CN112794720A - 一种二硼化锆基超高温陶瓷低温高速超塑性成形方法 - Google Patents

一种二硼化锆基超高温陶瓷低温高速超塑性成形方法 Download PDF

Info

Publication number
CN112794720A
CN112794720A CN202110035332.3A CN202110035332A CN112794720A CN 112794720 A CN112794720 A CN 112794720A CN 202110035332 A CN202110035332 A CN 202110035332A CN 112794720 A CN112794720 A CN 112794720A
Authority
CN
China
Prior art keywords
temperature
ceramic
ultrahigh
zirconium diboride
temperature ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110035332.3A
Other languages
English (en)
Other versions
CN112794720B (zh
Inventor
祖宇飞
田洪亮
刘应军
徐一
魏志帆
沙建军
代吉祥
陈国清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202110035332.3A priority Critical patent/CN112794720B/zh
Publication of CN112794720A publication Critical patent/CN112794720A/zh
Application granted granted Critical
Publication of CN112794720B publication Critical patent/CN112794720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供一种二硼化锆基超高温陶瓷低温高速超塑性成形方法,属于超高温陶瓷的成形领域。该方法在二硼化锆内引入适量的二硅化物,进而得到纳米陶瓷粉体,然后将纳米陶瓷粉体经烧结制得烧结坯体,然后在特定的温度区间和应力的共同作用下,利用超塑性挤压的方式在短时间内获得接近于最终形状的超高温陶瓷产品,经过精磨制得超高温陶瓷零件。经改良的超高温陶瓷能够在较高的初始应变速率、较低的温度、以及较低的应力下,在较短的时间内即可实现超过100%的塑性变形,使得该材料的超塑性成形具有了工程应用的意义。利用该方法可以实现超高温陶瓷复杂形状构件的近净成形,解决了二硼化锆基超高温陶瓷由于硬度高、脆性大等而加工困难的问题。

Description

一种二硼化锆基超高温陶瓷低温高速超塑性成形方法
技术领域
本发明属于超高温陶瓷的成形领域,具体涉及一种二硼化锆基超高温陶瓷低温高速超塑性成形方法。
背景技术
二硼化锆(ZrB2)基超高温陶瓷具有优越的刚度、硬度和强度等力学性能,具有极高的熔点和化学稳定性,在高温有氧环境下具有优异的抗氧化和抗烧蚀性能。因此该材料是在超高温、有氧或中性气氛、复杂载荷等极端环境下长时间服役的首选结构材料,可广泛应用于高超声速飞行器热防护部件、高推重比发动机、超高温电极等工业领域。
超高温陶瓷材料硬度高、塑性差,无法像金属一样进行传统的塑性加工,常规的机加工方式也难以生产出具有复杂形状的超高温陶瓷零部件。现阶段,具有复杂形状的超高温陶瓷零部件的近净成形技术有:无压烧结和等离子喷涂。无压烧结法可在素坯阶段通过干/湿法成形,适合制备形状复杂的大型构件,但依然面临着坯体收缩幅度大,成品尺寸和公差控制难的传统问题。等离子喷涂成型虽然可以制造复杂形状零件,但只能制备薄壁和涂层,无法满足较大尺寸零件(如飞行器的鼻锥、机翼前缘等)的要求。鉴于上述方法的局限性,有必要开发一种高精度、高效率,且能够制备大尺寸复杂形状ZrB2基超高温陶瓷零部件的方法。
细晶陶瓷材料在高温下能够产生一定的超塑性变形能力,其机理为:细晶陶瓷在足够高的温度和应力的共同作用下,在足够低的应变速率下,能够利用微观上的晶界滑移和晶粒转动产生宏观上的超塑性变形,即变形量超过100%且不会产生裂纹。利用超塑性特征,可根据零部件尺寸设计挤压、气涨、拉深等模具,将陶瓷烧结体加工成为具有特殊形状的零部件,该方法具有成品件精度高、零件尺寸不受限制等优点。
然而,超高温陶瓷由于其自身的晶体结构和化学键特征,其能够产生超塑性变形的温度通常需要达到1900-2100℃,加工能源消耗巨大;且应变速率仅为10-5-10-9s-1。如此低的应变速率导致其产生50%的变形量需要长达几百甚至上千分钟,因此不具备工程应用的基本条件。(譬如专利《一种陶瓷基复合材料及其制备方法和应用》,专利号:201310460525.9,制备出一种以二硼化锆为基体相,以二硅化锆为烧结助剂,以多壁碳纳米管为添加剂的复合材料;烧结后材料中含有碳化锆与硅化锆,很难对其加工成形。)鉴于以上技术难点,提高超高温陶瓷的超塑性变形能力,在相对较低的温度下,在较短的时间内即可实现较大的变形量而不产生裂纹,是该材料超塑性成形具有工程应用潜力的关键。超高温陶瓷的超塑性成形技术投入工程应用,有望解决超高温陶瓷近净成形难的瓶颈问题。
发明内容
本发明的目的在于解决超高温陶瓷难以近净成形的问题,为超高声速飞行器热防护部件、高推重比发动机耐热部件等复杂形状零部件的高精度近净成形提供了解决方案。
为实现上述目的,本发明所采用的技术方案如下:
一种二硼化锆基超高温陶瓷低温高速超塑性成形方法,通过在二硼化锆内部引入适量的二硅化物,使二硼化锆产生了大量的非晶态晶界进而大幅提升了超高温陶瓷的超塑性变形能力。首先将纳米陶瓷粉体经过高温烧结制得烧结坯体,然后在特定的温度区间和应力的共同作用下,利用超塑性挤压的方式在较短的时间内获得接近于最终形状的超高温陶瓷产品,最终经过精磨制得超高温陶瓷零件。
其材料成分及具体步骤如下:
1)原材料配比:以二硅化物作为ZrB2基超高温陶瓷晶界改性剂。其中,ZrB2:50%-90%、二硅化物(如ZrSi2、MoSi2等)10%-50%;
2)原材料研磨
将步骤1)中的原材料加入行星式球磨机对原料进行混合和研磨;以1-20mg/ml聚乙烯亚胺的无水乙醇溶液为研磨介质,加入大球和小球数量比为1:3的碳化钨磨球,并保持磨球的质量与原料粉末的质量比为8:1–15:1;抽真空并充入氩气,往复3次以减少球磨罐中的含氧量;以转速为200-250转/min的速度球磨24-72h,得到均匀混合的纳米级颗粒浆料;最后在真空或惰性气体环境下经30-200℃的干燥得到纳米陶瓷粉体。
3)烧结
将步骤2)中的纳米陶瓷粉体置入石墨模具中,施压20-50MPa的压力,以5-15℃/min的升温速率升到800℃并保温10-30min以去除有机物;然后以10-50℃/min的升温速率升到1300-1400℃烧结10-120min,得到ZrB2基超高温陶瓷坯体;
4)超塑性成形
将步骤3)得到的超高温陶瓷坯体置于超塑性成形模具中,利用挤压、气涨、拉深等方式进行成形,其变形温度为:1300-1600℃,根据变形温度和成形尺寸,其应变速率设定为:10-4-10-1s-1;施加载荷为20-60MPa;成形时间根据尺寸不同,一般为5-120min。
本发明的优点和有益效果:
1)本发明提出了一种二硼化锆基超高温陶瓷超塑性成形的新方法,通过向超高温陶瓷中引入适量的二硅化物,改性超高温陶瓷的晶界形态,显著的改善了超高温陶瓷的变形能力,在较高的初始应变速率(10-4-10-1s-1)、较低的温度(1300-1600℃)、以及较低的应力(20-60MPa)下,在较短的时间(5-120min)内实现了超过100%的变形量且无裂纹产生,有望实现超高声速飞行器热防护部件、高推重比发动机、超高温电极等复杂形状零部件的近净成形工业化生产,解决了二硼化锆基超高温陶瓷由于硬度高、脆性大而加工困难的问题。
附图说明
图1为实施例1中ZrB2基超高温陶瓷超塑性成形前的宏观照片。
图2为实施例1中ZrB2基超高温陶瓷超塑性成形后的宏观照片。
具体实施方式
下面进一步通过实施例以详细说明本发明。但应注意,以下所述是对本发明的解释而并非限定。
实施例1
1)原材料的配置与研磨
称取体积比为70:30的二硼化锆和二硅化锆粉末并置入球磨罐中,其中,二硼化锆和二硅化锆的纯度为99.9%,平均粒径为1-3微米;加入数量比为1:3的碳化钨大球和小球并保持磨球的质量与原料粉末的质量比为10:1;然后向罐中加入刚刚没过磨球表面的浓度为10mg/ml的聚乙烯亚胺无水乙醇溶液作为研磨介质;抽真空-充氩气,循环3次;最后在行星式球磨机上以250转/min的转速球磨48h,得到纳米级颗粒混合浆料。将得到的混合浆料至于真空干燥箱中,抽真空至0bar,以30℃的恒温真空干燥5小时随后冷却3小时至室温,得到干燥的粉体。
2)热压烧结
将纳米粉体置入石墨模具中,施压45MPa的压力,以7℃/min的升温速率升到800℃并保温30min以去除有机物;然后以15℃/min的升温速率升到1350℃烧结30min,得到二硼化锆基超高温陶瓷烧结体。研究结果表明,随着大量ZrSi2的引入,ZrB2晶粒间产生了大量的非晶态晶界,该晶界在高温下具有良好的晶界滑移和晶粒转动的能力。
3)超塑性成形
对烧结体坯体进行开放式锻压实验,超塑性成形温度设定为1400℃,应变速率为10-3,施加载荷为60MPa,成形时间为12min,产生了70%的压缩变形量,压缩样品表面形貌如图2所示。超高温陶瓷烧结体在经过大变形量超塑性成形之后,由圆柱形状转为了腰鼓形状,其表面光滑且无裂纹产生。说明利用该方法可以实现超高温陶瓷的低温高速超塑性成形。
实施例2
与实施例1中的步骤类似,所不同的是,二硼化锆与二硅化锆的体积比为80:20;1400℃烧结30min;超塑性成形温度为1500℃,应变速率为10-4,施加载荷为60MPa,成形时间为110min,产生了65%的压缩变形量。产品表面光滑且无裂纹产生。
实施例3
与实施例1中的步骤类似,所不同的是,超塑性成形温度为1500℃,应变速率为10-3,施加载荷为20MPa,成形时间为17min,产生了101%的压缩变形量。产品表面光滑且无裂纹产生。
综上所述的一种二硼化锆基超高温陶瓷的低温高速超塑性成形方法,通过在二硼化锆内部引入适量的二硅化物,改变二硼化锆的晶界形态,进而大幅提升了超高温陶瓷的超塑性变形能力。使其能够在较高的初始应变速率(10-4-10-1s-1)、较低的温度(1300-1600℃)、以及较低的应力(20-60MPa)下,在较短的时间(5-120min)内实现了超过100%的变形量且无裂纹产生,为超高温陶瓷复杂形状零件近净成形工艺化生产提供了良好的解决方案。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (6)

1.一种二硼化锆基超高温陶瓷低温高速超塑性成形方法,其特征在于,首先在二硼化锆内引入适量的二硅化物,采用球磨方式对原材料进行混合和研磨得到纳米陶瓷粉体,然后将纳米陶瓷粉体经过热压或放电等离子烧结制得烧结坯体,然后在特定的温度区间和应力的共同作用下,利用超塑性挤压的方式在短时间内获得接近于最终形状的超高温陶瓷产品,最终经过精磨制得超高温陶瓷零件。
2.根据权利要求1所述的一种二硼化锆基超高温陶瓷低温高速超塑性成形方法,其特征在于,二硼化锆、二硅化物的体积百分比分别为:50%-90%、10%-50%。
3.根据权利要求1所述的一种二硼化锆基超高温陶瓷低温高速超塑性成形方法,其特征在于,所述的二硅化物为ZrSi2或MoSi2
4.根据权利要求1所述的一种二硼化锆基超高温陶瓷低温高速超塑性成形方法,其特征在于,球磨过程为:经过行星式球磨机进行混合和研磨,以1-20mg/ml聚乙烯亚胺的无水乙醇溶液为研磨介质,加入大球和小球数量比为1:3的碳化钨磨球,并保持磨球的质量与原料粉末的质量比为8–15:1;抽真空并充入氩气,往复3次以减少球磨罐中的含氧量;以转速为200-250转/min的速度球磨24-72h,得到均匀混合的纳米级颗粒浆料;最后在真空或惰性气体环境下经30-200℃的干燥得到纳米陶瓷粉体。
5.根据权利要求1所述的一种二硼化锆基超高温陶瓷低温高速超塑性成形方法,其特征在于,烧结过程为:将纳米陶瓷粉体置入石墨模具中,施压20-50MPa的压力,以5-15℃/min的升温速率升到800℃并保温10-30min以去除有机物;然后以10-50℃/min的升温速率升到1300-1400℃烧结10-120min,得到ZrB2基超高温陶瓷烧结坯体。
6.根据权利要求1所述的一种二硼化锆基超高温陶瓷低温高速超塑性成形方法,其特征在于,将ZrB2基超高温陶瓷烧结坯体置于超塑性成形模具中,利用挤压、气涨、拉深方式进行超塑性成形,其变形温度为:1300-1600℃,根据变形温度和成形尺寸,其应变速率设定为:10-4-10-1s-1;施加载荷为20-60MPa;成形时间根据尺寸不同,一般为5-120min。
CN202110035332.3A 2021-01-12 2021-01-12 一种二硼化锆基超高温陶瓷低温高速超塑性成形方法 Active CN112794720B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110035332.3A CN112794720B (zh) 2021-01-12 2021-01-12 一种二硼化锆基超高温陶瓷低温高速超塑性成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110035332.3A CN112794720B (zh) 2021-01-12 2021-01-12 一种二硼化锆基超高温陶瓷低温高速超塑性成形方法

Publications (2)

Publication Number Publication Date
CN112794720A true CN112794720A (zh) 2021-05-14
CN112794720B CN112794720B (zh) 2022-02-15

Family

ID=75810034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110035332.3A Active CN112794720B (zh) 2021-01-12 2021-01-12 一种二硼化锆基超高温陶瓷低温高速超塑性成形方法

Country Status (1)

Country Link
CN (1) CN112794720B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1458908A1 (ru) * 1987-07-22 1989-02-15 А. А. Абрам н, А. В. Радько И А. А. Саркис н Суспензи дл нанесени газопоглотител дл ламп накаливани
CN1125211A (zh) * 1995-09-07 1996-06-26 华东理工大学 大块体致密纳米陶瓷材料及其制备方法
US6025065A (en) * 1994-12-29 2000-02-15 Nils Claussen Production of an aluminide containing ceramic moulding
CN1986483A (zh) * 2006-12-25 2007-06-27 西南科技大学 纳米-纳米型Al2O3基复相陶瓷及其制备方法
TW200827321A (en) * 2006-12-28 2008-07-01 Univ Far East The novel manufacturing process of ceramic with superplasticity
TW200827322A (en) * 2006-12-28 2008-07-01 Univ Far East The superplasticity-molding method by using the intermediate phase formed at the edge of ceramic
CN102093051A (zh) * 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 一种氧化锆纳米陶瓷材料
CN103553626A (zh) * 2013-09-27 2014-02-05 大连理工大学 一种高致密度陶瓷基复合材料及其制备方法和应用
CN103668013A (zh) * 2013-11-12 2014-03-26 江苏大学 一种原位铝基复合材料超塑性预处理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1458908A1 (ru) * 1987-07-22 1989-02-15 А. А. Абрам н, А. В. Радько И А. А. Саркис н Суспензи дл нанесени газопоглотител дл ламп накаливани
US6025065A (en) * 1994-12-29 2000-02-15 Nils Claussen Production of an aluminide containing ceramic moulding
CN1125211A (zh) * 1995-09-07 1996-06-26 华东理工大学 大块体致密纳米陶瓷材料及其制备方法
CN1986483A (zh) * 2006-12-25 2007-06-27 西南科技大学 纳米-纳米型Al2O3基复相陶瓷及其制备方法
TW200827321A (en) * 2006-12-28 2008-07-01 Univ Far East The novel manufacturing process of ceramic with superplasticity
TW200827322A (en) * 2006-12-28 2008-07-01 Univ Far East The superplasticity-molding method by using the intermediate phase formed at the edge of ceramic
CN102093051A (zh) * 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 一种氧化锆纳米陶瓷材料
CN103553626A (zh) * 2013-09-27 2014-02-05 大连理工大学 一种高致密度陶瓷基复合材料及其制备方法和应用
CN103668013A (zh) * 2013-11-12 2014-03-26 江苏大学 一种原位铝基复合材料超塑性预处理方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BALBO, A等: "Spark plasma sintering and hot pressing of ZrB2-MoSi2 ultra-high-temperature ceramics", 《MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING》 *
任慧等: "《微纳米含能材料》", 30 April 2015, 北京理工大学出版社 *
林伟立: "原位合成ZrB2(bp)/2024Al复合材料及其超塑性研究", 《万方数据》 *
祖宇飞等: "氧化物陶瓷高速超塑性研究进展", 《中国科学:技术科学》 *
胡成川: "Si-B-C-N-Zr机械合金化粉末及陶瓷的组织结构与性能", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
邰伟彬: "ZrB2陶瓷基复合材料的性能及高温拉深机理研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN112794720B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
CN110698205B (zh) 一种石墨烯增韧碳化硅陶瓷的制备方法
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
CN111574226B (zh) 一种高密度低游离硅含量反应烧结碳化硅陶瓷材料的制备方法
CN113862540B (zh) 一种添加max相的钼合金及其制备方法
CN106242572A (zh) 一种碳化硼基复合陶瓷模具材料及其制备方法
JP2004035279A (ja) シリコン/炭化ケイ素複合部品の製造方法
CN105331843A (zh) 一种碳化硼喷头及其制备方法
CN113896528A (zh) 一种dlp-3d打印制备高性能氧化锆陶瓷材料的方法
CN113735583A (zh) 一种新型金刚石/碳化硅复合陶瓷及其制备方法
CN113968734B (zh) 一种高致密度氧化锆陶瓷材料的制备方法
CN101734920B (zh) 一种氮化钛多孔陶瓷及其制备方法
CN111747748B (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN107619282B (zh) 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件的制备方法
CN112794720B (zh) 一种二硼化锆基超高温陶瓷低温高速超塑性成形方法
CN109053193A (zh) 一种氮化硅陶瓷喷嘴及其制备方法
CN110590378A (zh) 均质化分布式氮化硅陶瓷材料制备方法
CN106242574A (zh) 一种碳化钨基复合陶瓷模具材料及其制备方法
CN114752835B (zh) 一种具有蜂窝状结构的Ti(C,N)基金属陶瓷及其制备方法
CN115536401A (zh) 一种基于放电等离子烧结的光固化成形陶瓷及其制备方法
CN107573076B (zh) 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件
CN112661516A (zh) 一种复合陶瓷玻璃热弯模具及其制备方法
CN108358628B (zh) 一种莫来石-氧化锆复合陶瓷及其制备方法
CN116143523B (zh) 一种无压烧结碳化硅素胚中间体及碳化硅陶瓷与制备方法
CN111792944A (zh) 以发泡硅胶和无机粉体复合物为前驱体制备泡沫陶瓷材料的方法
CN111299586A (zh) 低成本钛基复合材料构件粉末直接锻造成形方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant