CN112799457B - 电压校准电路和方法 - Google Patents

电压校准电路和方法 Download PDF

Info

Publication number
CN112799457B
CN112799457B CN202011627543.8A CN202011627543A CN112799457B CN 112799457 B CN112799457 B CN 112799457B CN 202011627543 A CN202011627543 A CN 202011627543A CN 112799457 B CN112799457 B CN 112799457B
Authority
CN
China
Prior art keywords
voltage
calibration
reference voltage
signal
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011627543.8A
Other languages
English (en)
Other versions
CN112799457A (zh
Inventor
陈伟盛
温长清
梁爱梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Pango Microsystems Co Ltd
Original Assignee
Shenzhen Pango Microsystems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Pango Microsystems Co Ltd filed Critical Shenzhen Pango Microsystems Co Ltd
Priority to CN202011627543.8A priority Critical patent/CN112799457B/zh
Priority to JP2023527405A priority patent/JP2023548703A/ja
Priority to PCT/CN2021/079683 priority patent/WO2022141797A1/zh
Publication of CN112799457A publication Critical patent/CN112799457A/zh
Application granted granted Critical
Publication of CN112799457B publication Critical patent/CN112799457B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/468Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/461Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本申请实施例提供的一种电压校准电路和方法,该电压校准电路包括参考电压产生模块、比较器和校准控制器,参考电压产生模块用于获取参考电压,并将参考电压发送至比较器,参考电压是参考电压产生模块根据温度数据获取的,比较器包括第一电压接收端和第二电压接收端,比较器与参考电压产生模块连接,比较器通过第二电压接收端接收待校准电压,比较器用于将参考电压和待校准电压进行比较,得到电压比较结果,校准控制器与比较器的结果输出端连接,校准控制器用于根据比较器传输的比较结果对待校准电压进行校准,得到目标电压。本申请通过结合参考电压产生模块、比较器和校准控制器在尽可能减少额外硬件功耗的同时可以实现电压的自校准。

Description

电压校准电路和方法
技术领域
本申请实施例涉及集成电路设计领域,具体而言,涉及但不限于一种电压校准电路和方法。
背景技术
LDO(Low Dropout Regulator,低压差线性稳压器)是线性DC(Direct Current)电压调节器,即LDO是一种线性的降压型的电源管理芯片,LDO具有成本低、噪音低以及静态电流小等优点。因此,如何简单有效的对LDO电路系统的电压进行校准是亟待解决的问题。
发明内容
本申请实施例提供的一种电压校准电路和方法,主要解决的技术问题如何简化电压自校准的过程。
第一方面,本申请实施例提供一种电压校准电路,该电压校准电路包括:参考电压产生模块,所述参考电压产生模块用于获取参考电压,并将所述参考电压发送至比较器,所述参考电压是所述参考电压产生模块根据温度数据获取的;比较器,所述比较器包括第一电压接收端和第二电压接收端,所述比较器通过所述第一电压接收端与所述参考电压产生模块连接,所述比较器通过所述第二电压接收端接收待校准电压,所述比较器用于将所述参考电压和所述待校准电压进行比较,得到电压比较结果;校准控制器,所述校准控制器与所述比较器的结果输出端连接,所述校准控制器用于根据所述比较器传输的所述比较结果对所述待校准电压进行校准,得到目标电压。
可选的,所述电压校准电路包括主体电路,所述主体电路与所述比较器连接,所述主体电路用于获取待校准电压,并将所述待校准电压发送给所述比较器。
可选的,所述电压校准电路还包括计数器;所述计数器的第一连接端与所述校准控制器连接,所述计数器的第二连接端与所述主体电路连接,所述计数器用于接收所述校准控制器发送的升降控制信号,并根据所述升降控制信号得到计数值。
可选的,所述主体电路包括校准判断模块、误差放大器和驱动模块;所述校准判断模块与所述计数器连接,所述校准判断模块用于接收所述计数器发送的所述计数值,并根据所述计数值确定是否结束校准操作;所述误差放大器与所述校准判断模块连接,所述误差放大器用于在所述校准判断模块确定所述校准操作结束时,将所述目标电压稳定在固定电压范围;所述驱动模块与所述误差放大器连接,所述驱动模块用于产生所述主体电路工作所需的电流。
可选的,所述参考电压产生模块包括温度传感器、模数转换器和参考电压获取单元;所述温度传感器与所述模数转换器连接,所述温度传感器用于采集温度数据,并将所述温度数据传输给所述模数转换器;所述模数转换器的第一连接端与所述温度传感器连接,所述模数转换器的第二连接端与所述参考电压获取单元连接,所述模数转换器用于将所述温度数据转换为温度数字信号,并将所述温度数字信号传输给所述参考电压获取单元;所述参考电压获取单元的第一连接端与所述模数转换器连接,所述参考电压获取单元的第二连接端与所述比较器连接,所述参考电压获取单元用于获取与所述温度数字信号对应的电压,并将该电压作为参考电压传输给所述比较器。
可选的,所述电压校准电路包括校准信号产生模块,所述校准信号产生模块与所述校准控制器连接,所述校准信号产生模块用于产生校准信号,所述校准信号用于触发所述校准控制器执行电压校准操作。
可选的,所述校准信号产生模块包括第一信号产生模块,所述校准控制器通过第一信号接收端与所述第一信号产生模块连接,所述第一信号接收端用于接收所述第一信号产生模块发送的第一信号,所述第一信号是用户输入的校准信号。
可选的,所述校准信号产生模块包括第二信号产生模块,所述校准控制器通过第二信号接收端与所述第二信号产生模块连接,所述第二信号接收端用于在所述参考电压发生变化时接收所述第二信号产生模块发送的第二信号。
可选的,所述校准信号产生模块包括第三信号产生模块,所述校准控制器通过第三信号接收端与所述第三信号产生模块连接,所述第三信号接收端用于接收所述第三信号产生模块发送的第三信号,所述第三信号是时钟信号。
第二方面,本申请实施例还提供一种电压校准方法,该方法应用于第一方面的电压校准电路,所述方法包括:获取待校准电压和参考电压,所述参考电压是所述参考电压产生模块根据温度数据获取的;将所述待校准电压和所述参考电压进行比较,得到电压比较结果;根据所述电压比较结果对所述待校准电压进行校准。
本申请实施例提供的一种电压校准电路和方法,该电压校准电路包括参考电压产生模块、比较器以及校准控制器,其中,参考电压产生模块用于获取参考电压,并将所述参考电压发送至比较器,所述参考电压是所述参考电压产生模块根据温度数据获取的,所述比较器包括第一电压接收端和第二电压接收端,所述比较器通过所述第一电压接收端与所述参考电压产生模块连接,所述比较器通过所述第二电压接收端接收待校准电压,所述比较器用于将所述参考电压和所述待校准电压进行比较,得到电压比较结果,所述校准控制器与所述比较器的结果输出端连接,所述校准控制器用于根据所述比较器传输的所述比较结果对所述待校准电压进行校准,得到目标电压。本申请通过结合参考电压产生模块、比较器以及校准控制器可以更加简单有效的实现对电压的自校准。
本发明其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本发明说明书中的记载变的显而易见。
附图说明
图1为本申请一实施例提供的一种电压校准电路的结构示意图;
图2为本申请一实施例提供的一种电压校准电路中校准控制器的结构示意图;
图3为本申请另一实施例提供的一种电压校准电路的结构示意图;
图4本申请另一实施例提供的一种电压校准电路中主体电路的结构示意图;
图5为本申请另一实施例提供的一种具体电压校准电路结构示意图;
图6为本申请另一实施例提供的一种具体电压校准电路中不同信号获取示意图;
图7为本申请又一实施例提供的一种具体电压校准电路结构示意图;
图8为本申请一实施例提供的一种电压校准方法的方法流程图。
具体实施方式
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
目前FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)中,对电压的调整方案比较多,现有的电压修调方式在进行校准时通常需要根据测试结果输入固定的修调信息,然后根据可修调的位数来实现对电压的修调。然而,这些修调方式通常会使测试向量变得很复杂,在一定程度上增加了测试所需的成本。换句话说,现有的电压修调方式需要根据温度等环境因素对应进行不同的修调,当需要更为精准的调控时,通常会受到电路工艺的影响,即现有的电压修调方式在设计上存在局限性,无法更好的实现自校准。
针对上述问题,发明人提出了本申请实施例提供的电压校准电路和方法,本申请实施例通过参考电压产生模块、比较器以及校准控制器可简化电压自校准的实现条件,在一定程度上可以降低电压自校准的要求。
请参阅图1,为本申请一实施例提供的一种电压校准电路,该电压校准电路100可以包括参考电压产生模块110、比较器120以及校准控制器130。
在一些实施方式中,参考电压产生模块110的用于获取参考电压,并将所述参考电压发送至比较器120,所述参考电压是所述参考电压产生模块110根据温度数据获取的,本发明实施例中电压校准电路100可以是线性低压差稳压器(LDO)。
作为一种方式,比较器120可以包括第一电压接收端121和第二电压接收端122,所述比较器120可以通过所述第一电压接收端121与所述参考电压产生模块110连接,同时所述比较器120可以通过所述第二电压接收端122接收待校准电压,所述比较器120用于将所述参考电压和所述待校准电压进行比较,得到电压比较结果,所述待校准电压也可以称为LDO实际电压。
在一些实施方式中,比较器120在接收到第一电压接收端121和第二电压接收端122发送的参考电压和待校准电压时,其可以对参考电压和待校准电压进行比较,以获得电压比较结果。具体的,比较器120可以判断待校准电压是否大于所述参考电压,当确定所述待校准电压大于所述参考电压时,所述比较器120输出的电压比较结果是1,本发明实施例可以将所述电压比较结果1作为升降控制信号发送给校准控制器130,以指示校准控制器130降低所述待校准电压。
作为另一种方式,当确定待校准电压小于参考电压时,所述比较器120输出的电压比较结果是0,本发明实施例可以将所述电压比较结果0作为升降控制信号发送给校准控制器130,以指示校准控制器130升高所述待校准电压。校准控制器130在对待校准电压进行校准时可以按照预设电压进行校准。例如,在确定待校准电压Vout小于参考电压Vref时,校准控制器130在进行校准时可以对待校准电压Vout每次增大预设电压值O,校准一次则待校准电压Vout的值变大一次,每校准一次,校准后的电压=待校准电压Vout+O。另外,当确定待校准电压等于参考电压时,所述电压校准电路则可以停止执行对电压的校准操作。
在进行校准时,预设电压值可以保持不变,即每次校准时,增大或者减小的电压值是相同的。例如,待校准电压Vout为3V,而参考电压Vref为4V时,预设电压值O可以为0.2,即在对待校准电压进行校准时每次为待校准电压Vout增加0.2V,在校准过程中该预设电压值O是保持不变的,此时获取的校准电压Vout有3.2V、3.4V、3.6V、3.8V以及4.0V。
在另一些实施方式中,预设电压值也可以是变化的,即在进行电压校准时,所述预设电压值可以是递减的。例如,在第一次校准时,预设电压值O可以是0.5V,在第二次校准时所述预设电压值O可以变成0.4V,在第三次校准时所述预设电压值O可以变成0.3V等。
另外,本发明实施例在对待校准电压进行校准时,也可以在校准开始时用最大预设电压值O对待校准电压进行校准,当待校准电压和参考电压之间的关系不符合预设关系时,则可以减小预设电压值。例如,待校准电压Vout为3V,而参考电压Vref则为4V,最大预设电压值O可以为0.4V,因为待校准电压Vout小于参考电压Vref,此时则可以增大待校准电压Vout,此时获取的待校准电压Vout分别是3.4V和3.8V,在第三次校准时3.8V+0.4=4.2,明显大于4V,此时则可以不利用最大预设电压值进行校准,即减小最大预设电压值。例如,可以将最大预设电压值O减小一半,得到0.2V,此时再利用最新的待校准电压加上预设电压值,得到的值刚好是4V。通过该方法校准控制器130可以加快电压校准速度。
作为另一种方式,所述校准控制器130与所述比较器120的结果输出端123连接,所述校准控制器130用于根据所述比较器120传输的所述比较结果对所述待校准电压进行校准,得到目标电压。
在另一些实施方式中,为了更清楚的理解校准控制器130的结构,本发明实施例给出了如图2所示的结构示意图,通过图2可以看出电压校准电路100除了可以包括参考电压产生模块110、比较器120以及校准控制器130以外,其还可以包括校准信号产生模块140,所述校准信号产生模块与所述校准控制器130连接,所述校准信号产生模块140用于产生校准信号,所述校准信号用于触发所述校准控制器130执行电压校准操作。
在一些实施方式中,校准信号产生模块140可以包括第一信号产生模块141,所述校准控制器130通过第一信号接收端与所述第一信号产生模块141连接,所述第一信号接收端用于接收所述第一信号产生模块141发送的第一信号,所述第一信号是用户输入的校准信号,所述第一信号也可以称为强制校准信号。另外,第一信号可以是芯片发送的强制校准命令,所述第一信号不受电压校准电路的约束,即第一信号产生模块141可以属于所述电压校准电路100,也可以是独立于所述电压校准电路100之外芯片。
作为另一种方式,所述校准信号产生模块140还可以包括第二信号产生模块142,所述校准控制器130通过第二信号接收端与所述第二信号产生模块142连接,所述第二信号接收端用于在所述参考电压发生变化时接收所述第二信号产生模块142发送的第二信号,所述第二信号也可以称为状态变化信号,所述状态变换信号主指的是参考电压变化信号。换句话说,当参考电压信号发生改变时,所述第二信号被置为1并传输给校准控制器130,以指示所述校准控制器130执行电压校准操作。
另外,所述参考电压通常会因为温度的变化而发生改变,即当温度发生改变时所述第二信号产生模块142便会产生第二信号,并将所述第二信号传输给校准控制器130,以指示校准控制器130根据最新的参考电压对输出电压校准电路100的输出电压进行校准。换句话说,第二信号可以是根据校准控制器130对参考电压变化的监控,当参考电压变化时,将使第二信号有效,令所述校准控制器130执行校准操作。
在另一些实施方式中,所述校准信号产生模块140还可以包括第三信号产生模块143,所述校准控制器130通过第三信号接收端与所述第三信号产生模块143连接,所述第三信号接收端用于接收所述第三信号产生模块143发送的第三信号,所述第三信号是时钟信号。本发明实施例在所述电压校准电路校准完成后,间隔M+1个时钟周期后,自动发送重新校准命令,即第三信号产生模块143可以每隔M+1个时钟周期发送一个第三信号,以通过所述第三信号指示校准控制器执行电压校准操作。
在一些实施方式中,校准控制器130只要接收到第一信号、第二信号以及第三信号中的任一信号均会执行电压校准操作,即经过一定的时钟周期,或者是外部强行注入校准命令,或者是校准参考条件发生改变,校准控制器130就会执行电压校准操作,所述校准参考条件可以是参考电压是否改变,或者是比较条件是否改变,或者是当前环境是否改变等。通过图2可以清楚的知道第一信号、第二信号以及第三信号之间满足的“或”的逻辑关系。
需要说明的是,本发明实施例中的参考电压可以是固定不变的也可以是不断发生变化的,即当电压校准电路所处的环境温度发生改变时,所述参考电压也会对应发生改变。另外,所述参考电压可以是根据实际输出参考电压和实际输出参考电压不断校准获取的,即参考电压也可以是通过不断校准获取的,参考电压的校准过程与待校准电压的校准过程类似这里不进行一一赘述了。
本申请实施例提供的一种电压校准电路,该电压校准电路包括参考电压产生模块、比较器以及校准控制器,其中,参考电压产生模块用于获取参考电压,并将所述参考电压发送至比较器,所述参考电压是所述参考电压产生模块根据温度数据获取的,所述比较器包括第一电压接收端和第二电压接收端,所述比较器通过所述第一电压接收端与所述参考电压产生模块连接,所述比较器通过所述第二电压接收端接收待校准电压,所述比较器用于将所述参考电压和所述待校准电压进行比较,得到电压比较结果,所述校准控制器与所述比较器的结果输出端连接,所述校准控制器用于根据所述比较器传输的所述比较结果对所述待校准电压进行校准,得到目标电压。本申请通过结合参考电压产生模块、比较器以及校准控制器可以更加简单有效的实现对电压的自校准。另外,本申请实施例中的校准控制器可以接收多个信号,其在一定程度上不仅可以方便LDO系统的后台校准,而且可以通过不同的控制命令(信号)进行前台校准,如此可以更加简单有效的通过FPGA对逻辑时钟资源进行校准控制。
请参阅图3,为本申请另一实施例提供的一种电压校准电路,该电压校准电路200可以包括参考电压产生模块210、主体电路220、比较器230以及校准控制器240。
在一些实施方式中,主体电路220可以与比较器230连接,所述主体电路220用于获取待校准电压,并将所述待校准电压发送给所述比较器230。本发明实施例中主体电路220可以称为LDO主体电路,所述主体度220主要用于完成所述电压校准电路的一些基础工作,如稳压以及驱动等操作。
在另一些实施方式中,所述主体电路220可以包括校准判断模块221、误差放大器222和驱动模块223,校准判断模块221、误差放大器222和驱动模块223这三者的关系可以如图4所示,从图4看出所述校准判断模块221与所述计数器250连接,所述校准判断模块221用于接收所述计数器250发送的所述计数值,并根据所述计数值确定是否结束校准操作。
可选地,所述误差放大器222与所述校准判断模块221连接,所述误差放大器222用于在所述校准判断模块221确定所述校准操作结束时,将所述目标电压稳定在固定电压范围。另外,所述驱动模块223与所述误差放大器222连接,所述驱动模块223用于产生所述主体电路220工作所需的电流。
需要说明的是,参考电压产生模块210可以设置在主体电路220之外,也可以直接设置在主体电路内,或者所述电压校准电路200可以不设置有参考电压产生模块210,此时所述校准控制器340可以复用所述参考电压产生模块310,如果单纯需要外部注入参考电压码值,通常是在外部写好测试向量,将码值进行遍历,挑选出合适的参考电压码值进行存储。换句话说,本发明实施例可以直接利用校准控制器340接收参考电压,即所述参考电压可以是用户直接通过接口注入的,而后校准控制器340便可以对其接收的待校准电压和参考电压执行比较以及校准等操作,如此可以简化测试向量的设计,并且在一定程度上可以降低测试成本。
通过上述介绍可以知道,参考电压产生模块210主要用于产生参考电压,所述参考电压是在当前环境下,所要求的LDO参考电压值,该参考值需要外部注入并存储于电路中,即使芯片掉电该参考电压依然被保存在电路中。在不同环境下,电压校准电路内部的传感监测模块能够监控当前环境,并将其监测的信息反馈给参考电压产生模块210,然后将对应的LDO参考电压值进行采样抽调,作为当前环境下LDO校准的一个参考量,所述当前环境可以包括物理环境以及芯片的具体应用等。
另外,本发明实施例中参考电压产生模块可以设置与所述主体电路220中,也可以与所主体电路独立设置。可选地,所述主体电路220也可以单独设置有电压修调单元,所述电压修调单元是在所述电压校准电路200对应的产品完成之前,测试人员通过所述电压修调单元实现的电压的修调。即电压修调单元的主要是在测试阶段对待校准电压进行校准的电路,而校准控制器则可是电压校准电路200对应的产品在完成之后对待校准电压进行校准的到电路。
在另一些实施方式中,电压校准电路200还可以包括计数器250,所述计数器250的第一连接端251与所述校准控制器240连接,所述计数器250的第二连接端252与所述主体电路220连接,所述计数器250用于接收所述校准控制器240发送的升降控制信号,并根据所述升降控制信号得到计数值。另外,所述计数器250可以与所述主体电路220的校准判断模块221连接,当所述计数器250获取到计数值之后其可以将所述计数值发送给所述校准判断模块221,并指示所述校准判断模块221根据所述计数值确定是否停止电压的校准操作。
为了更清楚的理解参考电压产生模块210、主体电路220、比较器230、校准控制器240以及计数器250之间的关系,本发明实施例给出了如图5所示的结构框图,从图5可以看出电压校准电路200可以不包括所述参考电压产生模块210,当不包括所述参考电压产生模块210时,本发明实施例可以直接利用比较器230的第一电压接收端接收从外部注入的参考电压,当选择开关260与第一电压接收端连接时,校准控制器240可以对参考电压进行校准,而当选择开关260与第二电压接收端连接时,校准控制器240则可以实现对待校准电压的校准。
可选地,选择开关260接收到的阶段控制信号为1时,则可以对待校准电压进行校准,而当阶段控制信号为0时则可以对参考电压进行校准,所述阶段控制信号可以是用户输入的,也可以是所述电压校准电路根据实际情况输出的,具体如何触发所述阶段控制信号这里不进行明确限制,可以根据实际情况进行选择。因此,本发明实施例既可以实现对待校准电压的校准,也可以实现对参考电压的校准。
在另一些实施方式中,校准控制器240可以接收时钟信号以及外部控制信号,所述时钟信号可以为时钟1,所述外部控制信号可以是上述实施例提到的第一信号、第二信号以及第三信号中的至少一个信号。校准控制器240在根据比较器230输出的电压比较结果对电压进行校准时可以得到升降控制信号,而后其可以发送所述升降控制信号至计数器250。同时,其也可以传输暂停/开始计数信号、复位信号以及注入信号等至计数器250,这些信号的关系可以如图6所示。
在一个具体的实施方式中,当待校准电压高于参考电压时,所述比较器230的输出为1,升降控制信号则为1,此时可以控制计数器降序计数,以此降低待参考电压;当待校准电压低于参考电压时,所述比较器230的输出为0,升降控制信号则为0,此时可以控制计数器升序计数,以此提高待参考电压。例如,待校准电压Vout为3V,参考电压Vref则为4V,预设电压值O为0.2时,需要对待校准电压进行五次校准,在校准过程中计数器的值分别是1,2,3,4,5和6,可以看出计数器是递增的。需要说明的是所述计数器在计数时其可以接收一个初始计数值,该初始计数值可以是预设的也可以是用户根据实际情况输入的。例如,用户输入的初始计数值为7,此时获取的计数值则分别为7,8,9,10,11和12。
在一些实施方式中,当待校准电压被调整至参考电压附近时,比较器230的输出几乎是与时钟1同频的01变化方波,此时比较器230至少连续出现N个或者N+1次01变化,如此变化触发校准完成信号,且在校准完成之后,本发明实施例可以使待校准电压略高于参考电压。
在另一些实施方式中,校准操作结束之后,计数器250终止计数并保留当前计数值,然后根据该计数值实现对待校准电压的校准。另外,如图2所示,校准控制器240在进行校准时,第一复位信号(即图2中的复位信号1)可以被释放,第二复位信号(即图2中的复位信号2)则可以执行复位操作,在执行校准操作时,校准控制器240可以自动将校准信号拉低,不干扰校准过程。校准完成后,第一复位信号执行复位操作,自动校准操作结束,第二复位信号被释放,电路开始准备M+1个时钟周期,产生自动校准命令,如此便可以实现自动校准的循环。
本申请实施例提供的一种电压校准电路,该电压校准电路包括参考电压产生模块、比较器以及校准控制器,其中,参考电压产生模块用于获取参考电压,并将所述参考电压发送至比较器,所述参考电压是所述参考电压产生模块根据温度数据获取的,所述比较器包括第一电压接收端和第二电压接收端,所述比较器通过所述第一电压接收端与所述参考电压产生模块连接,所述比较器通过所述第二电压接收端接收待校准电压,所述比较器用于将所述参考电压和所述待校准电压进行比较,得到电压比较结果,所述校准控制器与所述比较器的结果输出端连接,所述校准控制器用于根据所述比较器传输的所述比较结果对所述待校准电压进行校准,得到目标电压。本申请通过结合参考电压产生模块、比较器以及校准控制器可以更加简单有效的实现对电压的自校准。另外,本申请实施例通过引入主体电路可以为电压校准电路提供待校准电压,以及引入计数器其不仅可以简化电压校准电路,同时可以避免时序上的混乱,放宽时钟频率的限制。
请参阅图7,为本申请又一实施例提供的一种电压校准电路,该电压校准电路300可以包括参考电压产生模块310、主体电路320、比较器330、校准控制器340以及计数器350。其中,参考电压产生模块310包括温度传感器311、模数转换器312和参考电压获取单元313。
在一些实施方式中,所述温度传感器311与所述模数转换器312连接,所述温度传感器311用于采集温度数据,并将所述温度数据传输给所述模数转换器312。另外,所述模数转换器312的第一连接端3121可以与所述温度传感器311连接,所述模数转换器312的第二连接端3122可以与所述参考电压获取单元313连接,所述模数转换器312用于将所述温度数据转换为温度数字信号,并将所述温度数字信号传输给所述参考电压获取单元313。
本发明实施例可以利用FPGA内部的温度传感器311以及模数转换器312(Analog-to-digital converter,ADC)获取代表当前芯片温度的数字码值,该码值可以作为非易失性存储器的指针,依据指针指向的存储位置,经该温度下要求的LDO电压对应的控制码值写入。在对待校准电压进行校准时可以调出不同温度下的LDO标准参考电压,并将当前温度对应的LDO标准参考电压作为参考电压。换句话说,参考电压产生模块310可以利用温度传感器311以及模数转换器312产生代表当前温度的数字码,而后参考电压获取单元313可以利用获取的温度数字码进行寻址,获取到参考电压对应的数字码值,并将该数字码值对应的电压作为参考电压。
作为一种方式,所述参考电压获取单元313的第一连接端3131与所述模数转换器连接,所述参考电压获取单元313的第二连接端3132与所述比较器330连接,所述参考电压获取单元313用于获取与所述温度数字信号对应的电压,并将该电压作为参考电压传输给所述比较器330。
通过上述介绍可以知道,比较器350在获取到待校准电压和参考电压后,其可以对所述待校准电压和参考电压进行比较,当待校准电压大于参考电压时,校准控制器340可以按照步进下调所述待校准电压,而后再次比较下调后的待校准电压是否大于校准参考电压,如果大于则继续按照步进对待校准电压进行下调。另外,当待校准电压低于参考电压时,校准控制器340则可以上调所述待校准电压。
需要说明的是,在对待校准电压进行校准时一旦在连续的调整步进中同时出现待校准电压的上调和下调,则表示当前校准已经达到最接近参考电压的情况,此时则可以确定当前轮的电压校准操作完成。如此便可以实现LDO系统的后台校准,同时也可以通过控制命令进行前台校准,前台校准可以轻易的通过FPGA丰富的逻辑时钟资源进行控制。
本申请实施例提供的一种电压校准电路,该电压校准电路包括参考电压产生模块、比较器以及校准控制器,其中,参考电压产生模块用于获取参考电压,并将所述参考电压发送至比较器,所述参考电压是所述参考电压产生模块根据温度数据获取的,所述比较器包括第一电压接收端和第二电压接收端,所述比较器通过所述第一电压接收端与所述参考电压产生模块连接,所述比较器通过所述第二电压接收端接收待校准电压,所述比较器用于将所述参考电压和所述待校准电压进行比较,得到电压比较结果,所述校准控制器与所述比较器的结果输出端连接,所述校准控制器用于根据所述比较器传输的所述比较结果对所述待校准电压进行校准,得到目标电压。本申请通过结合参考电压产生模块、比较器以及校准控制器可以更加简单有效的实现对电压的自校准。另外,本发明实施可以通过FPGA丰富的逻辑时钟资源对待校准电压进行灵活的校准,且其在一定程度上可以降低硬件成本。
请参阅图8,为本申请实施例提供的一种电压校准方法的方法流程图,该流程图应用于上述电压校准电路,通过图8可知该方法可以包括步骤S410至步骤S430。
步骤S410:获取待校准电压和参考电压,所述参考电压是所述参考电压产生模块根据温度数据获取的。
步骤S420:将所述待校准电压和所述参考电压进行比较,得到电压比较结果。
步骤S430:根据所述电压比较结果对所述待校准电压进行校准。
本发明实施例在进行电压校准时不需要过分依赖基准电压自身的温度特性曲线,在一定程度上解放了设计裕度。并且,本方案可用于各类需要根据环境设置改变LDO电压的运用,在进行后台前台电压校准时可实现LDO电压相对精确的控制,不仅可以削弱LDO电压过冲,而且可以改善电压恢复速度,优化负载调整率。基于FPGA的应用,电压校准电路不需要过多的硬件设计代价,同时为芯片内建自测试(Built in Self Testing,BIST)提供了可行性。
综上所述,本申请实施例提供的一种电压校准电路和方法,该方法通过利用电压校准电路可以更加简单高效的实现对电压的校准,其中,电压校准电路包括参考电压产生模块、比较器以及校准控制器,其中,参考电压产生模块用于获取参考电压,并将所述参考电压发送至比较器,所述参考电压是所述参考电压产生模块根据温度数据获取的,所述比较器包括第一电压接收端和第二电压接收端,所述比较器通过所述第一电压接收端与所述参考电压产生模块连接,所述比较器通过所述第二电压接收端接收待校准电压,所述比较器用于将所述参考电压和所述待校准电压进行比较,得到电压比较结果,所述校准控制器与所述比较器的结果输出端连接,所述校准控制器用于根据所述比较器传输的所述比较结果对所述待校准电压进行校准,得到目标电压。本申请通过结合参考电压产生模块、比较器以及校准控制器可以更加简单有效的实现对电压的自校准。另外,本申请实施例可以复用参考电压产生模块,只需要外部接入参考电压即可,如此可以提高电压校准的灵活性。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、系统中的功能模块/单元可以被实施为软件(可以用计算系统可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者注入载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本发明不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (3)

1.一种电压校准电路,其特征在于,所述电压校准电路包括:
参考电压产生模块,所述参考电压产生模块用于获取参考电压,并将所述参考电压发送至比较器,所述参考电压是所述参考电压产生模块根据温度数据获取的;
比较器,所述比较器包括第一电压接收端和第二电压接收端,所述比较器通过所述第一电压接收端与所述参考电压产生模块连接,所述比较器通过所述第二电压接收端接收待校准电压,所述比较器用于将所述参考电压和所述待校准电压进行比较,得到电压比较结果;
校准控制器,所述校准控制器与所述比较器的结果输出端连接,所述校准控制器用于在第一复位信号被释放,第二复位信号执行复位操作时,根据所述比较器传输的所述比较结果对所述待校准电压进行校准,得到目标电压;
LDO主体电路,与所述比较器连接,所述LDO主体电路用于获取待校准电压,并将所述待校准电压发送给所述比较器;
校准信号产生模块,所述校准信号产生模块与所述校准控制器连接,所述校准信号产生模块用于产生校准信号,所述校准信号用于触发所述校准控制器执行电压校准操作;所述校准信号产生模块包括第二信号产生模块,所述校准控制器通过第二信号接收端与所述第二信号产生模块连接,所述第二信号接收端用于在所述参考电压发生变化时接收所述第二信号产生模块发送的第二信号;
所述校准信号产生模块还包括第三信号产生模块,所述校准控制器通过第三信号接收端与所述第三信号产生模块连接,所述第三信号接收端用于接收所述第三信号产生模块发送的第三信号,所述第三信号是时钟信号;
所述电压校准电路还包括计数器;所述计数器的第一连接端与所述校准控制器连接,所述计数器的第二连接端与所述主体电路连接,所述计数器用于接收所述校准控制器发送的升降控制信号,并根据所述升降控制信号得到计数值;
其中,所述第三信号产生模块用于在所述第一复位信号执行复位操作,所述第一复位信号被释放时,生成第三信号;所述第二复位信号为所述第一复位信号的反相信号;
所述参考电压产生模块包括温度传感器、模数转换器和参考电压获取单元;
所述温度传感器与所述模数转换器连接,所述温度传感器用于采集温度数据,并将所述温度数据传输给所述模数转换器;
所述模数转换器的第一连接端与所述温度传感器连接,所述模数转换器的第二连接端与所述参考电压获取单元连接,所述模数转换器用于将所述温度数据转换为温度数字信号,并将所述温度数字信号传输给所述参考电压获取单元;
所述参考电压获取单元的第一连接端与所述模数转换器连接,所述参考电压获取单元的第二连接端与所述比较器连接,所述参考电压获取单元用于获取与所述温度数字信号对应的电压,并将该电压作为参考电压传输给所述比较器。
2.根据权利要求1所述的电压校准电路,其特征在于,所述主体电路包括校准判断模块、误差放大器和驱动模块;
所述校准判断模块与所述计数器连接,所述校准判断模块用于接收所述计数器发送的所述计数值,并根据所述计数值确定是否结束校准操作;
所述误差放大器与所述校准判断模块连接,所述误差放大器用于在所述校准判断模块确定所述校准操作结束时,将所述目标电压稳定在固定电压范围;
所述驱动模块与所述误差放大器连接,所述驱动模块用于产生所述主体电路工作所需的电流。
3.一种电压校准方法,其特征在于,应用于权利要求1或2所述的电压校准电路,所述方法包括:
获取待校准电压和参考电压,所述参考电压是所述参考电压产生模块根据温度数据获取的;所述待校准电压由LDO主体电路获取;
将所述待校准电压和所述参考电压进行比较,得到电压比较结果;
根据所述电压比较结果对所述待校准电压进行校准。
CN202011627543.8A 2020-12-31 2020-12-31 电压校准电路和方法 Active CN112799457B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011627543.8A CN112799457B (zh) 2020-12-31 2020-12-31 电压校准电路和方法
JP2023527405A JP2023548703A (ja) 2020-12-31 2021-03-09 電圧校正回路及び方法
PCT/CN2021/079683 WO2022141797A1 (zh) 2020-12-31 2021-03-09 电压校准电路和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011627543.8A CN112799457B (zh) 2020-12-31 2020-12-31 电压校准电路和方法

Publications (2)

Publication Number Publication Date
CN112799457A CN112799457A (zh) 2021-05-14
CN112799457B true CN112799457B (zh) 2022-12-13

Family

ID=75807904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011627543.8A Active CN112799457B (zh) 2020-12-31 2020-12-31 电压校准电路和方法

Country Status (3)

Country Link
JP (1) JP2023548703A (zh)
CN (1) CN112799457B (zh)
WO (1) WO2022141797A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114115427A (zh) * 2021-11-26 2022-03-01 中国电子科技集团公司第五十八研究所 一种SoC中基于EFLASH加载的LDO校准方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635829A (zh) * 2014-12-30 2015-05-20 展讯通信(上海)有限公司 电源转换电路及电压转换方法
CN108023571A (zh) * 2016-10-31 2018-05-11 深圳市中兴微电子技术有限公司 一种校准电路和校准方法
CN109493901A (zh) * 2017-09-11 2019-03-19 爱思开海力士有限公司 具有阻抗校准电路的存储器系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389371C (zh) * 2004-09-16 2008-05-21 中芯国际集成电路制造(上海)有限公司 具有低待机电流的调压器用器件和方法
US7268712B1 (en) * 2006-04-18 2007-09-11 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for calibrating on-die components
US7589650B2 (en) * 2006-12-29 2009-09-15 Industrial Technology Research Institute Analog-to-digital converter with calibration
US7477098B2 (en) * 2007-02-08 2009-01-13 Mediatek Singapore Pte Ltd Method and apparatus for tuning an active filter
US7560979B1 (en) * 2008-02-18 2009-07-14 Mediatek Inc. Reference voltage devices and methods thereof
US7863876B2 (en) * 2008-03-26 2011-01-04 Freescale Semiconductor, Inc. Built-in self-calibration (BISC) technique for regulation circuits used in non-volatile memory
US7973684B2 (en) * 2008-10-27 2011-07-05 Microchip Technology Incorporated Self auto-calibration of analog circuits in a mixed signal integrated circuit device
CN102645578A (zh) * 2011-02-18 2012-08-22 上海诚佳电子科技有限公司 一种传感器模拟自动校准方法及装置
CN105812013A (zh) * 2014-12-31 2016-07-27 北京华大九天软件有限公司 一种用于串行信号通信收发终端电阻的自动校准电路和方法
CN106130547A (zh) * 2016-06-20 2016-11-16 大唐微电子技术有限公司 一种时钟频率校准方法和装置
KR102399537B1 (ko) * 2017-08-03 2022-05-19 삼성전자주식회사 기준전압 생성 장치 및 방법
CN109743036B (zh) * 2019-01-18 2023-06-30 广州全盛威信息技术有限公司 一种校准电路及方法
CN109906556B (zh) * 2019-01-22 2022-10-04 香港应用科技研究院有限公司 具有校准电路的占空比控制器
CN110958021B (zh) * 2019-12-26 2023-08-29 北京时代民芯科技有限公司 一种高速高精度电流舵数模转换器自校准系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635829A (zh) * 2014-12-30 2015-05-20 展讯通信(上海)有限公司 电源转换电路及电压转换方法
CN108023571A (zh) * 2016-10-31 2018-05-11 深圳市中兴微电子技术有限公司 一种校准电路和校准方法
CN109493901A (zh) * 2017-09-11 2019-03-19 爱思开海力士有限公司 具有阻抗校准电路的存储器系统

Also Published As

Publication number Publication date
CN112799457A (zh) 2021-05-14
WO2022141797A1 (zh) 2022-07-07
JP2023548703A (ja) 2023-11-20

Similar Documents

Publication Publication Date Title
US7741900B1 (en) Bias setting device
US10168719B2 (en) Digital low dropout regulator and control method thereof
US8648622B2 (en) Method and device for monitoring a frequency signal
US9329210B1 (en) Voltage monitoring circuit
US7761756B2 (en) Circuit configuration with serial test interface or serial test operating-mode procedure
US9959128B2 (en) Digital sensor system
CN108663070B (zh) 数字传感器系统
CN112799457B (zh) 电压校准电路和方法
US20130034121A1 (en) Semiconductor memory device including temperature test circuit
EP2306650A2 (en) A/d converter and open detection method thereof
US9454197B2 (en) Controller and semiconductor system
EP2442449A2 (en) Signal monitoring systems
US11206036B2 (en) Integrated self-test mechanism for an analog-to-digital converter, a reference voltage source, a low dropout regulator, or a power supply
US20130185012A1 (en) Circuit, apparatus, and method for sensor output correction and sequence control
CN113126545A (zh) 自动驾驶车辆控制器的电源管理系统、方法及装置
US20180069565A1 (en) Semiconductor device and ad conversion device
US8346494B2 (en) Physical quantity measurement device
US20220029566A1 (en) Device And Method For Over-Current Protection
US11290013B2 (en) Integrated circuit apparatus including regulator circuits
CN112882560B (zh) 电源管理方法、电源装置、电子设备及存储介质
US8502721B2 (en) Apparatus and methods thereof for reducing energy consumption for PWM controlled integrated circuits in vehicles
CN113055005A (zh) 一种模拟电路自校准系统及方法
US8907827B2 (en) A/D converter reference calibration
CN113206669B (zh) 一种基于mcu的可调dac缓输出方法及系统
US20100172201A1 (en) Semiconductor device having plurality of operation modes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant