基因PnWRKY9及其应用
CN113549639A (zh) * 2021-07-21 2021-10-26 云南中烟工业有限责任公司 一种降低烟叶总蛋白及烟气苯酚含量的调控基因
CN113549639B (zh) * 2021-07-21 2022-07-29 云南中烟工业有限责任公司 一种降低烟叶总蛋白及烟气苯酚含量的调控基因
CN116064586A (zh) * 2022-11-01 2023-05-05 广东省农业科学院果树研究所 一种番木瓜CpWRKY50基因及其提高番木瓜炭疽病抗性的用途
CN116064586B (zh) * 2022-11-01 2024-04-02 广东省农业科学院果树研究所 一种番木瓜CpWRKY50基因及其提高番木瓜炭疽病抗性的用途

Also Published As

Publication number Publication date
CN112831505B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
CN112831505B (zh) 一种三七WRKY转录因子基因PnWRKY15及应用
CN110818783B (zh) 一种岷江百合WRKY转录因子基因LrWRKY2及应用
CN110818782B (zh) 一种岷江百合WRKY转录因子基因LrWRKY3及应用
CN110747202B (zh) 一种岷江百合WRKY转录因子基因LrWRKY11及应用
CN108251432B (zh) 三七类病程相关蛋白基因PnPRlike及应用
CN110734482B (zh) 一种岷江百合WRKY转录因子基因LrWRKY4及应用
CN112831504B (zh) 三七WRKY转录因子基因PnWRKY9及其应用
CN111153975B (zh) 植物抗旱相关蛋白TaNAC15及其编码基因与应用
CN107267526B (zh) 三七MYB转录因子基因PnMYB2及其应用
CN112359049B (zh) 一种岷江百合几丁质酶基因LrCHI2及其应用
CN111662928B (zh) 调控植物耐盐性的方法及耐盐相关蛋白
CN117286150A (zh) 三七病程相关蛋白1基因PnPR1-3及其应用
CN108085318B (zh) 番茄长链非编码RNA-lncRNA23468及其克隆方法与应用方法
CN107267525B (zh) 三七多聚半乳糖醛酸酶抑制蛋白基因PnPGIP的应用
CN107365794B (zh) 三七几丁质酶基因PnCHI1的应用
CN107354161B (zh) 西瓜Cla005622基因在提高喜温作物低温胁迫抗性中的应用
CN103320448B (zh) 一种岷江百合bZIP转录因子基因LrbZIP1及应用
CN113603757B (zh) 一种岷江百合Dirigent类似蛋白基因LrDIR1及应用
CN112898391B (zh) 枳抗寒基因PtrERF9在植物抗寒遗传改良中的应用
CN112195178B (zh) 番茄抗晚疫病长链非编码RNA-lncRNA40787及其克隆方法与应用方法
CN108707610B (zh) 三七defensin抗菌肽基因PnDEFL1及应用
CN109295068B (zh) 一种三七类甜蛋白基因PnTLP2及应用
CN106191059A (zh) 荠菜过氧化物酶基因启动子及其改良植物抗寒性中的应用
CN110904106A (zh) 春兰miR159b在增强植物冷敏感性中的应用
CN116555286B (zh) 三七富含脯氨酸蛋白基因PnPRPL1及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant