CN112760614B - 一种多晶pecvd镀膜均匀性优化的方法 - Google Patents
一种多晶pecvd镀膜均匀性优化的方法 Download PDFInfo
- Publication number
- CN112760614B CN112760614B CN202011450538.4A CN202011450538A CN112760614B CN 112760614 B CN112760614 B CN 112760614B CN 202011450538 A CN202011450538 A CN 202011450538A CN 112760614 B CN112760614 B CN 112760614B
- Authority
- CN
- China
- Prior art keywords
- pecvd
- coating
- coating film
- polycrystalline
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 80
- 239000011248 coating agent Substances 0.000 title claims abstract description 78
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000000151 deposition Methods 0.000 claims abstract description 49
- 230000008021 deposition Effects 0.000 claims abstract description 28
- 229910004205 SiNX Inorganic materials 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 230000003287 optical effect Effects 0.000 abstract description 4
- 230000031700 light absorption Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 58
- 230000000052 comparative effect Effects 0.000 description 7
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 239000007888 film coating Substances 0.000 description 3
- 238000009501 film coating Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
- H01L31/182—Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1876—Particular processes or apparatus for batch treatment of the devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Sustainable Energy (AREA)
- Formation Of Insulating Films (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明公开了一种多晶PECVD镀膜均匀性优化的方法,属于太阳能电池技术领域。包括以下步骤:预沉积:采用PECVD镀膜设备,在一定的压力和功率下,通入NH3气体,经沉积得镀膜A;沉积第一层SiNx层:在一定的压力和功率下,分别向镀膜A通入SiH4和NH3气体,经沉积得镀膜B;沉积第二层SiNx层:在一定的压力和功率下,分别向镀膜B通入SiH4和NH3气体,经沉积得多晶PECVD镀膜。本发明在常规PECVD设备的基础上,沉积SiNx减反射膜,通过控制两层膜的厚度与折射率,提高对光吸收,利用SiNx物理稳定性,减少光学损失,提高电池效率,优化电池片成品颜色,且本发明不增加生产成本,易于实现。
Description
技术领域
本发明涉及太阳能电池技术领域,更具体的说是涉及一种多晶PECVD镀膜均匀性优化的方法。
背景技术
晶硅太阳能电池技术发展到目前为止,生产成本控制已经成为限制光伏电池发展的主要因素。降低成本,提高转化效率始终是光伏领域研究的热门课题。
影响晶硅太阳能电池的转化效率主要来自以下两个方面:
1、电学损失:包括半导体表面和体内光生载流子复合、半导体和金属栅线的体电阻、金属-半导体接触电阻损失,欧姆电阻比较容易降低,其中最为关键的是降低光生载流子的复合;
2、光学损失:包括前表面反射损失、金属栅线的遮挡损失、光照部分各波段非吸收损失,其中光波段非吸收损失与半导体自身性质有关,反射和遮挡损失是可以通过技术手段减少的。
综上所述:提高转化效率的关键是:1.减少光的反射和遮挡损失;2.降低光生载流子的复合。
目前对晶硅太阳能电池的表面减反射的材料种类很多,如氧化硅,氧化铝,碳化硅、氮化硅等,由于氮化硅具有良好的耐腐蚀性、稳定性、很好的对金属钠离子、水汽起到掩蔽作用,且氮化硅在沉积过程中会产生氢,氢原子进入硅片体内起到良好的钝化作用,在制造方面比较简单,生成温度较低,适合于工业化大规模量产。
但现在的双层膜工艺由于管式PECVD自身的缺陷,无法做到整个管内温度的均匀性,相应的必然出现镀膜均匀性的问题。
因此,如何更好的提高镀膜均匀性,提升转化效率,对镀膜工艺进行优化是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种多晶PECVD镀膜均匀性优化的方法。
为了实现上述目的,本发明采用如下技术方案:
一种多晶PECVD镀膜均匀性优化的方法,包括以下步骤:
(1)预沉积:采用PECVD镀膜设备,在一定的温度、压力和功率下,通入NH3气体,经沉积得镀膜A;
(2)沉积SiNx膜:在一定的温度、压力和功率下,分别向镀膜A通入SiH4和NH3气体,经沉积得镀膜B;
(3)再次沉积SiNx膜:在一定的温度、压力和功率下,分别向镀膜B通入SiH4和NH3气体,经沉积得多晶PECVD镀膜。
有益效果在于:前期的预沉积是为后续沉积做准备,通过电离氨气,得到充足的氢离子环境,增加氢钝化效果,后续主反应步骤(2)、(3)SiNx膜的折射率分别为2.3(步骤2形成的膜厚为4~15nm)和2.0(步骤3形成的膜厚为65~70nm),由于两种折射率有着较大的差异,通过调整两层膜的厚度进而影响折射率,形成高低折射率的搭配,达到了对光谱中波长300~1200um的反射率低0.5%~1%,达到对入射光光吸收显著的目的。
优选的:步骤(1)中,NH3气体流量为3000~5000sccm/min,沉积时间为10~20s,镀膜A厚度为1~5nm。
有益效果在于:短时间通入氨气,提供一个氢离子的氛围,为后续镀膜做准备。
优选的:步骤(2)中,SiH4气体流量为800~1000sccm/min;NH3气体流量为3000~5000sccm/min;气体总流量为3800~6000sccm/min,镀膜B厚度为5~20nm;
其中NH3和SiH4气体体积比为4.4:1;沉积时间为100~200s。
有益效果在于:此步骤主要起钝化作用,可以提供一层高折射率的结构致密的氮化硅薄膜。
优选的:步骤(3)中,SiH4气体流量为300~700sccm/min;NH3气体流量为3500~7000sccm/min;气体总流量为3800~7700sccm/min,多晶PECVD镀膜厚度为75~85nm;
其中,NH3和SiH4气体体积比为9:1;沉积时间为400~500s。
有益效果在于:预沉积的效果、第一层、第二层SiNx膜厚度与折射率是依据NH3的流量比、射频功率、射频脉冲开关比以及镀膜时间的长短来确定。其中,第二层膜通过与第一层膜的配合,提高电池效率。
优选的:步骤(1)~(3)功率均为5000~8000W,温度均为450~480℃。
优选的:步骤(1)和(2)压力均为1300~1500mTorr。
有益效果在于:此温度、功率和压力下有利于沉积的稳定性。来保正膜层结构的稳定性。
优选的:步骤(3)压力为1500~1800mTorr。
优选的:步骤(1)和(2)PECVD镀膜设备的射频脉冲开关比为50:650。
有益效果在于:与之前不同的压力,用来确保沉积速率,可以达到预想的沉积厚度,同时搭配不同的射频脉冲开关比用来保证沉积的稳定性。
优选的:步骤(3)射频脉冲开关比为55:650。
本发明还提供了上述方法制备得到的多晶PECVD镀膜材料。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种多晶PECVD镀膜均匀性优化的方法,在常规PECVD设备的基础上,采用多晶硅太阳能电池制造方法沉积SiNx减反射膜,通过控制两层膜的厚度与折射率,提高对光吸收,利用SiNx物理稳定性,减少光学损失,提高电池效率,优化电池片成品颜色;同时本发明不增加生产成本,易于实现。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明提供的多晶硅片PECVD镀膜结构示意图;其中,硅基体为多晶硅片,n1为第一层膜折射率,n2为第二层膜折射率,d1为第一层膜膜厚,d2为第二层膜膜厚。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种多晶PECVD镀膜均匀性优化的方法。
实施例中所涉及的原料和设备均为市售渠道采购,其中多晶硅片采用徐州协鑫硼掺杂P型多晶硅片,规格为158.75×158.75mm2,厚度为180±20um,电阻率为1~3Ω,实验涉及的沉积氮化硅薄膜采用捷家伟创PD-380型PECVD设备,同时采用SE400椭偏仪测量不同组的膜厚折射率数据,对其品牌来源不做限定,满足实验与工业生产即可。
实施例1
一种多晶PECVD镀膜均匀性优化的方法,包括以下步骤:
(1)预沉积:采用PECVD镀膜设备,在一定的温度、压力和功率下,通入NH3气体,经沉积得镀膜A;
(2)沉积第一层SiNx膜:在一定的温度、压力和功率下,分别向镀膜A同时通入SiH4和NH3气体,经沉积得镀膜B;
(3)沉积第二层SiNx膜:在一定的温度、压力和功率下,分别向镀膜B同时通入SiH4和NH3气体,经沉积得多晶PECVD镀膜。
为进一步优化技术方案:步骤(1)中,NH3气体流量为3000sccm/min,沉积时间为10s,镀膜A厚度为1nm。
为进一步优化技术方案:步骤(2)中,SiH4气体流量为800sccm/min;NH3气体流量为3000sccm/min;气体总流量为3800sccm/min,镀膜B厚度为5nm
其中NH3和SiH4气体体积比为4.4:1;沉积时间为100s。
为进一步优化技术方案:步骤(3)中,SiH4气体流量为300sccm/min;NH3气体流量为3500sccm/min;气体总流量为3800sccm/min,多晶PECVD镀膜厚度为75nm。
其中,NH3和SiH4气体体积比为9:1;沉积时间为400s。
为进一步优化技术方案:步骤(1)和(2)压力均为1300mTorr;
步骤(3)压力为1500mTorr;
步骤(1)~(3)功率均为5000W;温度均为450℃。
步骤(1)和(2)PECVD镀膜设备的射频脉冲开关比为50:650;
步骤(3)射频脉冲开关比为55:650。
实施例2
一种多晶PECVD镀膜均匀性优化的方法,包括以下步骤:
(1)预沉积:采用PECVD镀膜设备,在一定的温度、压力和功率下,通入NH3气体,经沉积得镀膜A;
(2)沉积第一层SiNx膜:在一定的温度、压力和功率下,分别向镀膜A同时通入SiH4和NH3气体,经沉积得镀膜B;
(3)沉积第二层SiNx膜:在一定的温度、压力和功率下,分别向镀膜B同时通入SiH4和NH3气体,经沉积得多晶PECVD镀膜。
为进一步优化技术方案:步骤(1)中,NH3气体流量为4200sccm/min,沉积时间为15s镀膜A厚度为3nm。
为进一步优化技术方案:步骤(2)中,SiH4气体流量为950sccm/min;NH3气体流量为4200sccm/min;气体总流量为5150sccm/min,镀膜B厚度为15nm
其中NH3和SiH4气体体积比为4.4:1;沉积时间为160s。
为进一步优化技术方案:步骤(3)中,SiH4气体流量为632sccm/min;NH3气体流量为5738sccm/min;气体总流量为6370sccm/min,多晶PECVD镀膜厚度为80nm。
其中,NH3和SiH4气体体积比为9:1;沉积时间为450s。
为进一步优化技术方案:步骤(1)和(2)压力均为1400mTorr;
步骤(3)压力为1500mTorr;
步骤(1)和(2)功率为均7400W,步骤(3)功率为7800W;温度均为470℃。
步骤(1)和(2)PECVD镀膜设备的射频脉冲开关比为50:650;
步骤(3)射频脉冲开关比为55:650。
实施例3
一种多晶PECVD镀膜均匀性优化的方法,包括以下步骤:
(1)预沉积:采用PECVD镀膜设备,在一定的温度、压力和功率下,通入NH3气体,经沉积得镀膜A;
(2)沉积第一层SiNx膜:在一定的温度、压力和功率下,分别向镀膜A同时通入SiH4和NH3气体,经沉积得镀膜B;
(3)沉积第二层SiNx膜:在一定的温度、压力和功率下,分别向镀膜B同时通入SiH4和NH3气体,经沉积得多晶PECVD镀膜。
为进一步优化技术方案:步骤(1)中,NH3气体流量为5000sccm/min,沉积时间为20s,镀膜A厚度为5nm。
为进一步优化技术方案:步骤(2)中,SiH4气体流量为1000sccm/min;NH3气体流量为5000sccm/min;气体总流量为6000sccm/min,镀膜B厚度为20nm。
其中NH3和SiH4气体体积比为4.4:1;沉积时间为200s。
为进一步优化技术方案:步骤(3)中,SiH4气体流量为700sccm/min;NH3气体流量为7000sccm/min;气体总流量为7700sccm/min,多晶PECVD镀膜厚度为85nm。
其中,NH3和SiH4气体体积比为9:1;沉积时间为500s。
为进一步优化技术方案:步骤(1)和(2)压力均为1500mTorr;
步骤(3)压力为1800mTorr;
步骤(1)~(3)功率为均8000W;温度为均480℃。
步骤(1)和(2)PECVD镀膜设备的射频脉冲开关比为50:650;
步骤(3)射频脉冲开关比为55:650。
对比实验:
对比例1(没有预沉积过程和参数变化)
采用常规多晶刻蚀后硅片,常规镀膜工艺:
多晶PECVD镀膜方法,包括以下步骤:
(1)沉积第一层SiNx膜:在一定的温度、压力和功率下,分别向镀膜A同时通入SiH4和NH3气体,经沉积得镀膜B;
(2)沉积第二层SiNx膜:在一定的温度、压力和功率下,分别向镀膜B同时通入SiH4和NH3气体,经沉积得多晶PECVD镀膜。
步骤(1)中,SiH4气体流量为1200sccm/min;NH3气体流量为5500sccm/min;气体总流量为6500sccm/min,其中NH3和SiH4气体体积比为4.5:1;沉积时间为90s。
步骤(2)中,SiH4气体流量为780sccm/min;NH3气体流量为7800sccm/min;气体总流量为8580sccm/min,其中,NH3和SiH4气体体积比为10:1;沉积时间为420s。
步骤(1)和(2)压力为1700mTorr;步骤(2)功率为6800W;温度为440℃。
步骤(1)、(2)PECVD镀膜设备的射频脉冲开关比为50:500。
与实施例2实验结果比对如下表1~4所示:
表1
分组 | 实验数量 | 实验膜厚均值 | 膜厚标准差 | 片间均匀性 |
对比例1 | 111520 | 80.60 | 3.627 | 一般 |
实施例2 | 200326 | 79.73 | 2.688 | 非常好 |
表2
从表1和表2数据可以看出本发明实施例片间均匀性明显高。
进一步,分别将实施例2与对比例1批量做至丝网,测试电性能数据如表3所示;再分别将样品按测试颜色分选的类别,颜色依次变浅,命名为深1、深2、正3,正4,浅5,浅6;比对结果如下表4:
表3
表4
结果表明:
1、实施例2比对比例1有0.05%的提升,主要体现在电流提升30毫伏。
2、深1、深2、正3整体合计(主流颜色比例)由对比例1的85.86%上升为实施例2的92.74%,(主流)颜色比例有6.88%的提升,正4、浅5、浅6整体合计比例由对比例1的14.13%下降为实施例2的7.26%,浅色比例有6.87%的下降。成品电池片外观颜色浅色比例明显下降,大大降低了混色的风险。
最后,将实施例1~3制备的样品抽样经可靠性测试,PID96H、PID192H及PID288H功率衰减均小于1%,合格(部分样品检测数据见表5)。
表5
备注:Uoc、Isc为成品组件的开路电压和短路电流。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (6)
1.一种多晶PECVD镀膜均匀性优化的方法,其特征在于,由以下步骤组成:
(1)预沉积:采用PECVD镀膜设备,在一定的温度、压力和功率下,通入NH3 气体,经沉积得镀膜A;
(2)沉积SiNx膜:在一定的温度、压力和功率下,分别向镀膜A通入SiH4 和NH3 气体,经沉积得镀膜B;
(3)再次沉积SiNx膜:在一定的温度、压力和功率下,分别向镀膜B通入SiH4 和NH3 气体,经沉积得多晶PECVD镀膜;
步骤(1)中,所述NH3 气体流量为3000~5000sccm/min,所述沉积时间为10~20s,所述镀膜A厚度为1~5nm;
步骤(2)中,所述SiH4气体流量为800~1000sccm/min,所述NH3 气体流量为3000~5000sccm/min,气体总流量为3800-6000sccm/min,所述镀膜B厚度为5~20nm;其中NH3 和SiH4 气体体积比为4.4:1;所述沉积时间为100~200s;
步骤(3)中,所述SiH4 气体流量为300~700sccm/min,所述NH3 气体流量为3500~7000sccm/min,气体总流量为3800~7700sccm/min,所述多晶PECVD镀膜厚度为75~85nm;其中,NH3 和SiH4 气体体积比为9:1;沉积时间为400-500s;
步骤(1)~(3)所述功率均为5000~8000W,温度均为450~480℃。
2.如权利要求1所述的多晶PECVD镀膜均匀性优化的方法,其特征在于,步骤(1)和(2)所述压力均为1300~1500mTorr。
3.如权利要求2所述的多晶PECVD镀膜均匀性优化的方法,其特征在于,步骤(3)所述压力为1500~1800mTorr。
4.如权利要求1~3任一所述的多晶PECVD镀膜均匀性优化的方法,其特征在于,步骤(1)和(2)所述PECVD镀膜设备的射频脉冲开关比均为50:650。
5.如权利要求1~3任一所述的多晶PECVD镀膜均匀性优化的方法,其特征在于,步骤(3)所述PECVD镀膜设备的射频脉冲开关比为55:650。
6.权利要求1~5任一所述方法制备得到的多晶PECVD镀膜材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011450538.4A CN112760614B (zh) | 2020-12-09 | 2020-12-09 | 一种多晶pecvd镀膜均匀性优化的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011450538.4A CN112760614B (zh) | 2020-12-09 | 2020-12-09 | 一种多晶pecvd镀膜均匀性优化的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112760614A CN112760614A (zh) | 2021-05-07 |
CN112760614B true CN112760614B (zh) | 2023-02-28 |
Family
ID=75693540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011450538.4A Active CN112760614B (zh) | 2020-12-09 | 2020-12-09 | 一种多晶pecvd镀膜均匀性优化的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112760614B (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58220477A (ja) * | 1982-06-16 | 1983-12-22 | Japan Solar Energ Kk | 太陽電池の製造方法 |
CN102386277A (zh) * | 2011-10-17 | 2012-03-21 | 浙江贝盛光伏股份有限公司 | 多层镀膜工艺 |
CN102623572A (zh) * | 2012-04-13 | 2012-08-01 | 英利能源(中国)有限公司 | 一种制备晶体硅太阳能电池沉积减反射薄膜的方法 |
CN102856174A (zh) * | 2012-09-19 | 2013-01-02 | 英利能源(中国)有限公司 | 氮化硅的膜制备方法、具有氮化硅膜的太阳能电池片及其制备方法 |
CN103117310A (zh) * | 2013-02-27 | 2013-05-22 | 上海艾力克新能源有限公司 | 双层氮化硅减反射膜及其制备方法 |
CN103556125A (zh) * | 2013-10-29 | 2014-02-05 | 宁夏银星能源股份有限公司 | 一种冶金级单晶硅太阳能电池双层减反膜镀膜工艺 |
CN103746005A (zh) * | 2014-01-17 | 2014-04-23 | 宁波富星太阳能有限公司 | 双层氮化硅减反射膜及其制备方法 |
CN103840032A (zh) * | 2012-11-27 | 2014-06-04 | 陕西天宏硅材料有限责任公司 | 一种硅太阳能单晶电池片双层减反膜的制备工艺 |
CN108588676A (zh) * | 2018-04-26 | 2018-09-28 | 维科诚(苏州)光伏科技有限公司 | 一种太阳能电池减反射膜及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6140220A (en) * | 1999-07-08 | 2000-10-31 | Industrial Technology Institute Reseach | Dual damascene process and structure with dielectric barrier layer |
JP4540447B2 (ja) * | 2004-10-27 | 2010-09-08 | シャープ株式会社 | 太陽電池および太陽電池の製造方法 |
US20110272024A1 (en) * | 2010-04-13 | 2011-11-10 | Applied Materials, Inc. | MULTI-LAYER SiN FOR FUNCTIONAL AND OPTICAL GRADED ARC LAYERS ON CRYSTALLINE SOLAR CELLS |
TW201611340A (zh) * | 2014-09-09 | 2016-03-16 | High Power Optoelectronics Inc | 具反射鏡保護層的發光二極體結構 |
CN111584665A (zh) * | 2019-07-18 | 2020-08-25 | 国家电投集团西安太阳能电力有限公司 | 一种用于薄片化双面电池的背面氮化硅叠层膜的制备方法 |
CN111564530B (zh) * | 2020-06-09 | 2022-07-29 | 山西潞安太阳能科技有限责任公司 | 一种新型晶硅perc电池前氧化层制备工艺 |
-
2020
- 2020-12-09 CN CN202011450538.4A patent/CN112760614B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58220477A (ja) * | 1982-06-16 | 1983-12-22 | Japan Solar Energ Kk | 太陽電池の製造方法 |
CN102386277A (zh) * | 2011-10-17 | 2012-03-21 | 浙江贝盛光伏股份有限公司 | 多层镀膜工艺 |
CN102623572A (zh) * | 2012-04-13 | 2012-08-01 | 英利能源(中国)有限公司 | 一种制备晶体硅太阳能电池沉积减反射薄膜的方法 |
CN102856174A (zh) * | 2012-09-19 | 2013-01-02 | 英利能源(中国)有限公司 | 氮化硅的膜制备方法、具有氮化硅膜的太阳能电池片及其制备方法 |
CN103840032A (zh) * | 2012-11-27 | 2014-06-04 | 陕西天宏硅材料有限责任公司 | 一种硅太阳能单晶电池片双层减反膜的制备工艺 |
CN103117310A (zh) * | 2013-02-27 | 2013-05-22 | 上海艾力克新能源有限公司 | 双层氮化硅减反射膜及其制备方法 |
CN103556125A (zh) * | 2013-10-29 | 2014-02-05 | 宁夏银星能源股份有限公司 | 一种冶金级单晶硅太阳能电池双层减反膜镀膜工艺 |
CN103746005A (zh) * | 2014-01-17 | 2014-04-23 | 宁波富星太阳能有限公司 | 双层氮化硅减反射膜及其制备方法 |
CN108588676A (zh) * | 2018-04-26 | 2018-09-28 | 维科诚(苏州)光伏科技有限公司 | 一种太阳能电池减反射膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112760614A (zh) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090255581A1 (en) | Thin film silicon solar cell and manufacturing method thereof | |
CN112652681A (zh) | 一种perc太阳能电池背钝化膜、其制备方法及perc太阳能电池 | |
CN109004038B (zh) | 太阳能电池及其制备方法和光伏组件 | |
CN103094366A (zh) | 一种太阳电池钝化减反射膜及其制备工艺方法 | |
KR20130028449A (ko) | 박막 태양전지 및 그 제조 방법 | |
CN113113502A (zh) | 一种异质结太阳能电池及制备方法 | |
WO2014032457A1 (zh) | 一种制备具有抗pid效应的减反射膜的方法 | |
CN115995512B (zh) | 太阳电池及其制备方法 | |
CN115863480A (zh) | 背面多种元素掺杂的N型TOPCon太阳能电池的制备方法 | |
WO2024198703A1 (zh) | 太阳能电池单元及其制造方法 | |
CN113621946A (zh) | 一种叠层背膜及其制备方法 | |
Qiu et al. | Function analysis of the phosphine gas flow for n-type nanocrystalline silicon oxide layer in silicon heterojunction solar cells | |
CN117199186B (zh) | 一种N-TOPCon电池的制作方法 | |
CN112760614B (zh) | 一种多晶pecvd镀膜均匀性优化的方法 | |
CN113363340A (zh) | 一种异质结电池制备方法及异质结电池 | |
CN113013267A (zh) | 太阳能电池、电池钝化层的制作方法和太阳能组件 | |
CN116613244A (zh) | 太阳能电池钝化层的制备方法和太阳能电池 | |
CN113930748B (zh) | 太阳能电池的制备方法、太阳能电池与光伏组件 | |
KR20130035858A (ko) | 박막 태양전지 및 그 제조방법 | |
CN111969079A (zh) | 可改善el弧形黑斑的perc电池的镀膜方法及perc电池 | |
CN112713216A (zh) | 一种太阳能电池的层叠减反射膜的制备方法 | |
JPS6132416A (ja) | 半導体装置の製造方法 | |
CN113584461B (zh) | Perc电池的背面膜层的制作方法和perc电池 | |
CN113782618B (zh) | 单面perc电池及其钝化层的制作方法 | |
CN113659032B (zh) | 避开氧化铝钝化的perc电池和电池钝化层的制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |