CN112812547A - 一种高强度高导热树脂基连续碳质纤维复合材料及其制备方法 - Google Patents

一种高强度高导热树脂基连续碳质纤维复合材料及其制备方法 Download PDF

Info

Publication number
CN112812547A
CN112812547A CN202110002965.4A CN202110002965A CN112812547A CN 112812547 A CN112812547 A CN 112812547A CN 202110002965 A CN202110002965 A CN 202110002965A CN 112812547 A CN112812547 A CN 112812547A
Authority
CN
China
Prior art keywords
continuous
preparing
composite material
carbonaceous fiber
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110002965.4A
Other languages
English (en)
Inventor
丁鹏
徐同乐
施利毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202110002965.4A priority Critical patent/CN112812547A/zh
Publication of CN112812547A publication Critical patent/CN112812547A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/14Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length of filaments or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/005Methods for mixing in batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • B29C48/023Extruding materials comprising incompatible ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种高强度高导热树脂基连续碳质纤维复合材料的制备方法,所述制备方法包括:(1)制备连续碳质纤维丝束;(2)制备连续碳质纤维线材;(3)制备改性塑料线材;(4)制备塑料线材;(5)将连续碳质纤维线材、改性塑料线材和塑料线材加入打印喷头模块组,采用3D打印成型工艺按预设路径打印成型,得到高强度高导热树脂基连续碳质纤维复合材料。本发明还提供了一种高强度高导热树脂基连续碳质纤维复合材料,其中连续纤维整体质量占比为10~40wt%,导热填料整体质量占比为0.05~30wt%,塑料质量占比30~90wt%。本发明采用3D打印成型使连续纤维在制品中预先铺设丝路,形成打印零件的主干产生增强效果,同时该复合材料具有优异的导热和力学性能。

Description

一种高强度高导热树脂基连续碳质纤维复合材料及其制备 方法
技术领域
本发明涉及纤维复合材料技术领域,尤其涉及一种高强度高导热树脂基连续碳质纤维复合材料及其制备方法。
背景技术
纤维增强树脂基复合材料是以纤维为增强体、树脂为基体的一种复合材料,基体通常为热固性树脂或热塑性树脂。纤维增强复合材料由于其比强度高、比刚度高、耐腐蚀性能好等优良性能,在航空航天、运动器材、风力发电等领域具有广泛的工程应用并稳步增长。预计到2020年,全球对碳质纤维的需求量将达到11.2万吨,其中60%以上将应用在工业领域。
此外,3D打印已成为继金属后最受追捧的增材制造技术。该技术具有节省材料、可制造性强、产品研发周期短、可显著降低组装成本等优势,但由于受打印材料和打印时间较长的局限,尽管已经开发了许多应用于3D打印的同质和异质材料,但是开发新材料的需求仍然存在,一些新的材料正在研发中。这种需求包含两个层面,一是不仅需要对已经得到应用的材料—工艺—结构—特性关系进行深入研究,以明确其优点和限制;二是需要开发新的测试工艺和方法,以扩展可用材料的范围。
中国发明申请文献CN108189386A公开了一种纤维增强树脂基复合材料三维打印成形方法,该方法通过在树脂材料中预混不同含量和规格的短纤维,实现了连续纤维和短纤维复合作用增强的复合材料件的三维打印成形,改善其整体机械性能。该方法中包括连续纤维打印部分、制线部分、信号采集和控制部分。通过制线部分提前将不同规格的短纤维加入到树脂线材中,打印过程中预混短纤维树脂线材与多种规格的连续纤维在浸渍腔室中实现充分混合浸渍,在送丝机构的控制下实现连续挤出,层层堆积于成型平台。但是该方法并未解决纤维增强复合材料的性能限制问题,特别是未解决打印零件采用增强纤维产生增强效果、同时使复合材料具有优异导热性能的问题,使采用该方法打印的三维零件,其应用范围仍然受到较大的限制。
发明内容
针对现有技术的上述不足,本发明的目的在于提供一种高强度高导高强度高导热树脂基连续碳质纤维复合材料及其制备方法,通过独特的工艺及配方设计,在采用3D打印成型技术使用连续纤维以实现在制品中预先铺设丝路,通过增强纤维形成打印零件的“主干”产生增强效果,使复合材料及由其打印的零件具有优异的导热和力学性能。
本发明为达到上述目的,所采用的技术方案是:
一种高强度高导高强度高导热树脂基连续碳质纤维复合材料的制备方法,其特征在于,包括以下步骤:
(1)制备连续碳质纤维丝束:将连续聚丙烯腈基碳纤维、沥青基碳纤维、石墨烯纤维和碳纳米管纤维加捻、浸渍上浆,集束后即可制备连续碳质纤维丝束;
(2)制备连续碳质纤维线材:准备原料,所述原料为连续碳质纤维丝束40~90%wt和塑料切片10~60wt%,将塑料切片从主喂料口加入双螺杆挤出机中,将连续碳质纤维丝束从出料口前端加入排齿型拉丝机头中,通过双螺杆挤出机熔融挤出,反应温度160~320℃螺杆转速为150~300r/min,经拉条、冷却、牵伸、卷绕制备连续碳质纤维线材;
(3)制备改性塑料线材:按重量百分比准备原料:
塑料切片 38~99.7%
导热填料 0.1~60%
分散剂 0.1~1%
偶联剂 0.1~1%
将原料加入密炼机中密炼出料后,经双螺杆挤出机熔融挤出,经拉条、冷却、牵伸、卷绕制备改性塑料线材;其中密炼的加工温度160~320℃螺杆转速为50~100r/min;熔融挤出的加工温度160~320℃螺杆转速为150~300r/min;
(4)制备塑料线材:将塑料切片加入双螺杆挤出机熔融挤出,经拉条、冷却、牵伸、卷绕制备塑料线材;
(5)制备高强度高导高强度高导热树脂基连续碳质纤维复合材料:将步骤(2)、步骤(3)和步骤(4)中制备的连续碳质纤维线材、改性塑料线材和塑料线材加入打印喷头模块组,采用3D打印成型工艺按预设路径打印成型,即可制备高强度高导高强度高导热树脂基连续碳质纤维复合材料。
所述步骤(1)中上浆剂的为溶液型上浆剂、乳液型上浆剂、水溶型上浆剂之一。
所述的上浆剂,为乳液型聚氨酯、乳液型聚酰胺、乳液型聚酰亚胺、乳液型苯氧树脂、乳液型聚醚砜、乳液型聚醚醚酮、乳液型N-苯基马来酰亚胺–马来酸酐–苯乙烯三元共聚物、溶剂型环氧、水溶型聚乙烯吡咯烷酮中一种或者几种的组合。
所述步骤(2)中塑料切片为聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚酰胺、聚酰亚胺、聚甲醛、聚苯硫醚、聚醚砜和聚醚醚酮中的一种或者几种的组合。
所述步骤(3)中导热填料为石墨烯、氮化硼、金刚石、碳纤维中的一种或者几种的组合,所述分散剂为聚乙烯蜡、聚丙烯蜡、EVA腊中的一种,所述偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂的一种或者几种的组合。
所述步骤(2)中的排齿型拉丝机头内部结构为两排直立柱钉,外部包裹加热块和温度传感器,机头两个进料口分别对应连续碳质纤维丝束和双螺杆挤出机出料口,通过预先将纤维束穿插排布于柱钉两面,当塑料切片处于熔融态时可充分浸渍连续碳质纤维束。
所述步骤(5)中的打印喷头模块组包括三至五个喷嘴,其将塑料线材、改性塑料线材和连续碳质纤维线材进行间歇式填充打印。
所述的打印喷头模块组,包括线材导管、加热块、传感器、喷嘴、三维传动轴和步进电机。
一种采用权前所述方法制备的高强度高导高强度高导热树脂基连续碳质纤维复合材料,其特征在于,其中连续纤维整体质量占比为10~40wt%,导热填料整体质量占比为0.05~30wt%,聚丙烯塑料质量占比30~90wt%。
所述的高强度高导高强度高导热树脂基连续碳质纤维复合材料,其特征在于,其是采用3D打印成型技术使连续纤维实现在制品中预先铺设丝路,其增强纤维形成打印零件的主干、产生增强效果,且具有优异的导热和力学性能。
本发明的有益效果为:
1、本发明提供的高强度高导高强度高导热树脂基连续碳质纤维复合材料及其制备方法,通过对材料—工艺—结构—特性关系进行深入研究,同时研究新的测试工艺和制备方法,实现扩展可用材料的范围的目的。本发明通过独特的工艺及配方设计,在采用3D打印成型技术使用连续纤维以实现在制品中预先铺设丝路,通过增强纤维形成打印零件的“主干”产生增强效果,使复合材料及由其打印的零件具有优异的导热和力学性能。
2、本发明将连续碳质纤维丝束引入连续纤维打印技术中,通过改性和密炼、熔融挤出制备热树脂基连续碳质纤维线材,引入合适的导热填料、并克服其各材料之间相容性的问题,使复合材料中连续纤维整体质量占比为20%,导热填料整体质量占比为20%,塑料质量占比60%,从而使其同时具有优异的导热和力学性能。
3、本发明应用于3D打印成型技术使用连续纤维可实现在制品中预先铺设丝路,通过增强纤维形成打印零件的“主干”产生增强效果,同时使制备的复合材料具有优异的导热和力学性能。本发明提供的高强度高导高强度高导热树脂基连续碳质纤维复合材料,具有高的比强度、疲劳强度、导热性能,优异的耐磨性和耐蚀性,以及高的尺寸稳定性,可以广泛应用于航空航天和汽车制造等领域。
上述是发明技术方案的概述,以下结合具体实施方式,对本发明做进一步说明。
附图说明
图1是本发明实施例高强度高导高强度高导热树脂基连续碳质纤维复合材料的扫描电镜图(500倍);
图2是本发明实施例高强度高导高强度高导热树脂基连续碳质纤维复合材料的扫描电镜图(1500倍)。
具体实施方式
为更进一步阐述本发明为达到预定目的所采取的技术手段及功效,以下结合较佳实施例,对本发明的具体实施方式详细说明。
参见附图1~2,本发明提供的高强度高导高强度高导热树脂基连续碳质纤维复合材料的制备方法,包括以下步骤:
(1)制备连续碳质纤维丝束:将连续聚丙烯腈基碳纤维、沥青基碳纤维、石墨烯纤维和碳纳米管纤维加捻、浸渍上浆,集束后即可制备连续碳质纤维丝束;
上浆剂为溶液型上浆剂、乳液型上浆剂、水溶型上浆剂之一;具体为乳液型聚氨酯、乳液型聚酰胺、乳液型聚酰亚胺、乳液型苯氧树脂、乳液型聚醚砜、乳液型聚醚醚酮、乳液型N-苯基马来酰亚胺–马来酸酐–苯乙烯三元共聚物、溶剂型环氧、水溶型聚乙烯吡咯烷酮中一种或者几种的组合;
其中的塑料切片为聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚酰胺、聚酰亚胺、聚甲醛、聚苯硫醚、聚醚砜和聚醚醚酮中的一种或者几种的组合;
(2)制备连续碳质纤维线材:准备原料,所述原料为连续碳质纤维丝束40~90%wt和塑料切片10~60wt%,将塑料切片从主喂料口加入双螺杆挤出机中,将连续碳质纤维丝束从出料口前端加入排齿型拉丝机头中,通过双螺杆挤出机熔融挤出,反应温度160~320℃螺杆转速为150~300r/min,经拉条、冷却、牵伸、卷绕制备连续碳质纤维线材;
(3)制备改性塑料线材:按重量百分比准备原料:
Figure BDA0002882043520000051
Figure BDA0002882043520000061
将原料加入密炼机中密炼出料后,经双螺杆挤出机熔融挤出,经拉条、冷却、牵伸、卷绕制备改性塑料线材;其中密炼的加工温度160~320℃螺杆转速为50~100r/min;熔融挤出的加工温度160~320℃螺杆转速为150~300r/min;
其中,排齿型拉丝机头内部结构为两排直立柱钉,外部包裹加热块和温度传感器,机头两个进料口分别对应连续碳质纤维丝束和双螺杆挤出机出料口,通过预先将纤维束穿插排布于柱钉两面,当塑料切片处于熔融态时可充分浸渍连续碳质纤维束;
(4)制备塑料线材:将塑料切片加入双螺杆挤出机熔融挤出,经拉条、冷却、牵伸、卷绕制备塑料线材;
(5)制备高强度高导高强度高导热树脂基连续碳质纤维复合材料:将步骤(2)、步骤(3)和步骤(4)中制备的连续碳质纤维线材、改性塑料线材和塑料线材加入打印喷头模块组,采用3D打印成型工艺按预设路径打印成型,即可制备高强度高导高强度高导热树脂基连续碳质纤维复合材料。
其打印喷头模块组包括三至五个喷嘴,其将塑料线材、改性塑料线材和连续碳质纤维线材进行间歇式填充打印;该打印喷头模块组,包括线材导管、加热块、传感器、喷嘴、三维传动轴和步进电机。
一种采用前述方法制备的高强度高导高强度高导热树脂基连续碳质纤维复合材料,其中连续纤维整体质量占比为10~40wt%,导热填料整体质量占比为0.05~30wt%,塑料质量占比30~90wt%;其是采用3D打印成型技术使连续纤维实现在制品中预先铺设丝路,其增强纤维形成打印零件的主干、产生增强效果,且具有优异的导热和力学性能。
参见附图1~2,可以看到,其微观为多层褶皱结构,而且其各种组分相容性、均匀性好,各处结构形貌的一致性好。
实施例1
本实施例提供的高强度高导高强度高导热树脂基连续碳质纤维复合材料及其制备方法,包括以下步骤:
(1)连续碳质纤维丝束的制备:将连续聚丙烯腈基碳纤维、沥青基碳纤维、石墨烯纤维加捻、浸渍乳液型聚氨酯浆,集束后获得连续碳质纤维丝束;
(2)连续碳质纤维线材的制备:准备原料,所述原料包括(按重量百分比)连续碳质纤维丝束(90wt%)和聚酰胺切片(美国杜邦101L,10wt%),将聚酰胺切片从主喂料口加入双螺杆挤出机中,将连续碳质纤维丝束从出料口前端加入排齿型拉丝机头中,通过双螺杆挤出机熔融挤出(反应温度260~280℃螺杆转速为300r/min),经拉条、冷却、牵伸、卷绕制备连续碳质纤维线材;
(3)改性聚酰胺线材的制备:按重量百分比准备原料:
聚酰胺切片 38%
石墨烯 60%
聚丙烯蜡 1%
硅烷偶联剂 1%
将步骤(3)中所述原料加入密炼机中密炼出料后(加工温度260~280℃螺杆转速为100r/min)经双螺杆挤出机熔融挤出(加工温度260~280℃螺杆转速为300r/min),经拉条、冷却、牵伸、卷绕制备改性塑料线材;
(4)制备聚酰胺线材:将塑料切片加入双螺杆挤出机熔融挤出,经拉条、冷却、牵伸、卷绕制备聚酰胺线材;
(5)制备高强度高导高强度高导热树脂基连续碳质纤维复合材料:将步骤(2)、步骤(3)和步骤(4)中制备的连续碳质纤维线材、改性聚酰胺线材和聚酰胺线材加入打印喷头模块组,采用3D打印成型工艺按径向打印成型,即可制备高强度高导高强度高导热树脂基连续碳质纤维复合材料,该复合材料中连续纤维整体质量占比为40%,导热填料整体质量占比为30%,聚酰胺塑料质量占比30%。
参见附图1~2,所述的高强度高导高强度高导热树脂基连续碳质纤维复合材料,其是采用3D打印成型技术使连续纤维实现在制品中预先铺设丝路,其增强纤维形成打印零件的主干、产生增强效果,且具有优异的导热和力学性能。
实施例2
本实施例提供的废旧塑料再生增强型回收碳纤维热塑性复合材料及其制备方法,包括以下步骤:
(1)连续碳质纤维丝束的制备:将连续聚丙烯腈基碳纤维、沥青基碳纤维、石墨烯纤维加捻、浸渍乳液型聚氨酯浆,集束后获得连续碳质纤维丝束;
(2)连续碳质纤维线材的制备:准备原料,所述原料包括(按重量百分比)连续碳质纤维丝束(80%)和聚乙烯切片(辽宁省华锦通达化工股份有限公司HD5502S,20%),将聚乙烯切片从主喂料口加入双螺杆挤出机中,将连续碳质纤维丝束从出料口前端加入排齿型拉丝机头中,通过双螺杆挤出机熔融挤出(加工温度160~190℃螺杆转速为150r/min),经拉条、冷却、牵伸、卷绕制备连续碳质纤维线材;
(3)改性聚乙烯线材的制备:准备原料,所述原料包括(按重量百分比):
聚乙烯切片 49%
氮化硼 50%
聚丙烯蜡 0.3%
钛酸酯偶联剂 0.7%
将步骤(3)中所述原料加入密炼机中密炼出料后(加工温度160~190℃螺杆转速为80r/min)经双螺杆挤出机熔融挤出(加工温度160~190℃螺杆转速为150r/min),经拉条、冷却、牵伸、卷绕制备改性塑料线材;
(4)制备聚乙烯线材:将聚乙烯切片加入双螺杆挤出机熔融挤出,经拉条、冷却、牵伸、卷绕制备聚乙烯线材;
(5)制备高强度高导高强度高导热树脂基连续碳质纤维复合材料:将步骤(2)、步骤(3)和步骤(4)中制备的连续碳质纤维线材、改性聚乙烯线材和聚乙烯线材加入打印喷头模块组,采用3D打印成型工艺按径向打印成型,即可制备高强度高导高强度高导热树脂基连续碳质纤维复合材料,其中复合材料中连续纤维整体质量占比为20%,导热填料整体质量占比为20%,聚乙烯塑料质量占比60%。
实施例3
本实施例提供的废旧塑料再生增强型回收碳纤维热塑性复合材料及其制备方法,包括以下步骤:
(1)连续碳质纤维丝束的制备:将连续聚丙烯腈基碳纤维、石墨烯纤维、碳纳米管纤维加捻、浸渍水溶型聚乙烯吡咯烷酮浆,集束后获得连续碳质纤维丝束;
(2)连续碳质纤维线材的制备:准备原料,所述原料包括(按重量百分比)连续碳质纤维丝束(60%)和聚苯硫醚切片(日本宝理1140A6,40%),将聚苯硫醚切片从主喂料口加入双螺杆挤出机中,将连续碳质纤维丝束从出料口前端加入排齿型拉丝机头中,通过双螺杆挤出机熔融挤出(加工温度290~320℃螺杆转速为200r/min),经拉条、冷却、牵伸、卷绕制备连续碳质纤维线材;
(3)改性聚苯硫醚线材的制备:准备原料,所述原料包括(按重量百分比):
聚苯硫醚切片 70%
金刚石 29%
聚丙烯蜡 0.5%
硅烷偶联剂 0.5%
将步骤(3)中所述原料加入密炼机中密炼出料后(加工温度290~320℃螺杆转速为100r/min)经双螺杆挤出机熔融挤出(加工温度290~320℃螺杆转速为200r/min),经拉条、冷却、牵伸、卷绕制备改性塑料线材;
(4)制备聚苯硫醚线材:将塑料切片加入双螺杆挤出机熔融挤出,经拉条、冷却、牵伸、卷绕制备聚苯硫醚线材;
(5)制备高强度高导高强度高导热树脂基连续碳质纤维复合材料:将步骤(2)、步骤(3)和步骤(4)中制备的连续碳质纤维线材、改性聚苯硫醚线材和聚苯硫醚线材加入打印喷头模块组,采用3D打印成型工艺按径向打印成型,即可制备高强度高导高强度高导热树脂基连续碳质纤维复合材料,其中复合材料中连续纤维整体质量占比为20%,导热填料整体质量占比为10%,聚苯硫醚塑料质量占比70%。
实施例4
本实施例提供的废旧塑料再生增强型回收碳纤维热塑性复合材料及其制备方法,包括以下步骤:
(1)连续碳质纤维丝束的制备:将连续聚丙烯腈基碳纤维、石墨烯纤维、碳纳米管纤维加捻、浸渍溶液型乙烯–丙烯酸甲酯–甲基丙烯酸缩水甘油酯三元无规共聚物浆,集束后获得连续碳质纤维丝束;
(2)连续碳质纤维线材的制备:准备原料,所述原料包括(按重量百分比)连续碳质纤维丝束(40%)和聚丙烯切片(韩国SK R370Y,60%),将聚丙烯切片从主喂料口加入双螺杆挤出机中,将连续碳质纤维丝束从出料口前端加入排齿型拉丝机头中,通过双螺杆挤出机熔融挤出(加工温度180~195℃螺杆转速为150r/min),经拉条、冷却、牵伸、卷绕制备连续碳质纤维线材;
(3)改性聚丙烯线材的制备:准备原料,所述原料包括(按重量百分比):
聚丙烯切片 99.7%
碳纤维 0.1%
聚丙烯蜡 0.1%
硅烷偶联剂 0.1%
将步骤(3)中所述原料加入密炼机中密炼出料后(加工温度180~195℃螺杆转速为50r/min)经双螺杆挤出机熔融挤出(加工温度180~195℃螺杆转速为150r/min),经拉条、冷却、牵伸、卷绕制备改性塑料线材;
(4)制备聚丙烯线材:将塑料切片加入双螺杆挤出机熔融挤出,经拉条、冷却、牵伸、卷绕制备塑料线材;
(5)制备高强度高导高强度高导热树脂基连续碳质纤维复合材料:将步骤(2)、步骤(3)和步骤(4)中制备的连续碳质纤维线材、改性聚丙烯线材和聚丙烯线材加入打印喷头模块组,采用3D打印成型工艺按径向打印成型,即可制备高强度高导高强度高导热树脂基连续碳质纤维复合材料,其中复合材料中连续纤维整体质量占比为10%,导热填料整体质量占比为0.09%,聚丙烯塑料质量占比89.1%。
实施例5
本实施例提供的废旧塑料再生增强型回收碳纤维热塑性复合材料及其制备方法,与实施例1~4均基本上相同,其不同之处在于:
该高强度高导高强度高导热树脂基连续碳质纤维复合材料中,连续纤维整体质量占比为9.95wt%,导热填料整体质量占比为0.05wt%,聚碳酸酯塑料质量占比90wt%。
在其他实施例中,其中的塑料切片还可以选择聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚酰胺、聚酰亚胺、聚甲醛、聚苯硫醚、聚醚砜和聚醚醚酮中的一种或者几种的组合;导热填料还可以选择为石墨烯、氮化硼、金刚石、碳纤维中的一种或者几种的组合,所述分散剂选择聚乙烯蜡、聚丙烯蜡、EVA腊中的一种,所述偶联剂选择为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂的一种或者几种的组合,各组分的具体比例也可以在本发明记载的范围内具体选择,均可以达到本发明记载的技术效果。因此,本发明不再一一列出。
应用实施例1
对实施例1~5所制得的高强度高导高强度高导热树脂基连续碳质纤维复合材料的导热系数以及拉伸强度进行测试,结果如下表所示。
样品 导热系数(W/(m×k)) 拉伸强度(MPa)
实施例1 12.5 800
实施例2 7.3 695
实施例3 4.1 557
实施例4 0.5 223
实施例5 0.45 216
可见本发明实施例1~5所制得的高强度高导高强度高导热树脂基连续碳质纤维复合材料具有优异的导热和力学性能,扩大了材料的应用领域。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故采用与本发明上述实施例相同或近似的技术特征,均在本发明的保护范围之内。

Claims (10)

1.一种高强度高导热树脂基连续碳质纤维复合材料的制备方法,其特征在于,包括以下步骤:
(1)制备连续碳质纤维丝束:将连续聚丙烯腈基碳纤维、沥青基碳纤维、石墨烯纤维和碳纳米管纤维加捻、浸渍上浆,集束后即可制备连续碳质纤维丝束;
(2)制备连续碳质纤维线材:准备原料,所述原料为连续碳质纤维丝束40~90%wt和塑料切片10~60wt%,将塑料切片从主喂料口加入双螺杆挤出机中,将连续碳质纤维丝束从出料口前端加入排齿型拉丝机头中,通过双螺杆挤出机熔融挤出,反应温度160~320℃螺杆转速为150~300r/min,经拉条、冷却、牵伸、卷绕制备连续碳质纤维线材;
(3)制备改性塑料线材:按重量百分比准备原料:
塑料切片 38~99.7% 导热填料 0.1~60% 分散剂 0.1~1% 偶联剂 0.1~1%
将原料加入密炼机中密炼出料后,经双螺杆挤出机熔融挤出,经拉条、冷却、牵伸、卷绕制备改性塑料线材;其中密炼的加工温度160~320℃螺杆转速为50~100r/min;熔融挤出的加工温度160~320℃螺杆转速为150~300r/min;
(4)制备塑料线材:将塑料切片加入双螺杆挤出机熔融挤出,经拉条、冷却、牵伸、卷绕制备塑料线材;
(5)制备高强度高导热树脂基连续碳质纤维复合材料:将制备的连续碳质纤维线材、改性塑料线材和塑料线材加入打印喷头模块组,采用3D打印成型工艺按预设路径打印成型,即可制备高强度高导热树脂基连续碳质纤维复合材料。
2.如权利要求1所述高强度高导热树脂基连续碳质纤维复合材料的制备方法,其特征在于,所述步骤(1)中上浆剂为溶液型上浆剂、乳液型上浆剂、水溶型上浆剂之一。
3.如权利要求3所述高强度高导热树脂基连续碳质纤维复合材料的制备方法,其特征在于,所述的上浆剂,为乳液型聚氨酯、乳液型聚酰胺、乳液型聚酰亚胺、乳液型苯氧树脂、乳液型聚醚砜、乳液型聚醚醚酮、乳液型N-苯基马来酰亚胺–马来酸酐–苯乙烯三元共聚物、溶剂型环氧、水溶型聚乙烯吡咯烷酮中一种或者几种的组合。
4.如权利要求1所述高强度高导热树脂基连续碳质纤维复合材料的制备方法,其特征在于,所述步骤(2)中塑料切片为聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚酰胺、聚酰亚胺、聚甲醛、聚苯硫醚、聚醚砜和聚醚醚酮中的一种或者几种的组合。
5.如权利要求1所述高强度高导热树脂基连续碳质纤维复合材料的制备方法,其特征在于,所述步骤(3)中导热填料为石墨烯、氮化硼、金刚石、碳纤维中的一种或者几种的组合,所述分散剂为聚乙烯蜡、聚丙烯蜡、EVA腊中的一种,所述偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂的一种或者几种的组合。
6.如权利要求1所述高强度高导热树脂基连续碳质纤维复合材料的制备方法,其特征在于,所述步骤(2)中的排齿型拉丝机头内部结构为两排直立柱钉,外部包裹加热块和温度传感器,机头两个进料口分别对应连续碳质纤维丝束和双螺杆挤出机出料口,通过预先将纤维束穿插排布于柱钉两面,当塑料切片处于熔融态时可充分浸渍连续碳质纤维束。
7.如权利要求1所述高强度高导热树脂基连续碳质纤维复合材料的制备方法,其特征在于,所述步骤(5)中的打印喷头模块组包括三至五个喷嘴,其将塑料线材、改性塑料线材和连续碳质纤维线材进行间歇式填充打印。
8.如权利要求7所述高强度高导热树脂基连续碳质纤维复合材料的制备方法,其特征在于,所述的打印喷头模块组,包括线材导管、加热块、传感器、喷嘴、三维传动轴和步进电机。
9.一种采用权利要求1~8之一所述方法制备的高强度高导热树脂基连续碳质纤维复合材料,其特征在于,其中连续纤维整体质量占比为10~40wt%,导热填料整体质量占比为0.05~30wt%,塑料质量占比30~90wt%。
10.如权利要求9所述的高强度高导热树脂基连续碳质纤维复合材料,其特征在于,其是采用3D打印成型技术使连续纤维实现在制品中预先铺设丝路,其增强纤维形成打印零件的主干、产生增强效果,且具有优异的导热和力学性能。
CN202110002965.4A 2021-01-04 2021-01-04 一种高强度高导热树脂基连续碳质纤维复合材料及其制备方法 Pending CN112812547A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110002965.4A CN112812547A (zh) 2021-01-04 2021-01-04 一种高强度高导热树脂基连续碳质纤维复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110002965.4A CN112812547A (zh) 2021-01-04 2021-01-04 一种高强度高导热树脂基连续碳质纤维复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112812547A true CN112812547A (zh) 2021-05-18

Family

ID=75856963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110002965.4A Pending CN112812547A (zh) 2021-01-04 2021-01-04 一种高强度高导热树脂基连续碳质纤维复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112812547A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113561474A (zh) * 2021-08-03 2021-10-29 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 连续碳纤维增强pps打印线材的制备系统、方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106863772A (zh) * 2017-02-27 2017-06-20 上海大学 热塑性树脂基连续纤维预浸料的双喷头3d打印系统和方法
US20200131419A1 (en) * 2018-10-26 2020-04-30 Georgia Tech Research Corporation Polymer-polymer fiber composite for high thermal conductivity
US20200248014A1 (en) * 2017-10-19 2020-08-06 Tcpoly, Inc. Thermally conductive polymer based filament
US20200346399A1 (en) * 2018-01-18 2020-11-05 Arctic Biomaterials Oy Fiber-reinforced 3d printing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106863772A (zh) * 2017-02-27 2017-06-20 上海大学 热塑性树脂基连续纤维预浸料的双喷头3d打印系统和方法
US20200248014A1 (en) * 2017-10-19 2020-08-06 Tcpoly, Inc. Thermally conductive polymer based filament
US20200346399A1 (en) * 2018-01-18 2020-11-05 Arctic Biomaterials Oy Fiber-reinforced 3d printing
US20200131419A1 (en) * 2018-10-26 2020-04-30 Georgia Tech Research Corporation Polymer-polymer fiber composite for high thermal conductivity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴人洁 主编: "《现代分析技术》", 28 February 1987, 上海科学技术出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113561474A (zh) * 2021-08-03 2021-10-29 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 连续碳纤维增强pps打印线材的制备系统、方法及其应用

Similar Documents

Publication Publication Date Title
CN103342858B (zh) 一种短玻纤增强聚丙烯复合材料及其制备方法和应用
CN1433443B (zh) 嵌入聚合物基质中的取向纳米纤维
CN104151707B (zh) 导热性能优良的碳纤维增强树脂复合材料及其制备方法
CN101338051B (zh) 长玻璃纤维增强聚丙烯材料及其制备方法
CN102276982B (zh) 一种聚苯硫醚与耐高温尼龙复合物及其制备方法
CN104629254A (zh) 一种连续纤维增强聚醚醚酮复合材料预浸带的制造方法及设备
CN106221204B (zh) 玻纤增强聚酰胺组合物及其制备方法和应用
CN104669636B (zh) 一种混杂纤维增强聚丙烯高强度复合材料的制备方法
CN101190982A (zh) 一种长纤维增强聚丙烯/尼龙复合材料及其制备方法
CN1962732A (zh) 连续长玻璃纤维增强聚丙烯树脂粒料的制备方法
CN103194059A (zh) 一种低成本低添加导电尼龙6复合材料及其制备方法
CN107151437A (zh) 一种碳纤维增强聚酮复合材料及其制备方法和应用
KR20200139141A (ko) 열가소성 수지 조성물, 섬유 강화 플라스틱 성형용 재료 및 성형물
CN112812547A (zh) 一种高强度高导热树脂基连续碳质纤维复合材料及其制备方法
CN106589579A (zh) 一种高尺寸稳定性、长玻璃纤维增强聚丙烯复合材料及其制备方法
CN105482255A (zh) 一种环保阻燃、长玻璃纤维增强聚丙烯复合材料及其制备方法
CN106751805A (zh) 一种高流动性长玻璃纤维增强pa66复合材料及其制造方法
CN109535701A (zh) 一种尼龙6直接注射成型用高效增强型阻燃功能母粒及其制备方法
CN104448806A (zh) 低翘曲率的无卤阻燃碳纤维增强尼龙合金材料及制备方法
CN116063780B (zh) 一种热塑性导电复合材料及其制备方法和应用
CN111117203A (zh) 一种导电、高力学性能且低翘曲纤维增强聚苯醚复合材料及其制备方法
CN113185801B (zh) 一种可应用于空间环境的聚醚醚酮复合材料3d打印丝材及其制备方法
CN111704797A (zh) 一种低翘曲、导电且高力学性能的纤维增强尼龙复合材料及其制备方法
CN111187514A (zh) 一种绝缘导热pps复合材料及其制备方法
CN111117068A (zh) 一种改性聚丙烯复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518