CN112795586B - 羧酸还原酶重组质粒及其构建方法和应用 - Google Patents
羧酸还原酶重组质粒及其构建方法和应用 Download PDFInfo
- Publication number
- CN112795586B CN112795586B CN202110096419.1A CN202110096419A CN112795586B CN 112795586 B CN112795586 B CN 112795586B CN 202110096419 A CN202110096419 A CN 202110096419A CN 112795586 B CN112795586 B CN 112795586B
- Authority
- CN
- China
- Prior art keywords
- ala
- leu
- carboxylic acid
- acid reductase
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0008—Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/01—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
- C12Y102/0103—Aryl-aldehyde dehydrogenase (NADP+) (1.2.1.30)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/01—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
- C12Y102/01031—L-Aminoadipate-semialdehyde dehydrogenase (1.2.1.31), i.e. alpha-aminoadipate reductase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01034—Pantetheine kinase (2.7.1.34)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明公开一种羧酸还原酶重组质粒,该重组质粒通过将羧酸还原酶基因和磷酸泛酰巯基乙胺基转移酶基因连接到pRSFDuet‑1载体上得到。本发明进一步提出了包含该重组质粒的重组菌,并进一步利用该重组菌生产羧酸还原酶SrCAR并应用于1,2‑丙二醇生产。本发明实现了生物制备1,2‑丙二醇的高效合成途径,具有很高的应用前景,利用上述羧酸还原酶SrCAR催化葡萄糖产1,2‑丙二醇,在未对大肠杆菌菌株进行基因敲除的情况下,4h得到的1,2‑丙二醇产量是文献报道利用含有羧酸还原酶MavCAR的基因敲除大肠杆菌菌株合成1,2‑丙二醇产量的4‑5倍。
Description
技术领域
本发明涉及基因工程和微生物技术领域,具体涉及羧酸还原酶重组质粒及其构建方法和应用。
背景技术
传统化学法催化羧酸到醛的还原反应,不仅需要贵金属作为催化剂,而且存在反应条件极端、对相邻官能团的耐受性差、产生副反应等缺点。羧酸还原酶(Carboxylic acidreductase,CAR,EC 1.2.1.30和EC 1.2.1.31)是一类广泛分布于细菌、真菌及部分植物体内的多功能酶,可高效催化由羧酸到醛的化学反应,利用羧酸还原酶生物还原羧酸为相应醛,不仅反应条件温和、底物谱宽泛、针对性强,可专一识别羧酸基团,还能解决化学合成法产生的环保压力和能源问题,显著降低生产过程中的资源与能源消耗。羧酸还原酶还可与醇脱氢酶形成级联反应生成醇类等具有高附加值的下游化合物,可用于添加剂、清洁能源、精细化工及生物医药等领域。具有重要的研究意义及广阔的市场应用前景。
1,2-丙二醇是一种商品化学品,全球需求量约为136万吨/年。1,2-丙二醇主要用于不饱和聚酯树脂、液体洗涤剂、药品、化妆品、防冻剂和除冰剂。生物法制备1, 2-丙二醇的方法主要涉及葡萄糖的糖酵解代谢,在此途径中糖酵解中间体磷酸二羟丙酮首先被脱磷酸化为丙酮醛,丙酮醛随后被还原为D-乳醛和羟基丙酮,D-乳醛最后被还原为R-1,2-丙二醇。该工艺的主要缺点在于丙酮醛等有毒中间体的存在对细胞有所损害,合成途径相对复杂,工业化生产受限。
因此,寻求能够高效转化D-乳酸合成1,2-丙二醇的羧酸还原酶,不仅对于提供 1,2-丙二醇生产工艺具有重要的作用,更重要的意义在于羧酸还原酶法制备1,2-丙二醇是一种简单高效的生物途径,且更贴合绿色化学的宗旨,对1,2-丙二醇的生物合成潜力有重大贡献。迄今为止,适用于D-乳酸合成1,2-丙二醇的羧酸还原酶制备与开发的报道很少,目前仅有一篇应用羧酸还原酶MavCAR还原乳酸合成1,2丙二醇的研究,且该羧酸还原酶在导入工程化大肠杆菌菌株后4h仅合成了不到1mM的R-1, 2-丙二醇,因此亟待寻找能高效还原乳酸合成1,2-丙二醇的羧酸还原酶。
发明内容
发明目的:为解决上述问题,本发明的目的在于提供一种羧酸还原酶SrCAR的重组质粒、包含其的重组菌及其应用。
为实现上述目的,本发明提出了一种羧酸还原酶重组质粒,该重组质粒通过将羧酸还原酶基因和磷酸泛酰巯基乙胺基转移酶基因连接到pRSFDuet-1载体上得到。
具体地,所述羧酸还原酶基因为编码羧酸还原酶SrCAR的基因,其核苷酸序列如SEQ NO.3所示,所述磷酸泛酰巯基乙胺基转移酶基因为编码磷酸泛酰巯基乙胺基转移酶Bssfp的基因,其核苷酸序列如SEQ NO.4所示。
本发明通过对已报道的对乳酸有活力的羧酸还原酶序列进行序列比对从NCBI数据库搜索获得了羧酸还原酶SrCAR的序列,其氨基酸序列如SEQ NO.1所示。CAR主要分布在霉菌、放线菌、厚壁菌、和变形细菌中,序列分析显示原核生物的CAR主要包括5种(CAR1-5),CAR1-2包含了大多数的原核生物CAR,其中CAR1目前是主要的研究热点,代表酶来自于诺卡氏菌属N.iowensis和分枝杆菌属M.marinum;CAR3 主要为假单胞菌,CAR4主要为肠细菌;CAR5主要为变形细菌。基于此,从NCBI 数据库中筛选出来自于塞格尼氏杆菌的SrCAR(ADG98140.1,thioester reductase domain protein[Segniliparus rotundus DSM44985]),其属于CAR1类羧酸还原酶。其蛋白编码序列包含3个典型的CAR家族domain:N端腺苷酸化结构域(A-结构域)、磷酸泛酰巯基乙胺结合结构域(T-结构域)和C端NADP+还原酶结构域(R-结构域)。经序列比对,SrCAR与本菌属广泛研究的ATCC BAA-974的CAR(WP_007468889)相似度最高,为73%,其次为MaCAR(WP_06287945.1和WP_074339516),序列是相似度为59%和60%。
磷酸泛酰巯基乙胺基转移酶Bssfp(WP_003234549.1)的氨基酸序列如SEQ NO.2所示。
本发明进一步提出了一种重组菌,所述重组菌为将上诉的重组质粒转入大肠杆菌细胞中得到。
优选地,所述大肠杆菌细胞为大肠杆菌BL21(DE3)感受态细胞。
进一步地,本发明提出了一种生产羧酸还原酶SrCAR的方法,通过培养上述重组菌,并用IPTG诱导表达,诱导之后采用超声波破碎细胞,经纯化后获得了具有活性的羧酸还原酶纯酶。
优选地,诱导表达条件为:诱导时间6-9h,诱导温度25-35℃,IPTG浓度1-3mM。
更优选地,诱导表达条件为:诱导时间8h,诱导温度30℃,IPTG浓度1.5mM,在该条件下获得了最高的蛋白表达量。
本发明进一步提出了上述重组菌在制备1,2-丙二醇上的应用。
具体地,通过将所述重组菌进行扩大培养以诱导表达羧酸还原酶并利用其催化葡萄糖生成1,2-丙二醇。
有益效果:本发明找到了一种适于乳酸合成1,2-丙二醇的羧酸还原酶SrCAR,并进一步提出了用于表达该羧酸还原酶SrCAR的重组菌,可以应用于以葡萄糖为底物生物制备1,2-丙二醇,实现生物制备1,2-丙二醇的高效合成途径,具有很高的应用前景,利用上述羧酸还原酶SrCAR催化葡萄糖产1,2-丙二醇,在未对大肠杆菌菌株进行基因敲除的情况下,4h得到的1,2-丙二醇产量是文献报道利用含有羧酸还原酶MavCAR的基因敲除大肠杆菌菌株合成1,2-丙二醇产量的4~5倍。
附图说明
图1为含有羧酸还原酶SrCAR基因和来源于枯草芽孢杆菌(Bacillus subtilis)磷酸泛酰巯基乙胺基转移酶Bssfp基因的质粒pRSFDuet-1-SrCAR-Bssfp结构图;
图2是对含有SrCAR基因的重组质粒pRSFDuet-1-SrCAR-Bssfp双酶切电泳结果,其中,M:Marker DL5,000;1-5为重组质粒pRSFDuet-1-SrCAR-Bssfp;1’-5’为重组质粒pRSFDuet-1-SrCAR-Bssfp双酶切产物;
图3是诱导表达后粗酶液和纯酶液的SDS-PAGE电泳结果图,其中,1为重组蛋白纯酶液;2为重组蛋白粗酶液;M为Marker;
图4是1,2-丙二醇标准品的HPLC图谱,1,2-丙二醇于17.5min左右出峰
图5为重组菌株的的发酵滤液的HPLC图谱,其中17.8min的峰为1,2-丙二醇,13.2min的峰为乳酸,9.3min的峰为葡萄糖,8.7min的峰为PBS缓冲液。
具体实施方式
下面结合具体实施例对本发明做进一步详细说明。给出了详细的实施方式和具体的操作过程,实施例将有助于理解本发明,但是本发明的保护范围不限于下述的实施例。
在下列实施例中未注明具体条件的实验方法,通常按照常规条件操作,例如《分子克隆实验指南》。
实施例1:含有羧酸还原酶SrCAR基因序列的重组菌的构建。
通过化学合成法合成编码本发明中羧酸还原酶SrCAR的基因(序列表中SEQ NO.3所示)片段,并将其与来源于枯草芽孢杆菌(Bacillus subtilis)的磷酸泛酰巯基乙胺基转移酶基因片段(SEQ NO.4所示)连接到pRSFDuet-1载体上,转化到大肠杆菌感受态细胞,提取阳性克隆质粒并酶切图谱分析,验证得到载有SrCAR基因的重组质粒 pRSFDuet-SrCAR-Bssfp,重组表达载体pRSFDuet-SrCAR-Bssfp图如图1所示。羧酸还原酶的硫醇化结构域需要转录后修饰,即在辅助的磷酸泛酰巯基乙胺基转移酶 (phosphopantetheinyltransferase,PPTase)催化下将磷酸泛酰巯基乙胺基团共价连接到保守的丝氨酸上,进而获得全酶的最大催化活性。上述重组质粒的构建交由通用生物系统(安徽)有限公司进行连接。
将重组质粒pRSFDuet-SrCAR-Bssfp转化到大肠杆菌BL21(DE3)感受态细胞中,将转化的细胞涂布于含有1‰卡那霉素的LB平板上37℃进行培养,对平板上生长出来的单菌落提取质粒进行双酶切电泳验证,电泳结果(图2)表明,单克隆菌落含有目的基因片段,可用于羧酸还原酶蛋白的诱导表达的实验。
分别对该蛋白的诱导时间、诱导温度、IPTG浓度进行优化实验,结果表明,在诱导时间8h,诱导温度30℃,IPTG浓度1.5mM的条件下获得了该羧酸还原酶蛋白的最高表达量。
实施例2
将实施例1中鉴定正确的克隆进行过夜培养,再转接到含有1μg/mL卡那霉素的 LB培养基中进行培养,待菌液OD600为0.6-0.8时,加入终浓度为1.5mM的IPTG于 30℃下进行诱导表达,诱导8h之后,收集菌液,8000rpm,5min,倒掉上清培养基,用PBS等体积洗涤两次,加入适量PBS,使得重悬菌液OD600=40,加入15%(v/v) 甘油,1mM的苯甲基磺酰氟(PMSF),并在涡旋机上混匀;用超声波破碎仪破碎,超声波破碎条件:工作时间设为20min,每次工作5s,休息4s,功率设为25%,破碎后获得羧酸还原酶粗酶液。对获得的羧酸还原酶粗酶液用0.22μm膜过滤除去杂质,留 2mL过膜后的粗酶液用于SDS-PAGE电泳,剩下的均采用亲和介质填充层析镍柱(HisTrap HP 5mL)对其进行纯化,上样前预先5倍柱体积的ElutionBuffer(pH=7.4, Na2PO4 20mM,NaCl 0.5M,咪唑500mM)平衡亲和柱,上样后先以100%的Binding Buffer(pH=7.4,Na2PO4 20mM,NaCl 0.5M,咪唑20mM)洗脱杂蛋白,再用20%、40%、60%的Elution Buffer逐级洗脱,在60%的洗脱液中获得了目的蛋白,将洗脱好后收集在离心管中的溶液进行超滤管超滤以获得纯酶液,取300μL纯酶液,加入1.7mL 含有10%甘油的PBS溶液保藏。获得的羧酸还原酶粗酶液在4℃下10000rpm离心10min,取粗酶上清,将粗酶上清和纯酶液分别与5×蛋白加样缓冲液4:1体积比于100℃水浴加热5min,失活后,用SDS-PAGE进行蛋白验证,验证结果如图3所示。其中,1为重组蛋白纯酶液;2为重组蛋白粗酶液;M为Marker。
实施例3:羧酸还原酶SrCAR酶学性质的研究。
将实施例2中获得的纯酶液进行酶学性质的研究,包括酶活、比活性、最适温度和最适pH等。酶活采用紫外分光光度计进行测定。
羧酸还原酶酶活测定采用1mL反应体系,其中含有400mM Tris-HCl(pH=7.5),5mM D-乳酸,10mM MgCl2,150mM NaCl,1mM ATP,0.15mM NADPH,1mM DTT 和20μL酶,设定波长为340nm,每隔2s测一次,测定了3min,空白对照不加酶。一个活性单位定义为每分钟氧化1μmol的NADPH所用的酶量为1个酶活力单位。根据以下公式计算比酶活:
式中:VT为反应总体积,ml;VS为样品体积,ml;ΔA为每分钟吸光度的变化值。比酶活定义为:每毫克酶蛋白所含的酶活单位(U/mg)。
SrCAR以D-乳酸为底物,最适温度的测定在pH 7.5条件下,温度30℃~55℃反应5min,最适pH在温度45℃,pH 6.0~8.5范围内测定。
用Bradford微量分析法测定蛋白浓度,加待测试样100μL于2mL离心管中,顺试管壁分别加入1.5mL Bradford试剂,将离心管小心上下翻转几次使液体混合均匀 (尽量不产生气泡),在加入试剂后的15min后,于595nm波长下测定各样品的吸光度A值。根据蛋白质浓度标准曲线y=1.9386x+0.0156和待测的蛋白酶的A值求得蛋白质的浓度。
表1重组羧酸还原酶SrCAR的酶学性质
纯酶的酶学性质,检测结果如表1所示,纯酶液的酶活为7.404×10-2U/mL,比酶活为7.58×10-2U/mg,最适反应pH为7.5,最适温度为40℃。该酶较高的耐热性有利于与嗜热的产乳酸菌株凝结芽孢杆菌结合形成级联反应,具有极强的应用潜力。
实施例4:利用羧酸还原酶SrCAR催化葡萄糖生成1,2-丙二醇的转化反应。
将实施例1中构建的重组大肠杆菌过夜培养,得到种子液,按体积比1%的比例接种到新的LB培养基中,37℃200rpm震荡培养。当OD600至0.6~0.8左右时加入终浓度为1.0~1.5mM的IPTG进行诱导,转至30℃200rpm震荡培养8h。
诱导过后收菌,4℃8000rpm,离心3min。后用1/15M磷酸缓冲液(pH7.0)洗两次。后用100mM磷酸缓冲液(pH7.5)重悬至OD600约为50左右。加入终浓度为50mM 的D-葡萄糖作为底物,30℃200rpm反应2h进行全细胞反应。之后,取反应液,用于进行产物检测。对照菌株Bl21(DE3)(pETDuet-1)以相同方法进行全细胞催化测试。实验重复三次。其中,100mM磷酸盐缓冲液(pH7.5)的配方如下:NaH2PO4·2H2O 4.992g,Na2HPO4 23.856g,定容至1L去离子水中。通过HPLC分析反应体系中产物的含量,如图4-5所示,全细胞催化反应4h初步得到了4.968mM的1,2-丙二醇。其中,1,2-丙二醇的检测方法如下:
1,2-丙二醇标准品溶液的制备:取1,2-丙二醇标准品(sigma,目录号398039), 用去离子水配置成适当浓度的溶液。
待测样品溶液的制备:将步骤一所获得的发酵液,12000rpm,2min离心后取上清,用0.22μm滤膜过滤,得到待上机的待测样品溶液。
将1,2-丙二醇标准品溶液和待测样品溶液菌按照如下条件进行HPLC检测:色谱柱为有机酸柱300mm×7.8mm Aminex HPX-87H(Bio-Rad);流动相为5mM H2SO4;流速为0.6mL/min;上样量为10微升;柱温55℃;示差折光检测器。
序列表
<110> 南京林业大学
<120> 羧酸还原酶重组质粒及其构建方法和应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1186
<212> PRT
<213> SrCAR(Artificial Sequence)
<400> 1
Met Thr Gln Ser His Thr Gln Gly Pro Gln Ala Ser Ala Ala His Ser
1 5 10 15
Arg Leu Ala Arg Arg Ala Ala Glu Leu Leu Ala Thr Asp Pro Gln Ala
20 25 30
Ala Ala Thr Leu Pro Asp Pro Glu Val Val Arg Gln Ala Thr Arg Pro
35 40 45
Gly Leu Arg Leu Ala Glu Arg Val Asp Ala Ile Leu Ser Gly Tyr Ala
50 55 60
Asp Arg Pro Ala Leu Gly Gln Arg Ser Phe Gln Thr Val Lys Asp Pro
65 70 75 80
Ile Thr Gly Arg Ser Ser Val Glu Leu Leu Pro Thr Phe Asp Thr Ile
85 90 95
Thr Tyr Arg Glu Leu Arg Glu Arg Ala Thr Ala Ile Ala Ser Asp Leu
100 105 110
Ala His His Pro Gln Ala Pro Ala Lys Pro Gly Asp Phe Leu Ala Ser
115 120 125
Ile Gly Phe Ile Ser Val Asp Tyr Val Ala Ile Asp Ile Ala Gly Val
130 135 140
Phe Ala Gly Leu Thr Ala Val Pro Leu Gln Thr Gly Ala Thr Leu Ala
145 150 155 160
Thr Leu Thr Ala Ile Thr Ala Glu Thr Ala Pro Thr Leu Phe Ala Ala
165 170 175
Ser Ile Glu His Leu Pro Thr Ala Val Asp Ala Val Leu Ala Thr Pro
180 185 190
Ser Val Arg Arg Leu Leu Val Phe Asp Tyr Arg Ala Gly Ser Asp Glu
195 200 205
Asp Arg Glu Ala Val Glu Ala Ala Lys Arg Lys Ile Ala Asp Ala Gly
210 215 220
Ser Ser Val Leu Val Asp Val Leu Asp Glu Val Ile Ala Arg Gly Lys
225 230 235 240
Ser Ala Pro Lys Ala Pro Leu Pro Pro Ala Thr Asp Ala Gly Asp Asp
245 250 255
Ser Leu Ser Leu Leu Ile Tyr Thr Ser Gly Ser Thr Gly Thr Pro Lys
260 265 270
Gly Ala Met Tyr Pro Glu Arg Asn Val Ala His Phe Trp Gly Gly Val
275 280 285
Trp Ala Ala Ala Phe Asp Glu Asp Ala Ala Pro Pro Val Pro Ala Ile
290 295 300
Asn Ile Thr Phe Leu Pro Leu Ser His Val Ala Ser Arg Leu Ser Leu
305 310 315 320
Met Pro Thr Leu Ala Arg Gly Gly Leu Met His Phe Val Ala Lys Ser
325 330 335
Asp Leu Ser Thr Leu Phe Glu Asp Leu Lys Leu Ala Arg Pro Thr Asn
340 345 350
Leu Phe Leu Val Pro Arg Val Val Glu Met Leu Tyr Gln His Tyr Gln
355 360 365
Ser Glu Leu Asp Arg Arg Gly Val Gln Asp Gly Thr Arg Glu Ala Glu
370 375 380
Ala Val Lys Asp Asp Leu Arg Thr Gly Leu Leu Gly Gly Arg Ile Leu
385 390 395 400
Thr Ala Gly Phe Gly Ser Ala Pro Leu Ser Ala Glu Leu Ala Gly Phe
405 410 415
Ile Glu Ser Leu Leu Gln Ile His Leu Val Asp Gly Tyr Gly Ser Thr
420 425 430
Glu Ala Gly Pro Val Trp Arg Asp Gly Tyr Leu Val Lys Pro Pro Val
435 440 445
Thr Asp Tyr Lys Leu Ile Asp Val Pro Glu Leu Gly Tyr Phe Ser Thr
450 455 460
Asp Ser Pro His Pro Arg Gly Glu Leu Ala Ile Lys Thr Gln Thr Ile
465 470 475 480
Leu Pro Gly Tyr Tyr Lys Arg Pro Glu Thr Thr Ala Glu Val Phe Asp
485 490 495
Glu Asp Gly Phe Tyr Leu Thr Gly Asp Val Val Ala Gln Ile Gly Pro
500 505 510
Glu Gln Phe Ala Tyr Val Asp Arg Arg Lys Asn Val Leu Lys Leu Ser
515 520 525
Gln Gly Glu Phe Val Thr Leu Ala Lys Leu Glu Ala Ala Tyr Ser Ser
530 535 540
Ser Pro Leu Val Arg Gln Leu Phe Val Tyr Gly Ser Ser Glu Arg Ser
545 550 555 560
Tyr Leu Leu Ala Val Ile Val Pro Thr Pro Asp Ala Leu Lys Lys Phe
565 570 575
Gly Val Gly Glu Ala Ala Lys Ala Ala Leu Gly Glu Ser Leu Gln Lys
580 585 590
Ile Ala Arg Asp Glu Gly Leu Gln Ser Tyr Glu Val Pro Arg Asp Phe
595 600 605
Ile Ile Glu Thr Asp Pro Phe Thr Val Glu Asn Gly Leu Leu Ser Asp
610 615 620
Ala Arg Lys Ser Leu Arg Pro Lys Leu Lys Glu His Tyr Gly Glu Arg
625 630 635 640
Leu Glu Ala Met Tyr Lys Glu Leu Ala Asp Gly Gln Ala Asn Glu Leu
645 650 655
Arg Asp Ile Arg Arg Gly Val Gln Gln Arg Pro Thr Leu Glu Thr Val
660 665 670
Arg Arg Ala Ala Ala Ala Met Leu Gly Ala Ser Ala Ala Glu Ile Lys
675 680 685
Pro Asp Ala His Phe Thr Asp Leu Gly Gly Asp Ser Leu Ser Ala Leu
690 695 700
Thr Phe Ser Asn Phe Leu His Asp Leu Phe Glu Val Asp Val Pro Val
705 710 715 720
Gly Val Ile Val Ser Ala Ala Asn Thr Leu Gly Ser Val Ala Glu His
725 730 735
Ile Asp Ala Gln Leu Ala Gly Gly Arg Ala Arg Pro Thr Phe Ala Thr
740 745 750
Val His Gly Lys Gly Ser Thr Thr Ile Lys Ala Ser Asp Leu Thr Leu
755 760 765
Asp Lys Phe Ile Asp Glu Gln Thr Leu Glu Ala Ala Lys His Leu Pro
770 775 780
Lys Pro Ala Asp Pro Pro Arg Thr Val Leu Leu Thr Gly Ala Asn Gly
785 790 795 800
Trp Leu Gly Arg Phe Leu Ala Leu Glu Trp Leu Glu Arg Leu Ala Pro
805 810 815
Ala Gly Gly Lys Leu Ile Thr Ile Val Arg Gly Lys Asp Ala Ala Gln
820 825 830
Ala Lys Ala Arg Leu Asp Ala Ala Tyr Glu Ser Gly Asp Pro Lys Leu
835 840 845
Ala Gly His Tyr Gln Asp Leu Ala Ala Thr Thr Leu Glu Val Leu Ala
850 855 860
Gly Asp Phe Ser Glu Pro Arg Leu Gly Leu Asp Glu Ala Thr Trp Asn
865 870 875 880
Arg Leu Ala Asp Glu Val Asp Phe Ile Ser His Pro Gly Ala Leu Val
885 890 895
Asn His Val Leu Pro Tyr Asn Gln Leu Phe Gly Pro Asn Val Ala Gly
900 905 910
Val Ala Glu Ile Ile Lys Leu Ala Ile Thr Thr Arg Ile Lys Pro Val
915 920 925
Thr Tyr Leu Ser Thr Val Ala Val Ala Ala Gly Val Glu Pro Ser Ala
930 935 940
Leu Asp Glu Asp Gly Asp Ile Arg Thr Val Ser Ala Glu Arg Ser Val
945 950 955 960
Asp Glu Gly Tyr Ala Asn Gly Tyr Gly Asn Ser Lys Trp Gly Gly Glu
965 970 975
Val Leu Leu Arg Glu Ala His Asp Arg Thr Gly Leu Pro Val Arg Val
980 985 990
Phe Arg Ser Asp Met Ile Leu Ala His Gln Lys Tyr Thr Gly Gln Val
995 1000 1005
Asn Ala Thr Asp Gln Phe Thr Arg Leu Val Gln Ser Leu Leu Ala Thr
1010 1015 1020
Gly Leu Ala Pro Lys Ser Phe Tyr Glu Leu Asp Ala Gln Gly Asn Arg
1025 1030 1035 1040
Gln Arg Ala His Tyr Asp Gly Ile Pro Val Asp Phe Thr Ala Glu Ser
1045 1050 1055
Ile Thr Thr Leu Gly Gly Asp Gly Leu Glu Gly Tyr Arg Ser Tyr Asn
1060 1065 1070
Val Phe Asn Pro His Arg Asp Gly Val Gly Leu Asp Glu Phe Val Asp
1075 1080 1085
Trp Leu Ile Glu Ala Gly His Pro Ile Thr Arg Ile Asp Asp Tyr Asp
1090 1095 1100
Gln Trp Leu Ser Arg Phe Glu Thr Ser Leu Arg Gly Leu Pro Glu Ser
1105 1110 1115 1120
Lys Arg Gln Ala Ser Val Leu Pro Leu Leu His Ala Phe Ala Arg Pro
1125 1130 1135
Gly Pro Ala Val Asp Gly Ser Pro Phe Arg Asn Thr Val Phe Arg Thr
1140 1145 1150
Asp Val Gln Lys Ala Lys Ile Gly Ala Glu His Asp Ile Pro His Leu
1155 1160 1165
Gly Lys Ala Leu Val Leu Lys Tyr Ala Asp Asp Ile Lys Gln Leu Gly
1170 1175 1180
Leu Leu
1185
<210> 2
<211> 203
<212> PRT
<213> BsSFP(Artificial Sequence)
<400> 2
Met Ser Phe Ile Ser Pro Glu Lys Arg Glu Lys Cys Arg Arg Phe Tyr
1 5 10 15
His Lys Glu Asp Ala His Arg Thr Leu Leu Gly Asp Val Leu Val Arg
20 25 30
Ser Val Ile Ser Gly Gln Tyr Gln Leu Asp Lys Ser Asp Ile Arg Phe
35 40 45
Ser Thr Gln Glu Tyr Gly Lys Pro Cys Ile Pro Asp Leu Pro Asp Ala
50 55 60
His Phe Asn Ile Ser His Ser Gly Arg Trp Val Ile Gly Ala Phe Asp
65 70 75 80
Ser Gln Pro Ile Gly Ile Asp Ile Glu Lys Met Lys Pro Ile Ser Leu
85 90 95
Glu Ile Ala Lys Arg Phe Phe Ser Lys Thr Glu Tyr Ser Asp Leu Leu
100 105 110
Ala Lys Asn Lys Asp Glu Gln Thr Asp Tyr Phe Tyr His Leu Trp Ser
115 120 125
Met Lys Glu Ser Phe Ile Lys Gln Glu Gly Lys Gly Leu Ser Leu Pro
130 135 140
Leu Asp Ser Phe Ser Val Arg Leu His Gln Asn Gly Glu Val Ser Ile
145 150 155 160
Glu Leu Pro Asp Ser His Ser Pro Cys Tyr Ile Lys Thr Tyr Asp Val
165 170 175
Asp Pro Gly Tyr Lys Met Ala Val Cys Ala Ala His Pro Asp Phe Pro
180 185 190
Glu Asp Ile Thr Met Val Ser Tyr Glu Ala Phe
195 200
<210> 3
<211> 3561
<212> DNA
<213> 羧酸还原酶SrCAR(Artificial Sequence)
<400> 3
atgactcagt cgcacactca aggtccgcaa gcgtctgcgg cgcacagccg tctcgcccgt 60
cgcgcggcgg agcttctcgc gacggacccg caggccgccg cgaccctccc cgacccggag 120
gtcgtgcggc aggcgacgcg tccagggctg cggctcgcgg agcgggtcga cgcgatcctc 180
agcggctacg ccgaccgccc ggctctcggg cagcgctctt ttcagaccgt caaagatccc 240
atcaccggac gctcctcggt cgagttgctc cccacgttcg acaccatcac ctaccgcgag 300
ctgcgagagc gcgccacagc gatcgcaagc gacctggcgc atcacccgca ggccccggcc 360
aagcccggag atttcctcgc gagcatcggc ttcatcagcg tcgattacgt cgccatcgac 420
atcgccgggg tcttcgccgg gctcaccgcc gtcccgctcc agaccggcgc gacactcgcg 480
acgttgacgg cgatcaccgc agagaccgcg ccaaccctgt tcgcggcgag catcgagcac 540
ctgccgaccg ccgtggacgc cgttctcgcc acgccctcag tgcgccggtt gctcgtcttc 600
gactaccgcg ccgggtcgga cgaggaccgc gaggcggtcg aggcggccaa gcggaaaatc 660
gccgacgcgg gcagctcggt gctcgtggac gttttggacg aggtgatcgc acgcgggaaa 720
tcggcgccga aggcgccgct gccccccgcc accgacgcgg gcgacgactc gctgtccttg 780
ctcatctaca cctccggctc caccgggacg cccaaggggg cgatgtaccc ggagcgcaac 840
gtcgcgcact tctggggcgg cgtctgggcc gccgcgttcg acgaggacgc cgccccgccc 900
gtcccagcga tcaacatcac gttcctgccg ctcagccacg tcgccagcag actttcgctc 960
atgccgaccc tcgcccgggg cggcctcatg cacttcgtcg cgaagagcga cctgtccacc 1020
ctcttcgagg acttgaaact cgctcgtccg acgaacctgt tcctggtgcc cagagtggtc 1080
gagatgctgt accagcacta ccagagcgaa ttagaccgca ggggagtgca ggacggcacc 1140
cgcgaagccg aagcggtgaa ggacgacctg cgcacggggc tcctcggcgg ccggatcctc 1200
actgcgggct tcggctcggc gccgctgtcc gccgagctgg ctggcttcat cgaatccctg 1260
ctgcagatcc acctggtgga cggctacggg tccaccgagg cggggccggt gtggcgcgac 1320
ggctacctcg tcaaaccgcc ggtgaccgac tacaagctca tcgacgtgcc cgagctcggg 1380
tacttctcca ccgactcccc gcatccccgg ggcgagctgg ccatcaagac gcagaccatc 1440
ctccccggct attacaagcg ccccgagacg accgcggaag tcttcgacga ggacggcttc 1500
tacctcaccg gggacgtggt cgcgcagatc gggccggaac agttcgcgta cgtcgaccgg 1560
cgcaagaacg tcctcaagct ctcccagggc gagttcgtga ccctcgcgaa gctcgaggcc 1620
gcgtacagct ccagcccgct ggtgcgacag ctcttcgtct acggctccag cgaacgctcg 1680
tacttgctcg ccgtgatcgt gcccaccccg gacgccctga agaagttcgg cgtcggcgag 1740
gcggcgaaag ccgcgctcgg ggagtctctg cagaagatcg ctcgcgacga gggcctgcaa 1800
tcctacgagg tgccgcgcga cttcatcatc gaaacggatc cgttcacggt cgagaacggc 1860
ctgctctccg acgcccgcaa gtcgttgcgc ccgaagctca aggagcatta cggcgaacgg 1920
ctcgaagcga tgtacaaaga gctcgcggac ggtcaggcga acgagctgcg cgacatccgc 1980
agaggcgtgc aacaacgccc gacgctcgaa accgtgcggc gcgccgcggc cgcgatgctg 2040
ggcgcgagcg ccgcggaaat caagccggac gcccatttca ccgacctcgg cggcgactcg 2100
ctctccgcgc tgacgttctc gaacttcctg cacgacctct tcgaagtcga tgtgcccgtc 2160
ggggtgatcg tgagcgccgc gaacacattg ggctccgtgg ccgagcacat cgacgcgcag 2220
ctcgcggggg gccgtgcccg gccgacgttc gcgaccgtgc acggcaaagg ctccaccacg 2280
atcaaggcca gcgatctgac cttggacaag ttcatcgacg agcagaccct cgaggccgcg 2340
aagcacttgc ccaagcccgc cgacccgccg cgcaccgtgc tgctcaccgg cgcgaacggc 2400
tggctcggcc ggttcctcgc ccttgaatgg ctcgaaaggc tcgcccccgc cggcggcaag 2460
ctcatcacga tcgtgcgcgg caaggacgcg gcacaggcaa aggctcggct cgacgccgcg 2520
tacgagagcg gcgacccgaa gctcgccggt cattaccagg atttggccgc gacgacgctc 2580
gaagtgctcg cgggcgattt cagcgagccg cgtctcgggc tggacgaggc gacctggaac 2640
cggctggccg acgaggtgga cttcatctcg caccccggcg ctctggtcaa ccatgtcctg 2700
ccgtacaacc agctgttcgg gccgaacgtg gccggtgtgg ccgagatcat caagctcgcg 2760
atcaccacac ggatcaagcc cgtcacgtac ctgtccacag tcgccgtcgc ggcgggcgtc 2820
gagccgtcgg ccttagacga ggacggcgac atccggacgg tgagcgctga gcgctcggtc 2880
gacgagggct acgccaacgg gtacgggaac agcaaatggg gcggcgaggt gctgctgcgc 2940
gaagcgcacg atcgcacggg actgccggtt cgggtgttcc gctcggacat gatcctcgcg 3000
catcagaaat acaccggaca agtgaacgcg accgaccagt tcacccggct cgtccagagc 3060
cttttggcaa ccgggctcgc accgaagtcc ttctacgagc tcgacgccca gggcaaccgg 3120
cagcgggccc actacgacgg gatacccgtg gacttcaccg ccgagtcgat caccacgctc 3180
ggcggcgacg gtttggaagg ctaccgcagc tacaacgtgt tcaacccgca tcgcgacggc 3240
gtcggtttgg acgagttcgt cgactggctc atcgaagccg gacacccgat cacacggatc 3300
gacgactacg accagtggct ctcgcgcttc gagacctcgt tgcgcggcct gcccgaatcc 3360
aagcgccaag cctccgtgct cccgttgctg cacgccttcg cccggccagg gcccgccgtg 3420
gacggctcgc ctttccggaa cacggtgttc cgcaccgacg tgcagaaggc gaagatcggc 3480
gcggaacacg acatccccca cctgggcaaa gcgctcgtgc tcaagtacgc cgacgacatc 3540
aagcagctcg gtctgctctg a 3561
<210> 4
<211> 609
<212> DNA
<213> 磷酸泛酰巯基乙胺基转移酶的编码基因(Artificial Sequence)
<400> 4
atgtctttca tctcgcccga aaaacgggag aaatgccgga gattttatca taaagaagat 60
gcacatcgca ccctgctggg agatgtgctt gttcgttcag tcataagcgg gcagtatcag 120
ttggacaaat ccgatatccg ctttagcacg caggaatacg ggaagccctg catccccgat 180
cttcctgacg cccatttcaa catttctcat tccggccgct gggtcattgg tgcgtttgat 240
tcacagccca tcggcatcga tattgaaaaa atgaaaccga tcagccttga gatcgccaag 300
cgcttctttt caaaaacaga gtacagcgac cttttagcca aaaacaagga cgagcaaaca 360
gactattttt atcatctatg gtcaatgaaa gaaagcttta tcaaacaaga gggcaagggg 420
ttatcactac cgcttgattc cttttcagtg cgcctgcatc agaacggaga agtatccatt 480
gagcttccag acagccattc cccctgctat atcaaaacgt atgatgtcga tcccggctac 540
aaaatggctg tatgcgccgc gcaccctgat ttccctgagg atatcacaat ggtctcgtac 600
gaagccttt 609
Claims (6)
1.一种重组菌,其特征在于,所述重组菌通过将羧酸还原酶重组质粒转入大肠杆菌细胞中得到,其中,所述羧酸还原酶重组质粒通过将羧酸还原酶基因和磷酸泛酰巯基乙胺基转移酶基因连接到pRSFDuet-1载体上得到,所述羧酸还原酶基因为编码羧酸还原酶SrCAR的基因,其核苷酸序列如SEQ NO.3所示,所述磷酸泛酰巯基乙胺基转移酶基因为编码磷酸泛酰巯基乙胺基转移酶Bssfp的基因,其核苷酸序列如SEQ NO.4所示;所述大肠杆菌细胞为大肠杆菌BL21(DE3)感受态细胞。
2.一种生产羧酸还原酶SrCAR的方法,其特征在于,培养权利要求1所述的重组菌,并用IPTG诱导表达,诱导之后采用超声波破碎细胞,纯化后得到具有活性的羧酸还原酶SrCAR纯酶。
3.根据权利要求2所述的方法,其特在于,诱导表达条件为:诱导时间6-9h,诱导温度25-35℃,IPTG浓度1-3mM。
4.根据权利要求2所述的方法,其特征在于,诱导表达条件为:诱导时间8h,诱导温度30℃,IPTG浓度1.5mM。
5.权利要求1所述的重组菌在制备1,2-丙二醇上的应用。
6.根据权利要求5所述的应用,其特征在于,包括将权利要求1所述的重组菌进行扩大培养以诱导表达羧酸还原酶并利用其催化葡萄糖生成1,2-丙二醇。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110096419.1A CN112795586B (zh) | 2021-01-25 | 2021-01-25 | 羧酸还原酶重组质粒及其构建方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110096419.1A CN112795586B (zh) | 2021-01-25 | 2021-01-25 | 羧酸还原酶重组质粒及其构建方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112795586A CN112795586A (zh) | 2021-05-14 |
CN112795586B true CN112795586B (zh) | 2023-07-04 |
Family
ID=75811609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110096419.1A Active CN112795586B (zh) | 2021-01-25 | 2021-01-25 | 羧酸还原酶重组质粒及其构建方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112795586B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011254747A (ja) * | 2010-06-08 | 2011-12-22 | Toyota Central R&D Labs Inc | 高級アルコール生産微生物及びその利用 |
WO2012177599A2 (en) * | 2011-06-22 | 2012-12-27 | Genomatica, Inc. | Microorganisms for producing n-propanol 1, 3-propanediol, 1,2-propanediol or glycerol and methods related thereto |
CN104520431A (zh) * | 2012-06-18 | 2015-04-15 | 布拉斯科南美公司 | 共同制造丁二烯与1-丙醇和/或1,2-丙二醇的经修饰微生物和方法 |
CN105073996A (zh) * | 2012-12-14 | 2015-11-18 | 英威达技术有限责任公司 | 经由与碳储存有关的CoA依赖性碳链延长生成7碳化学品的方法 |
CN114181877A (zh) * | 2021-12-08 | 2022-03-15 | 北京化工大学 | 一种合成香兰素的基因工程菌及其应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170218406A1 (en) * | 2016-02-01 | 2017-08-03 | Invista North America S.A.R.L. | Methods and Materials for Producing 7-Carbon Monomers |
-
2021
- 2021-01-25 CN CN202110096419.1A patent/CN112795586B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011254747A (ja) * | 2010-06-08 | 2011-12-22 | Toyota Central R&D Labs Inc | 高級アルコール生産微生物及びその利用 |
WO2012177599A2 (en) * | 2011-06-22 | 2012-12-27 | Genomatica, Inc. | Microorganisms for producing n-propanol 1, 3-propanediol, 1,2-propanediol or glycerol and methods related thereto |
CN104520431A (zh) * | 2012-06-18 | 2015-04-15 | 布拉斯科南美公司 | 共同制造丁二烯与1-丙醇和/或1,2-丙二醇的经修饰微生物和方法 |
CN105073996A (zh) * | 2012-12-14 | 2015-11-18 | 英威达技术有限责任公司 | 经由与碳储存有关的CoA依赖性碳链延长生成7碳化学品的方法 |
CN114181877A (zh) * | 2021-12-08 | 2022-03-15 | 北京化工大学 | 一种合成香兰素的基因工程菌及其应用 |
Non-Patent Citations (2)
Title |
---|
Characterization of Carboxylic Acid Reductases for Biocatalytic Synthesis of Industrial Chemicals;Levi Kramer et al.;《ChemBioChem》;第19卷;第1452-1460页 * |
化合物代谢新途径构建及微生物糖代谢网络改造的研究进展;程瑶 等;《北京化工大学学报( 自然科学版)》;第45卷(第5期);第78-91页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112795586A (zh) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110396505A (zh) | 酮基泛解酸内酯还原酶及其应用 | |
CN112662709B (zh) | 一种双酶偶联合成(r)-香茅醇的方法 | |
CN109423469A (zh) | 一种生产葡萄糖醛酸的方法及其专用工程菌 | |
CN103898177B (zh) | 制备高手性纯(r)-3-哌啶醇及其衍生物的方法 | |
CN114507681A (zh) | 一种山梨糖还原酶OpCR基因、突变体及编码蛋白和在制备玻色因中的应用 | |
CN109852644A (zh) | 一种制备布瓦西坦中间体的方法 | |
CN110184288A (zh) | 没食子酸和原儿茶酸的制备方法及其反应催化剂的制备方法 | |
CN111041018A (zh) | 支链酮糖的生物合成方法 | |
CN111454918B (zh) | 一种烯醇还原酶突变体及其在制备(r)-香茅醛中的应用 | |
CN112795586B (zh) | 羧酸还原酶重组质粒及其构建方法和应用 | |
CN113930457B (zh) | 一种双酶偶联合成(s)-香茅醇的方法 | |
CN113308446B (zh) | 一种海藻糖转化率提高的麦芽寡糖基海藻糖合成酶突变体及其应用 | |
CN113088504B (zh) | 一种改造的酸性磷酸酶及其应用 | |
CN110396506B (zh) | 源自Nocardia asteroides的L-泛解酸内酯脱氢酶及其应用 | |
US9637761B2 (en) | Recombinant microorganism metabolizing 3,6-anhydride-L-galactose and a use thereof | |
CN109609473A (zh) | 一种羰基还原酶DmCR及其编码基因、重组表达载体、重组表达细胞及其应用 | |
CN116410945A (zh) | 一种酮还原酶突变体及其应用 | |
CN115948365B (zh) | 一种烟酰胺核苷激酶及其编码基因与应用 | |
CN114231509B (zh) | 一种蔗糖磷酸化酶及葡萄糖基甘油生产工艺 | |
CN114317476B (zh) | 葡萄糖基甘油的生物催化生产工艺及其蔗糖磷酸化酶 | |
CN112779235B (zh) | 一种生物催化合成多种黄酮苷的方法 | |
CN114250207B (zh) | 一种高活性的蔗糖磷酸化酶及应用 | |
CN110184245B (zh) | 酮还原酶突变体及其在制备克唑替尼手性醇中间体及其类似物中的应用 | |
CN118056900A (zh) | 一种羧酸还原酶突变体及其应用 | |
Zhou et al. | Exploring, Cloning, and Characterization of Aryl-alcohol Dehydrogenase for β-Phenylethanol Production in Paocai |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |