CN112812509A - 一种纳米抗菌母粒的制备方法 - Google Patents

一种纳米抗菌母粒的制备方法 Download PDF

Info

Publication number
CN112812509A
CN112812509A CN202011636512.9A CN202011636512A CN112812509A CN 112812509 A CN112812509 A CN 112812509A CN 202011636512 A CN202011636512 A CN 202011636512A CN 112812509 A CN112812509 A CN 112812509A
Authority
CN
China
Prior art keywords
mixture
inorganic antibacterial
preparation
antibacterial agent
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011636512.9A
Other languages
English (en)
Inventor
成钢
方蔚然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Gemaisi New Material Technology Co ltd
Original Assignee
Wuxi Gemaisi New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Gemaisi New Material Technology Co ltd filed Critical Wuxi Gemaisi New Material Technology Co ltd
Priority to CN202011636512.9A priority Critical patent/CN112812509A/zh
Publication of CN112812509A publication Critical patent/CN112812509A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2427/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2286Oxides; Hydroxides of metals of silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Abstract

本发明涉及纳米抗菌技术,具体为一种纳米抗菌母粒的制备方法,包括如下步骤:步骤一:将分散剂与粘结剂混合,获得分散剂表面均匀铺展粘结剂的混合物;其中分散剂与粘结剂的质量比为65∶1~80∶1;步骤二:对无机抗菌剂进行加热,加热温度为90℃升至112℃,向步骤一得到的混合物中加入无机抗菌剂,混合比例为步骤一中的混合物:无机抗菌剂为1:8~1:15,其中无机抗菌剂选用Ag2O,平均粒径在20~50nm之间;步骤三:将步骤二所得的混合物在高速混合器中混合均匀,混合时间为20‑30分钟,混合温度为90℃‑110℃,以获得表面均匀黏附有分散剂和粘结剂的无机抗菌剂混合物;步骤四:将步骤三所得无机抗菌剂混合物与聚烯烃基体树脂按照1:12.5~1:6的比例混合;在200℃‑270℃下经双螺杆挤出机复合挤出造粒。

Description

一种纳米抗菌母粒的制备方法
技术领域
本发明涉及纳米抗菌技术,具体为一种纳米抗菌母粒的制备方法。
背景技术
母粒全名塑料母粒,是20世纪80年代发展起来的一种塑料加工助剂,它是由超量的化学助剂、载体树脂和分散剂等所组成。母粒是指在塑料加工成型过程中,为了操作上的方便,将所需要的各种助剂、填料与少量载体树脂先进行混合混炼,经过挤出机等设备计量、混合、熔融、挤出、切粒等加工过程制得的颗粒料,称为母粒。
目前中国专利CN202010805741.2公开了一种高分散性聚烯烃抗菌母粒的制备方法,如图1所示,按照JY/T015-1996《感耦等离子体原子发射光谱方法通则》对上述技术方案制造的涤纶抗菌短纤进行测试,其Ag的含量为2851mg/kg,其抗菌效果如图2所示,只能达到大肠杆菌抑菌率92%,金黄色葡萄球菌99%。
从图1和图2的数据可以看出上述专利的方案难以解决纳米抗菌母粒在制造过程中的核心问题,即无机抗菌剂在基体树脂中的分散性不佳,导致母粒在纤维制造过程中添加量过大、制造成本高。
二次造粒并不会提高无机抗菌剂在基体树脂的分散均匀性,无机抗菌剂无法做到在树脂中进行较好的分散。
发明内容
本发明要解决的技术问题是克服现有的缺陷,提供一种纳米抗菌母粒的制备方法,通过对无机抗菌剂的材料选择、粒径选择、温度控制和工艺调整,提高母粒中纳米抗菌材料分散均匀度,从而降低纳米抗菌材料使用量。
为了解决上述技术问题,本发明提供了如下的技术方案:一种纳米抗菌母粒的制备方法,包括如下步骤:
步骤一:将分散剂与粘结剂混合,获得分散剂表面均匀铺展粘结剂的混合物;其中分散剂与粘结剂的质量比为65∶1~80∶1;
步骤二:对无机抗菌剂进行加热,加热温度为90℃升至112℃,向步骤一得到的混合物中加入无机抗菌剂,混合比例为步骤一中的混合物:无机抗菌剂为1:8~1:15,其中无机抗菌剂选用Ag2O,平均粒径在20~50nm之间;
步骤三:将步骤二所得的混合物在高速混合器中混合均匀,混合时间为20-30分钟,混合温度为90℃-110℃,以获得表面均匀黏附有分散剂和粘结剂的无机抗菌剂混合物;
步骤四:将步骤三所得无机抗菌剂混合物与聚烯烃基体树脂按照1:12.5~1:6的比例混合;在200℃-270℃下经双螺杆挤出机复合挤出造粒。
作为优选,造粒的粘度特性在0.665~0.712dL/g。
作为优选,所述Ag2O通过溶胶-凝胶法制备Ag2O无机抗菌剂,分别称取不同摩尔比的硝酸银溶于200mL蒸馏水置于三口烧瓶中磁力搅拌至透明溶液;再加入一定量的柠檬酸磁力继续搅拌至充分溶解,其中硝酸银和柠檬酸的摩尔比为1:1.3;用恒压滴定漏斗滴加氨水调节PH≈8;在80℃恒温水浴蒸发水分形成湿凝胶,再在80℃真空干燥箱内干燥24h直至恒重,得到干凝胶;将干凝胶于空气气氛中600℃煅烧2h,自然冷却至室温,研磨后得到纳米Ag2O无机抗菌剂。
作为优选,所述分散剂选自聚乙烯蜡、羧化聚乙烯蜡、氧化聚乙烯蜡、高沸点石蜡、微晶石蜡、固体石蜡、聚丙烯蜡中的一种或两种以上的混合物。
作为优选,所述Ag2O在步骤二中混合后的粒径为0.5~11μm,其D50约2μm。
作为优选,所述聚烯烃基体树脂为聚酯、聚酰胺、聚丙烯、聚乙烯、聚氯乙烯、乙烯共聚物、丙烯共聚物中一种或两种以上的混合物。
作为优选,所述无机抗菌剂的Ag2O具体为以UHMWPE冻胶纤维为基质并掺杂Ag2O的混合物。
作为优选,所述Ag2O离子在进行UHMWPE冻胶纤维为基质的掺杂之前会先进行有机化改性。
本发明有益效果:本发明的制备方法一方面可以实现50nm以下粒径纳米Ag2O作为抗菌材料进行有效抗菌;另一方面,通过对纳米Ag2O的接枝改性实现与聚烯烃基体树脂更好的混合,使得分散性更好,最终使得该母粒制备的抗菌纤维中母粒添加量少、抗菌性能好、制造成本低。
附图说明
图1为现有技术中的抗菌纤维的银离子浓度测试结果;
图2为现有技术中的抗菌纤维的抗菌性能检测结果;
图3为本发明制备的抗菌纤维的银离子浓度测试结果;
图4为本发明制备的抗菌纤维的抗菌性能检测结果;
图5为纳米Ag2O改性前后FT-IR图谱;
图6为KH570改性前后Ag2O粒子的粒径分布示意图;
图7为电镜五千倍下的使用改性Ag2O抗菌母粒制备的聚酯纤维表面SEM照片;
图8为电镜两千倍下的使用改性Ag2O抗菌母粒制备的聚酯纤维表面SEM照片;
图9为电镜两百倍下的使用改性Ag2O抗菌母粒制备的聚酯纤维表面SEM照片。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
一种纳米抗菌母粒的制备方法,包括如下步骤:
步骤一:将分散剂与粘结剂混合,获得分散剂表面均匀铺展粘结剂的混合物;其中分散剂与粘结剂的质量比为65∶1~80∶1;
步骤二:对无机抗菌剂进行加热,加热温度为90℃升至112℃,向步骤一得到的混合物中加入无机抗菌剂,混合比例为步骤一中的混合物:无机抗菌剂为1:8~1:15,其中无机抗菌剂选用Ag2O,平均粒径在20~50nm之间;
步骤三:将步骤二所得的混合物在高速混合器中混合均匀,混合时间为20-30分钟,混合温度为90℃-110℃,以获得表面均匀黏附有分散剂和粘结剂的无机抗菌剂混合物;
步骤四:将步骤三所得无机抗菌剂混合物与聚烯烃基体树脂按照1:12.5~1:6的比例混合;在200℃-270℃下经双螺杆挤出机复合挤出造粒。
造粒的粘度特性在0.665~0.712dL/g。
所述Ag2O通过溶胶-凝胶法制备Ag2O无机抗菌剂,分别称取不同摩尔比的硝酸银溶于200mL蒸馏水置于三口烧瓶中磁力搅拌至透明溶液;再加入一定量的柠檬酸磁力继续搅拌至充分溶解,其中硝酸银和柠檬酸的摩尔比为1:1.3;用恒压滴定漏斗滴加氨水调节PH≈8;在80℃恒温水浴蒸发水分形成湿凝胶,再在80℃真空干燥箱内干燥24h直至恒重,得到干凝胶;将干凝胶于空气气氛中600℃煅烧2h,自然冷却至室温,研磨后得到纳米Ag2O无机抗菌剂。
所述分散剂选自聚乙烯蜡、羧化聚乙烯蜡、氧化聚乙烯蜡、高沸点石蜡、微晶石蜡、固体石蜡、聚丙烯蜡中的一种或两种以上的混合物。
所述Ag2O在步骤二中混合后的粒径为0.5~11μm,其D50约2μm。
所述聚烯烃基体树脂为聚酯、聚酰胺、聚丙烯、聚乙烯、聚氯乙烯、乙烯共聚物、丙烯共聚物中一种或两种以上的混合物。
所述无机抗菌剂的Ag2O具体为以UHMWPE冻胶纤维为基质并掺杂Ag2O的混合物。
所述Ag2O离子在进行UHMWPE冻胶纤维为基质的掺杂之前会先进行有机化改性。
如图3所示,采用本发明制备方法制成的抗菌母粒在抗菌纤维制造过程中,按照JY/T015-1996《感耦等离子体原子发射光谱方法通则》检测,银含量为1635ppm、仅为现有技术制备抗菌纤维中银含量的58%,但其抗菌效果如图4所示,按照GB/T20944.3-2008的标准进行检定可以看出本发明的抗菌效果,对大肠杆菌、金黄色葡萄球菌和白色念珠菌的抗菌率同时达到99%。从以上数据可以看出本发明抗菌母粒制造的抗菌纤维达到同等或更优的抗菌效果,纳米Ag2O抗菌剂使用量降低了40%以上。
实施例一
在制备纳米抗菌母粒时,包括如下步骤:
步骤一:将分散剂与粘结剂混合,获得分散剂表面均匀铺展粘结剂的混合物;其中分散剂与粘结剂的质量比为65∶1,其中分散剂为高沸点石蜡、微晶石蜡和固体石蜡的混合物;
对无机抗菌剂进行加热,加热温度为90℃,向步骤一得到的混合物中加入无机抗菌剂,混合比例为步骤一中的混合物:无机抗菌剂为1:8,其中无机抗菌剂选用Ag2O,平均粒径在20nm,所得的混合物在高速混合器中混合均匀,混合时间为20分钟,混合温度为90℃,以获得表面均匀黏附有分散剂和粘结剂的无机抗菌剂混合物;将所得无机抗菌剂混合物与聚烯烃基体树脂按照1:6的比例混合;在200℃下经双螺杆挤出机复合挤出造粒;造粒的粘度特性在0.712dL/g。
实施例二
在制备纳米抗菌母粒时,包括如下步骤:
步骤一:将分散剂与粘结剂混合,获得分散剂表面均匀铺展粘结剂的混合物;其中分散剂与粘结剂的质量比为80∶1,其中分散剂为高沸点石蜡、微晶石蜡和固体石蜡的混合物;
对无机抗菌剂进行加热,加热温度为112℃,向步骤一得到的混合物中加入无机抗菌剂,混合比例为步骤一中的混合物:无机抗菌剂为1:15,其中无机抗菌剂选用Ag2O,平均粒径在50nm,所得的混合物在高速混合器中混合均匀,混合时间为30分钟,混合温度为110℃,以获得表面均匀黏附有分散剂和粘结剂的无机抗菌剂混合物;将所得无机抗菌剂混合物与聚烯烃基体树脂按照1:12.5的比例混合;在270℃下经双螺杆挤出机复合挤出造粒;造粒的粘度特性在0.665dL/g。
其中纳米Ag2O通过溶胶-凝胶法制备Ag2O无机抗菌剂,分别称取不同摩尔比的硝酸银(1:0.02,1:0.05,1:0.08,1:0.1)溶于200mL蒸馏水置于三口烧瓶中磁力搅拌至透明溶液;再加入一定量的柠檬酸磁力继续搅拌至充分溶解,其中硝酸银和柠檬酸的摩尔比为1:1.3;用恒压滴定漏斗滴加氨水(25wt%~28wt%质量分数)调节PH≈8;在80℃恒温水浴蒸发水分形成湿凝胶,再在80℃真空干燥箱内干燥24h直至恒重,得到干凝胶;将干凝胶于空气气氛中600℃煅烧2h,自然冷却至室温,研磨后得到纳米Ag2O无机抗菌剂;通过电镜观察Ag2O的平均粒径在40nm左右。
对Ag2O进行表面有机化改性,具体操作如下:
纳米粒子表面接枝TMP:称取一定量硅烷偶联剂KH570,加入到乙醇与水的配比为4:l的混合溶液中,于室温下水解1h。将8.0g已干燥的纳米Ag2O,通过超声波分散于乙醇中,得到纳米粒子的乙醇悬浮液。将悬浮液与已在乙醇中进行水解的偶联剂倒入烧瓶中,升温至80℃,并用电动搅拌机搅拌。反应10h后,离心分离纳米粒子,并用乙醇进行多次洗涤,最后置于真空干燥箱中干燥8h,记为Ag2O—TMP,待用。
MAA在纳米Ag2O表面的聚合接枝反应取5g上述Ag2O.TMP,置于乙醇中超声分散5min,转移至三口烧瓶中,并加入一定量的偶氮二异丁腈(AIBN),升温至80℃,进行磁力加热搅拌。待AIBN全部溶解后,加入一定量的单体MAA,在N,惰性氛围中反应4h,其中MAA的用量与纳米粒子的质量比为3:1。反应结束后高速离心分离,并用乙醇进行多次洗涤,以除去其中未反应的MAA等可溶性物质。而后于70℃下,用丙酮对纳米粒子进行多次抽提。最后将纳米粒子置于真空干燥箱中干燥,制得接枝有聚甲基丙烯酸的功能化纳米Ag2O,记为Ag2O—TMP—PMAA,待用。
傅里叶变换红外光谱(FT.IR)测试采用NicoletiS50型傅里叶变换红外光谱仪(FT—IR)对样品测试,并通过EZOMNIC软件对红外检测数据进行处理分析。
粒径分布测试采用粒径测试范围为0.02~2000μm的激光粒度分析仪,对各种样品分别进行粒径分布分析。
稳定性测试,通过沉降实验,选择不同的时间点进行拍照,对比纳米粒子改性前后在有机溶剂中的沉降情况。
Ag2O/UHMWPE复合纤维的制备,将UHMWPE及一定量的抗氧剂JY一1010与白油加入溶解釜中,其中UHMWPE的添加量为6.00%,恒温至70℃下高速搅拌。将一定量的纳米粒子(未改性的纳米Ag2O或Ag2O—TMP.PMAA)通过超声波乳化仪分散至丙酮中,得到纳米粒子丙酮悬浮液,并缓慢滴加到溶解釜中,135℃下高速搅拌使UHMWPE溶胀并蒸馏进行回收丙酮。然后通过挤出机形成冻胶原丝,冻胶原丝经冷却、萃取,而后进行超倍热拉伸,得到纳米Ag2O/UHMWPE复合纤维;
由于UHMWPE冻胶纤维具有疏松的大网络结构,而冻胶纤维的萃取机理为纤维溶剂与萃取剂之间的双扩散,因此若将纳米粒子均匀分散于萃取剂中,随着双扩散的进行纳米粒子也可以扩散进入UHMWPE冻胶纤维的网络内,纳米Ag2O在冻胶纤维内分散稳定且均匀,并且成团后的尺寸为50~100nm。
在对本发明的纳米抗菌母粒进行FT-IR测试结果分析图5呈现了纳米Ag2O不同功能化阶段的FT-IR光谱图,其1-Ag2O;2-Ag2O-TMP:3-Ag2O-TMP-PMAA由图可知在1700cm-1。左右出现了羰基振动峰,在1480~1440cm-1之间出现了亚甲基的伸缩振动峰,1388cm-1左右为甲基的弯曲振动峰,1300~1000cm-1之间为C-C骨架键的振动峰,这充分说明MAA已在纳米Ag2O的表面发生了聚合接枝反应。
粒径分布结果分析,为检测经表面有机化处理对纳米粒子的粒径分布的影响,用激光粒度分析仪进行粒径分布检测,结果如图6所示。纳米Ag2O在未经改性的状态下,其粒径主要分布在(1~40)微米之间,从粒径分布的积分曲线6(a)图线2中看出,约80%的纳米粒子的粒径小于10微米,且在(1~10)微米之间有2个峰,其D50约8微米。
TMP—PMAA粒子,粒径大小分布曲线如6(b)中图线1显示,其粒径分布向小粒径的方向移动,其粒径主要分布在(0.5~11)微米之间,粒径大小主要集中在1微米左右,其D50约2微米。
这是由于纳米粒子表面能很高,极容易发生团聚。而改性后的纳米粒子表面接枝上了有机链段,增大了空间位阻,并且降低了纳米粒子的表面能,增大了小粒径的颗粒比例。这说明表面改性处理有助于减小纳米粒子的平均粒径,这将改善纳米粒子在聚合物基体中的分散性。
以上为本发明较佳的实施方式,本发明所属领域的技术人员还能够对上述实施方式进行变更和修改,因此,本发明并不局限于上述的具体实施方式,凡是本领域技术人员在本发明的基础上所作的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (8)

1.一种纳米抗菌母粒的制备方法,其特征在于:包括如下步骤:
步骤一:将分散剂与粘结剂混合,获得分散剂表面均匀铺展粘结剂的混合物;其中分散剂与粘结剂的质量比为65∶1~80∶1;
步骤二:对无机抗菌剂进行加热,加热温度为90℃升至112℃,向步骤一得到的混合物中加入无机抗菌剂,混合比例为步骤一中的混合物:无机抗菌剂为1:8~1:15,其中无机抗菌剂选用Ag2O,平均粒径在20~50nm之间;
步骤三:将步骤二所得的混合物在高速混合器中混合均匀,混合时间为20-30分钟,混合温度为90℃-110℃,以获得表面均匀黏附有分散剂和粘结剂的无机抗菌剂混合物;
步骤四:将步骤三所得无机抗菌剂混合物与聚烯烃基体树脂按照1:12.5~1:6的比例混合;在200℃-270℃下经双螺杆挤出机复合挤出造粒。
2.根据权利要求1所述的纳米抗菌母粒的制备方法,其特征在于:造粒的粘度特性在0.665~0.712dL/g。
3.根据权利要求1所述的纳米抗菌母粒的制备方法,其特征在于:所述Ag2O通过溶胶-凝胶法制备Ag2O无机抗菌剂,分别称取不同摩尔比的硝酸银溶于200mL蒸馏水置于三口烧瓶中磁力搅拌至透明溶液;再加入一定量的柠檬酸磁力继续搅拌至充分溶解,其中硝酸银和柠檬酸的摩尔比为1:1.3;用恒压滴定漏斗滴加氨水调节PH≈8;在80℃恒温水浴蒸发水分形成湿凝胶,再在80℃真空干燥箱内干燥24h直至恒重,得到干凝胶;将干凝胶于空气气氛中600℃煅烧2h,自然冷却至室温,研磨后得到纳米Ag2O无机抗菌剂。
4.根据权利要求1所述的纳米抗菌母粒的制备方法,其特征在于:所述分散剂选自聚乙烯蜡、羧化聚乙烯蜡、氧化聚乙烯蜡、高沸点石蜡、微晶石蜡、固体石蜡、聚丙烯蜡中的一种或两种以上的混合物。
5.根据权利要求1所述的纳米抗菌母粒的制备方法,其特征在于:所述Ag2O在步骤二中混合后的粒径为0.5~11μm,其D50约2μm。
6.根据权利要求1所述的纳米抗菌母粒的制备方法,其特征在于:所述聚烯烃基体树脂为聚酯、聚酰胺、聚丙烯、聚乙烯、聚氯乙烯、乙烯共聚物、丙烯共聚物中一种或两种以上的混合物。
7.根据权利要求1所述的纳米抗菌母粒的制备方法,其特征在于:所述无机抗菌剂的Ag2O具体为以UHMWPE冻胶纤维为基质并掺杂Ag2O的混合物。
8.根据权利要求8所述的纳米抗菌母粒的制备方法,其特征在于:所述Ag2O离子在进行UHMWPE冻胶纤维为基质的掺杂之前会先进行有机化改性。
CN202011636512.9A 2020-12-31 2020-12-31 一种纳米抗菌母粒的制备方法 Pending CN112812509A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011636512.9A CN112812509A (zh) 2020-12-31 2020-12-31 一种纳米抗菌母粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011636512.9A CN112812509A (zh) 2020-12-31 2020-12-31 一种纳米抗菌母粒的制备方法

Publications (1)

Publication Number Publication Date
CN112812509A true CN112812509A (zh) 2021-05-18

Family

ID=75858267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011636512.9A Pending CN112812509A (zh) 2020-12-31 2020-12-31 一种纳米抗菌母粒的制备方法

Country Status (1)

Country Link
CN (1) CN112812509A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158571A (zh) * 2021-12-17 2022-03-11 武汉苏泊尔炊具有限公司 抗菌材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326470A (zh) * 2017-08-30 2017-11-07 马鞍山中港服饰有限公司 一种抗菌持久改性聚酯纤维的加工方法
CN111593432A (zh) * 2020-05-26 2020-08-28 苏州金莱特化纤有限公司 一种防腐抗菌功能纤维及其制备工艺
CN111909399A (zh) * 2020-08-12 2020-11-10 无菌时代复合新材料(苏州)有限公司 一种高分散性聚烯烃抗菌母粒及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326470A (zh) * 2017-08-30 2017-11-07 马鞍山中港服饰有限公司 一种抗菌持久改性聚酯纤维的加工方法
CN111593432A (zh) * 2020-05-26 2020-08-28 苏州金莱特化纤有限公司 一种防腐抗菌功能纤维及其制备工艺
CN111909399A (zh) * 2020-08-12 2020-11-10 无菌时代复合新材料(苏州)有限公司 一种高分散性聚烯烃抗菌母粒及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王建荣等: "载银沸石/PMMA抗菌复合义齿基托材料的研究", 《现代口腔医学杂志》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114158571A (zh) * 2021-12-17 2022-03-11 武汉苏泊尔炊具有限公司 抗菌材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110343406B (zh) 一种含氟硅烷改性氧化石墨烯及其制备方法和应用
Maeda et al. Synthesis and characterization of carboxylic acid-functionalized polypyrrole-silica microparticles
DeArmitt et al. Synthesis of novel polyaniline colloids using chemically grafted poly (N-vinylpyrrolidone)-based stabilizers
US8101838B2 (en) Water-soluble nanoparticles with controlled aggregate sizes
CN104387671B (zh) 一种pa6/pp/碳纳米管高性能纳米复合材料的制备方法
CN105315565B (zh) 一种磺化聚苯乙烯/聚苯胺/纳米银复合微球及其制备方法
CN1509206A (zh) 金属纳米颗粒的胶体溶液、金属-聚合物纳米复合物及其制备方法
CN109265762A (zh) 一种核壳结构银基导热橡胶复合材料及其制备方法
CN112812509A (zh) 一种纳米抗菌母粒的制备方法
KR101763317B1 (ko) 발수 및 항균 기능을 동시에 구비하는 코어-쉘 구조의 나노입자 및 이를 이용한 코팅용 조성물 및 이들의 제조방법
Sheng et al. Investigation of morphological, structural and electrical properties of Cds/PMMA nanocomposite film prepared by solution casting method
Akbari et al. Synthesis of high dispersible hydrophilic poly (ethylene glycol)/vinyl silane grafted silica nanoparticles to fabricate protein repellent polyethylene nanocomposite
Wang et al. Polypyrrole nanoparticles and dye absorption properties
CN105945302A (zh) 一种抗氧化纳米铜粉的制备方法
CN112695521A (zh) 一种卤胺改性抗菌介孔材料及合成方法
CN113401884B (zh) 一种非对称结构的表面功能化二维黑磷纳米片的制备方法
US11807739B2 (en) Fibrous nanoparticle-filled poly (methyl methacrylate) composites and methods of fabrication
CN109485983A (zh) 一种导电塑料母粒及其加工工艺
CN112851937B (zh) 一种可分散的聚吡咯共聚物的制备方法
CN102070919B (zh) 一种二氧化硅/层状无机粘土复合粉末及其制备方法
CN113322539A (zh) 一种抗菌纤维材料的制备方法
Stejskal et al. Polyaniline dispersions 10. Coloured microparticles of variable density prepared using stabilizer mixtures
CN112404450A (zh) 一种高分散高球形度多孔银粉的化学合成方法
CN115850834B (zh) 一种高性能聚乙烯/纳米二氧化硅复合电缆绝缘树脂及其制备方法与应用
JP2005015623A (ja) 有機溶媒膨潤性ミクロゲル及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518