CN111584665A - 一种用于薄片化双面电池的背面氮化硅叠层膜的制备方法 - Google Patents

一种用于薄片化双面电池的背面氮化硅叠层膜的制备方法 Download PDF

Info

Publication number
CN111584665A
CN111584665A CN201910650900.3A CN201910650900A CN111584665A CN 111584665 A CN111584665 A CN 111584665A CN 201910650900 A CN201910650900 A CN 201910650900A CN 111584665 A CN111584665 A CN 111584665A
Authority
CN
China
Prior art keywords
sinx
film
battery
laminated film
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910650900.3A
Other languages
English (en)
Inventor
杨露
刘大伟
倪玉凤
张天杰
宋志成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huanghe hydropower Xining Solar Power Co.,Ltd.
Qinghai Huanghe Hydropower Development Co Ltd
Huanghe Hydropower Development Co Ltd
State Power Investment Corp Xian Solar Power Co Ltd
Original Assignee
Xining Branch Of Spic Xi'an Solar Power Co ltd
Qinghai Huanghe Hydropower Development Co Ltd
Huanghe Hydropower Development Co Ltd
State Power Investment Corp Xian Solar Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xining Branch Of Spic Xi'an Solar Power Co ltd, Qinghai Huanghe Hydropower Development Co Ltd, Huanghe Hydropower Development Co Ltd, State Power Investment Corp Xian Solar Power Co Ltd filed Critical Xining Branch Of Spic Xi'an Solar Power Co ltd
Priority to CN201910650900.3A priority Critical patent/CN111584665A/zh
Publication of CN111584665A publication Critical patent/CN111584665A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本专利提供了一种适用于薄片化双面电池的背面氮化硅叠层膜的制备方法,其特征在于,在电池背面沉积SiNx薄膜步骤中沉积至少2层SiNx薄膜;所述电池背面沉积的SiNx薄膜是由不同折射率、不同厚度的SiNx薄膜周期性排列形成的叠层膜结构;所述SiNx薄膜的厚度为10‑100nm,折射率为1.5‑2.2,沉积时间为100‑600s。本发明的SiNx叠层膜是采用PECVD方法制备,通过改变SiH4和NH3的流量大小及沉积时间获得不同折射率和不同厚度的SiNx膜层,从而调控其光子带隙中心波长的位置,反射特定波长的光。本发明通过采用背面SiNx叠层膜形式,增加背面长波光的反射率,有效提升了光吸收率,对短路电流有明显的增益,提高了电池的转换效率。

Description

一种用于薄片化双面电池的背面氮化硅叠层膜的制备方法
技术领域
本发明涉及一种双面太阳能电池领域,特别是薄片化双面电池的沉积制备。
背景技术
随着我国电价平价上网政策的不断推进,硅片厚度减小是太阳能电池成本降低最直接有效的措施,但硅片厚度减薄会使长波的吸收损失更加明显,短路电流密度降低,从而影响N型太阳电池效率的提升。以N-PERT为代表的N型高效光伏电池受到研究者和企业的关注。N-PERT电池具有少子寿命高,效率提升空间大等优点,且可以与Topcon技术很好的对接。因此在晶硅电池的背面沉积一层能够调控入射太阳光的钝化薄膜,对改善电池的光利用率,进而提高电池的光电转换效率具有重要的意义。
常规太阳能电池对长波的吸收能力较差,导致长波光直接穿透电池而不能被有效吸收,降低了太阳能电池的光捕获率和转换效率。此外,随着平价上网的不断推进,硅片厚度减小是降低太阳能电池成本最直接有效的措施,但硅片厚度减薄会使长波的吸收损失更加明显,短路电流密度降低,从而影响N型太阳电池效率的提升。因此在晶硅电池的背面沉积一层能够调控入射太阳光的背膜,对改善电池的长波利用率,进而提高电池的光电转换效率具有重要的意义。
光子晶体:是一种介电常数随空间周期性变化的具有光子带隙的结构,对光具有一定的调控作用。当入射光的频率与光子带隙匹配时,入射光被全部反射,不能穿透光子晶体。
SiNx叠层膜:由两种不同折射率ni(i=1,2)、不同厚度xi(i=1,2)的SiNx 膜周期性排列而成,此周期性排列的SiNx膜形成光子晶体。通过调节两种SiNx 薄膜的折射率ni(i=1,2)和厚度xi(i=1,2)改变光子晶体膜的光子带隙,从而实现对长波长光的反射目的,提高电池的光利用率。
发明内容
本发明的主要目的在于研制一种适用于薄片化双面电池的背面氮化硅叠层膜的制备方法,在电池背面沉积SiNx薄膜步骤中沉积至少2层SiNx薄膜;所述电池背面沉积的SiNx薄膜是由不同折射率、不同厚度的SiNx薄膜周期性排列形成的叠层膜结构,此周期性排列的SiNx膜形成了光子晶体;所述SiNx薄膜的厚度为10-100nm,折射率为1.5-2.2,沉积时间为100-600s。
更进一步,所述电池背面的SiNx薄膜是由两层SiNx薄膜周期性排列形成,第一层SiNx薄膜的折射率n1为1.5-1.8,第二层SiNx薄膜的折射率n2为 1.9-2.2。
更进一步,制备所述第一层SiNx薄膜的SiH4流量为400-500sccm,NH3 流量为3000-4000sccm;制备所述第二层SiNx薄膜的SiH4流量为600-800 sccm,NH3流量为2000-4000sccm。
本发明与现有技术相比存在以下优点和积极效果:
1)本发明提供的适用于薄片化双面电池的背面SiNx叠层膜,是通过PECVD 方法沉积SiNx叠层结构,可以将穿透电池的光反射回电池内部,提高电池的光利用率,从而使光电转换效率得到提升。
2)本发明提供的适用于薄片化双面电池的背面SiNx叠层膜基于光子晶体的慢光效应也可增强电池的光吸收能力。该光子晶体光子带隙中心波长可在 380-1100nm之间任意调节,禁带中心波长的反射率最高可达99%。
3)本发明提供的结构设计特别适合薄片化电池,使得电池效率不受硅片厚度降低的影响。
4)本发明的实现不需要购买新设备,仅通过改变SiNx薄膜的制备工艺即可实现。
附图说明
图1是N型双面电池的结构示意图
具体实施方式
实施例
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
图1是N型双面电池的结构示意图和本发明SiNx叠层膜结构的示意图。n1 为第一层膜的折射率,x1为第一层膜的厚度;n2为第二层膜的折射率,x2为第二层膜的厚度。
如图所示,本发明实施例提供的一种适用于薄片化双面电池的背面氮化硅叠层膜的制备方法,对硅片依次进行制绒、硼扩散、刻蚀、离子注入磷、RCA 清洗、退火、背面沉积SiNx薄膜、BOE清洗、正面镀Al2O3、正面镀SiNx薄膜、印刷和烧结。电池背面沉积的SiNx薄膜是由两种不同折射率ni(i=1,2)、不同厚度xi(i=1,2)的SiNx薄膜周期性排列形成的叠层膜结构,此周期性排列的SiNx形成了光子晶体。第一种SiNx薄膜的折射率为n1,厚度为x1,第二种 SiNx薄膜的折射率为n2,厚度为x2。
具体叠层膜如下:
第一种SiNx薄膜的厚度为10-100nm,折射率为1.5-1.8。其中,SiH4流量 400-500sccm,NH3流量3000-4000sccm,沉积时间100-600s。
第二种SiNx薄膜的厚度为10-100nm,折射率为1.9-2.2。其中,SiH4流量 600-800sccm,NH3流量2000-4000sccm,沉积时间100-600s。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (3)

1.一种适用于薄片化双面电池的背面氮化硅叠层膜的制备方法,其特征在于,在电池背面沉积SiNx薄膜步骤中沉积至少2层SiNx薄膜;所述电池背面沉积的SiNx薄膜是由不同折射率、不同厚度的SiNx薄膜周期性排列形成的叠层膜结构;所述SiNx薄膜的厚度为10-100nm,折射率为1.5-2.2,沉积时间为100-600s。
2.根据权利要求1所述的一种适用于薄片化双面电池的背面氮化硅叠层膜的制备方法,其特征在于,所述电池背面的SiNx薄膜是由两层SiNx薄膜周期性排列形成,第一层SiNx薄膜的折射率n1为1.5-1.8,第二层SiNx薄膜的折射率n2为1.9-2.2。
3.根据权利要求2所述的一种适用于薄片化双面电池的背面氮化硅叠层膜的制备方法,其特征在于,制备所述第一层SiNx薄膜的SiH4流量为400-500sccm,NH3流量为3000-4000sccm;制备所述第二层SiNx薄膜的SiH4流量为600-800sccm,NH3流量为2000-4000sccm。
CN201910650900.3A 2019-07-18 2019-07-18 一种用于薄片化双面电池的背面氮化硅叠层膜的制备方法 Pending CN111584665A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910650900.3A CN111584665A (zh) 2019-07-18 2019-07-18 一种用于薄片化双面电池的背面氮化硅叠层膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910650900.3A CN111584665A (zh) 2019-07-18 2019-07-18 一种用于薄片化双面电池的背面氮化硅叠层膜的制备方法

Publications (1)

Publication Number Publication Date
CN111584665A true CN111584665A (zh) 2020-08-25

Family

ID=72116889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910650900.3A Pending CN111584665A (zh) 2019-07-18 2019-07-18 一种用于薄片化双面电池的背面氮化硅叠层膜的制备方法

Country Status (1)

Country Link
CN (1) CN111584665A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760614A (zh) * 2020-12-09 2021-05-07 晋能清洁能源科技股份公司 一种多晶pecvd镀膜均匀性优化的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120083963A (ko) * 2011-01-19 2012-07-27 전북대학교산학협력단 실리콘 태양전지 및 그 제조방법
US20160093507A1 (en) * 2014-09-30 2016-03-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of localized annealing of semi-conducting elements using a reflective area
CN105576083A (zh) * 2016-03-11 2016-05-11 泰州中来光电科技有限公司 一种基于apcvd技术的n型双面太阳能电池及其制备方法
CN108231917A (zh) * 2017-12-20 2018-06-29 横店集团东磁股份有限公司 一种perc太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120083963A (ko) * 2011-01-19 2012-07-27 전북대학교산학협력단 실리콘 태양전지 및 그 제조방법
US20160093507A1 (en) * 2014-09-30 2016-03-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of localized annealing of semi-conducting elements using a reflective area
CN105576083A (zh) * 2016-03-11 2016-05-11 泰州中来光电科技有限公司 一种基于apcvd技术的n型双面太阳能电池及其制备方法
CN108231917A (zh) * 2017-12-20 2018-06-29 横店集团东磁股份有限公司 一种perc太阳能电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760614A (zh) * 2020-12-09 2021-05-07 晋能清洁能源科技股份公司 一种多晶pecvd镀膜均匀性优化的方法

Similar Documents

Publication Publication Date Title
CN109004053B (zh) 双面受光的晶体硅/薄膜硅异质结太阳电池及制作方法
Kim et al. Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology
Rahman et al. Advances in surface passivation of c-Si solar cells
Guha et al. Amorphous silicon alloy photovoltaic research—present and future
JP2022058069A (ja) 太陽電池及び太陽電池モジュール
CN101820007B (zh) 高转化率硅晶及薄膜复合型多结pin太阳能电池及其制造方法
CN101866963A (zh) 高转化率硅基多结多叠层pin薄膜太阳能电池及其制造方法
CN104851931B (zh) 具有梯度结构的碲化镉薄膜太阳能电池及其制造方法
You et al. Recent progress of high efficiency Si thin‐film solar cells in large area
Söderström et al. ZnO Transparent conductive oxide for thin film silicon solar cells
US8704326B2 (en) Thin-film photoelectric conversion device and method for production thereof
CN103296145A (zh) 用于硅基薄膜太阳电池的禁带可调式光子晶体背反射器
CN101820006B (zh) 高转化率硅基单结多叠层pin薄膜太阳能电池及其制造方法
Multone et al. Triple-junction amorphous/microcrystalline silicon solar cells: Towards industrially viable thin film solar technology
I Kabir et al. A review on progress of amorphous and microcrystalline silicon thin-film solar cells
CN101894871B (zh) 高转化率硅晶及薄膜复合型单结pin太阳能电池及其制造方法
CN111584665A (zh) 一种用于薄片化双面电池的背面氮化硅叠层膜的制备方法
CN104576833A (zh) 采用pecvd制备太阳能背钝化电池背钝化膜层的方法
CN218918901U (zh) 异质结太阳能电池
Maydell et al. Microcrystalline SiGe absorber layers in thin-film silicon solar cells
CN114582983A (zh) 异质结太阳能电池及其制备方法
de Vrijer et al. Application of metal, metal‐oxide, and silicon‐oxide based intermediate reflective layers for current matching in autonomous high‐voltage multijunction photovoltaic devices
Myong Recent patent issues on intermediate reflectors for high efficiency thin-film silicon photovoltaic devices
CN102157594A (zh) nc-Si:H/SiNx超晶格量子阱太阳电池
CN202930415U (zh) 一种非晶/微晶硅叠层薄膜太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20201023

Address after: 710099 589 East Chang'an Street, Xi'an Space Base, Shaanxi Province

Applicant after: STATE POWER INVESTMENT CORPORATION XI'AN SOLAR POWER Co.,Ltd.

Applicant after: Huanghe hydropower Xining Solar Power Co.,Ltd.

Applicant after: HUANGHE HYDROPOWER DEVELOPMENT Co.,Ltd.

Applicant after: QINGHAI HUANGHE HYDROPOWER DEVELOPMENT Co.,Ltd.

Address before: 710099 589 East Chang'an Street, Xi'an Space Base, Shaanxi Province

Applicant before: STATE POWER INVESTMENT CORPORATION XI'AN SOLAR POWER Co.,Ltd.

Applicant before: XINING BRANCH OF SPIC XI'AN SOLAR POWER Co.,Ltd.

Applicant before: QINGHAI HUANGHE HYDROPOWER DEVELOPMENT Co.,Ltd.

Applicant before: HUANGHE HYDROPOWER DEVELOPMENT Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825