CN112731326A - 非高斯噪声下的雷达信号波形与目标角度联合估计方法 - Google Patents

非高斯噪声下的雷达信号波形与目标角度联合估计方法 Download PDF

Info

Publication number
CN112731326A
CN112731326A CN202011546592.9A CN202011546592A CN112731326A CN 112731326 A CN112731326 A CN 112731326A CN 202011546592 A CN202011546592 A CN 202011546592A CN 112731326 A CN112731326 A CN 112731326A
Authority
CN
China
Prior art keywords
target
signal
echo signal
radar
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011546592.9A
Other languages
English (en)
Inventor
李强
黄磊
黄敏
赵博
张沛昌
孙维泽
赵源
刘仕奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202011546592.9A priority Critical patent/CN112731326A/zh
Publication of CN112731326A publication Critical patent/CN112731326A/zh
Priority to PCT/CN2021/123929 priority patent/WO2022134764A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了非高斯噪声下的雷达信号波形与目标角度联合估计方法,所述方法包括:获取非高斯噪声下的雷达阵列天线采集的回波信号;其中,所述非高斯噪声为脉冲噪声和回波数据异常值;根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果;根据所述优化目标处理结果,得到所述回波信号的波形和目标角度。本发明实施例通过在非高斯噪声背景下同时估算出雷达信号波形与目标角度,能准确估计目标的位置的同时,得到目标的成像特性。

Description

非高斯噪声下的雷达信号波形与目标角度联合估计方法
技术领域
本发明涉及电子信息技术领域,尤其涉及的是一种非高斯噪声下的雷达信号波形与目标角度联合估计方法。
背景技术
现有技术都是通过究雷达波形估计来确定目标的位置或通过雷达目标角度估计来确定目标的速度,并且都是考虑的高斯噪声的环境,没有考虑非高斯噪声的环境,现有技术的方法无法对目标进行精确感知。
因此,现有技术还有待改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种非高斯噪声下的雷达信号波形与目标角度联合估计方法,旨在解决现有技术中通过究雷达波形估计来确定目标的位置或通过雷达目标角度估计来确定目标的速度,并且都是考虑的高斯噪声的环境,没有考虑非高斯噪声的环境,无法对目标进行精确感知的问题。
本发明解决问题所采用的技术方案如下:
第一方面,本发明实施例提供一种非高斯噪声下的雷达信号波形与目标角度联合估计方法,其中,所述方法包括:
获取非高斯噪声下的雷达阵列天线采集的回波信号;其中,所述非高斯噪声为脉冲噪声和回波数据异常值;
根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果;
根据所述优化目标处理结果,得到所述回波信号的波形和目标角度。
在一种实现方式中,其中,所述回波信号生成方式为:
雷达阵列天线发射若干分布于预设角度范围的脉冲信号;
当所述脉冲信号经过非高斯噪声信道后作用于目标物体时,所述脉冲信号被所述目标物体反射,生成反射信号;
所述反射信号经过非高斯噪声信道后返回至雷达阵列天线,生成回波信号。
在一种实现方式中,其中,所述根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果包括:
根据所述回波信号,构建雷达阵列天线的接收信号模型;
根据所述回波信号和所述接收信号模型,构建与所述回波信号对应的第一优化目标函数;
根据所述第一优化目标函数,生成第二优化目标函数;
求解所述第二优化目标函数,得到与所述第二优化目标函数对应的变量值。
在一种实现方式中,其中,所述根据所述第一优化目标函数,生成第二优化目标函数包括:
获取约束变量因子;其中,所述约束变量因子包含对函数进行约束的信息;
根据所述约束变量因子,得到第二优化目标函数。
在一种实现方式中,其中,所述根据所述约束变量因子,得到第二优化目标函数包括:
根据所述约束变量因子,对所述第一优化目标函数进行条件约束,得到条件约束目标函数;
根据雷达回波采样信号的空域稀疏特性,采用迭代重加权方法重建所述条件约束目标函数,得到第二优化目标函数。
在一种实现方式中,其中,所述求解所述第二优化目标函数,得到与所述第二优化目标函数对应的变量值包括:
将所述第二优化目标函数进行拉格朗日变换,得到拉格朗日变换函数;
求解所述拉格朗日变换函数,得到函数变量值。
在一种实现方式中,其中,所述求解所述拉格朗日变换函数,得到函数变量值包括:
对所述拉格朗日函数进行求导并将导数置0,得到导数函数;
求解所述导数函数,得到函数变量值。
在一种实现方式中,其中,所述根据所述优化目标处理结果,得到所述回波信号的波形和目标角度包括:
根据雷达信号波形与目标角度联合估计原理,解析所述变量值,得到所述回波信号的波形和目标角度。
第二方面,本发明实施例还提供一种非高斯噪声下的雷达信号波形与目标角度联合估计装置,其中,所述装置包括:
回波信号获取单元,用于获取非高斯噪声下的雷达阵列天线采集的回波信号;其中,所述非高斯噪声为脉冲噪声和回波数据异常值;
优化目标处理单元,用于根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果;
回波信号的波形和目标角度获取单元,用于根据所述优化目标处理结果,得到所述回波信号的波形和目标角度。
第三方面,本发明实施例还提供一种智能终端,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于执行如上述任意一项所述的一种非高斯噪声下的雷达信号波形与目标角度联合估计方法。
第四方面,本发明实施例还提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行如上述中任意一项所述的一种非高斯噪声下的雷达信号波形与目标角度联合估计方法。
本发明的有益效果:本发明实施例首先获取非高斯噪声下的雷达阵列天线采集的回波信号;其中,所述非高斯噪声为脉冲噪声和回波数据异常值;然后根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果;最后根据所述优化目标处理结果,得到所述回波信号的波形和目标角度;可见,本发明实施例中通过在非高斯噪声背景下同时估算出雷达信号波形与目标角度,能准确估计目标的位置的同时,得到目标的成像特性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种非高斯噪声下的雷达信号波形与目标角度联合估计方法流程示意图
图2为本发明实施例提供的雷达信号波形与目标角度联合估计原理示意图
图3为本发明实施例提供的雷达回波信号估计值的MSE随着迭代次数变化的仿真图
图4为本发明实施例提供的一种非高斯噪声下的雷达信号波形与目标角度联合估计装置的原理框图。
图5为本发明实施例提供的智能终端的内部结构原理框图。
具体实施方式
本发明公开了一种非高斯噪声下的雷达信号波形与目标角度联合估计方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
由于现有技术中,只有雷达波形估计或者目标角度估计,雷达波形估计通常是通过估计出回波信号的频率和相位,从而恢复出回波信号的波形。目标信号角度估计通常是采用空间谱估计方法,如多重信号分类方法和旋转不变子空间方法,通过构建信号协方差矩阵,然后获得信号子空间或噪声子空间,进而估计出目标角度。但是现有技术没有同时对雷达波形和目标角度进行同时估计,也就无法同时得到目标的准确位置和成像特性。
为了解决现有技术的问题,本实施例提供了一种非高斯噪声下的雷达信号波形与目标角度联合估计方法,通过上述方法可以同时估计目标的准确位置和目标的成像特性。具体实施时,先获取非高斯噪声下的雷达阵列天线采集的回波信号,为后续进行优化处理做准备;其中,所述非高斯噪声为脉冲噪声和回波数据异常值;接着根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果,优化目标处理结果包含了后续回波信号的波形和目标角度信息;根据所述优化目标处理结果,得到所述回波信号的波形和目标角度。本发明实施例通过在非高斯噪声背景下同时估算出雷达信号波形与目标角度,能准确估计目标的位置的同时,得到目标的成像特性。
举例说明
在实际中,雷达波形传播的环境有高斯噪声和非高斯噪声两种信道情况,现有技术多数都是基于高斯噪声信道情况来进行雷达波形估计和雷达目标角度估计,但是在实际中,不可避免的出现脉冲噪声、回波数据异常值等非高斯噪声的信道情况,因此,对非高斯噪声的信道情况的研究也十分重要。此外,由于实际中也需要同时提取目标的位置和目标成像特性,故对雷达信号波形与目标角度联合估计就显得很重要。在本实施例中,系统会先获取非高斯噪声下的雷达阵列天线采集的回波信号,由于是信号经过了非高斯噪声的信道,接收的信号混合进了噪声,故需要对回波信号进行优化目标处理,在根据优化目标处理结果,得到回波信号的波形和目标角度。这样,根据回波信号的波形就可以得到多普勒频率和相位,多普勒频率又可以得到目标的移动速度,根据目标角度和回波信号的波形得到的相位可以更加精准的得到目标的位置。
示例性方法
本实施例提供一种非高斯噪声下的雷达信号波形与目标角度联合估计方法,该方法可以应用于电子信息的智能终端。具体如图1所示,所述方法包括:
步骤S100、获取非高斯噪声下的雷达阵列天线采集的回波信号;其中,所述非高斯噪声为脉冲噪声和回波数据异常值。
具体地,雷达发射阵列天线会先发射超声波信号,超声波信号在经过实际空间时如果碰到障碍物就会返回,并且,超声波信号在经过实际空间时来回的路上都会叠加噪声,故在非高斯噪声的信道下,雷达阵列天线采集的回波信号是包含了非高斯噪声的回波信号,回波信号为后续进行优化处理做准备。
所述回波信号生成方式为:雷达阵列天线发射若干分布于预设角度范围的脉冲信号;当所述脉冲信号经过非高斯噪声信道后作用于目标物体时,所述脉冲信号被所述目标物体反射,生成反射信号;所述反射信号经过非高斯噪声信道后返回至雷达阵列天线,生成回波信号。
具体地,雷达发射阵列天线采用均匀线性阵列天线,相邻阵元间距为d,天线阵元数目为M,在本实施例中,M为80,每个天线阵元发送若干脉冲信号,在本实施例中,脉冲信号为超声波信号,脉冲信号分布于预设角度范围的脉冲信号,在本实施例中,预设角度Θ=[-20°,20°],当脉冲信号经过非高斯噪声信道后作用于物体时,就会被目标物体所反射,形成的反射信号再经过非高斯噪声信道后会返回到雷达接收阵列天线,也即回波信号。
本实施例提供一种非高斯噪声下的雷达信号波形与目标角度联合估计方法,该方法可以应用于电子信息的智能终端。具体如图1所示,所述方法包括:
步骤S200、根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果;
具体地,由于回波信号已经迭代了来回信道上的非高斯噪声,因此,需要对回波信号进行优化目标处理,将回波信号中的高速噪声部分滤除。
为了采用较低的计算复杂度来得到优化目标处理结果,所述根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果包括如下步骤:
步骤S201、根据所述回波信号,构建雷达阵列天线的接收信号模型;
步骤S202、根据所述回波信号和所述接收信号模型,构建与所述回波信号对应的第一优化目标函数;
步骤S203、根据所述第一优化目标函数,生成第二优化目标函数;
步骤S204、求解所述第二优化目标函数,得到与所述第二优化目标函数对应的变量值。
具体地,根据所述回波信号,构建雷达阵列天线的接收信号模型,在本实施例中,雷达接收阵列天线,相邻阵元间距为d,天线阵元数目为M,接收到L个回波信号,对每个回波信号进行时域采样得到K个采样点。雷达扫描角度区间定义为Θ,被等间隔分成J个角度则雷达阵列天线接收到的信号模型Y可以表示为
Y=AX+N
上式中,X是未知的回波采样信号,它是具有行稀疏结构的J×K维矩阵,其中包含L个实际回波信号,其他部分无数据。阵列天线接收到的信号Y=[y(1) y(2) … y(K)]为M×K维矩阵,
y(k),i=1,2,…,K,表示第k个采样时刻天线阵列采集到的包含噪声的数据,N为非高斯噪声,为M×N维矩阵。A为M×J维导向矢量矩阵,具体可以表示为A=[a(θ1) a(θ2) …a(θJ)],其中,
a(θj)是角度为θj的导向矢量,表示为
Figure BDA0002855866220000081
上式中λ表示雷达信号波长。
本发明的目的是根据阵列天线所采集到的数据,准确恢复雷达回波采样信号,从而估计出雷达入射角度和雷达回波信号波形。本发明同时考虑非高斯噪声背景条件和雷达回波采样信号的空域稀疏特性,建立第一优化目标函数
Figure BDA0002855866220000091
上式中,γ表示正则化因子,||·||2,1表示l2,1范数,定义为
Figure BDA0002855866220000092
由于上式采用CVX优化工具箱来求解,计算复杂度高,因此,将所述第一优化目标函数转化为第二优化目标函数,
在一种实现方式中,所述根据所述第一优化目标函数,生成第二优化目标函数包括如下步骤:获取约束变量因子;其中,所述约束变量因子包含对函数进行约束的信息;根据所述约束变量因子,得到第二优化目标函数。获取约束变量因子
Figure BDA0002855866220000093
则第一优化目标函数转化为如下第二优化目标函数:
Figure BDA0002855866220000094
s.t.Y-AX=γE
为了得到第二优化目标函数,所述根据所述约束变量因子,得到第二优化目标函数包括如下步骤:根据所述约束变量因子,对所述第一优化目标函数进行条件约束,得到条件约束目标函数;根据雷达回波采样信号的空域稀疏特性,采用迭代重加权方法重建所述条件约束目标函数,得到第二优化目标函数。
具体地,将
Figure BDA0002855866220000095
表示为:
Figure BDA0002855866220000096
上式中,I为M×M维单位矩阵。
为了表示方便,令
Figure BDA0002855866220000101
为P×K维矩阵,P=(J+M),B=[A γI],为M×P维矩阵,所以上式优化问题可以简化为:
Figure BDA0002855866220000102
s.t.BZ=Y
由于雷达回波采样信号的空域稀疏特性,为了获得更准确且更稀疏的解,采用迭代重加权技术对上式中的第二优化目标函数进行改进,表示为
Figure BDA0002855866220000103
S.t.BZ=Y
上式中,Zi表示矩阵Z的第i行数据,||·||2表示l2范数,hi为加权向量h中的第i个元素,i=1,2,…,P,其中,h为P×1维加权向量。
为了得到第二优化目标函数对应的变量值,所述求解所述第二优化目标函数,得到与所述第二优化目标函数对应的变量值包括如下步骤:将所述第二优化目标函数进行拉格朗日变换,得到拉格朗日变换函数;对所述拉格朗日函数进行求导并将导数置0,得到导数函数;求解所述导数函数,得到函数变量值。
实际中,采用拉格朗日方法对上式进行求解,引入拉格朗日变量Λ后,则式
Figure BDA0002855866220000104
的拉格朗日形式表达为:
Figure BDA0002855866220000105
上式中,Tr表示矩阵的迹,(·)H表示转置操作。根据矩阵的迹理论,上式可以表示为:
Figure BDA0002855866220000106
为了求出变量Z,令上式对变量Z进行求导且令导数等于0,即:
Figure BDA0002855866220000111
上式中,Q为对角矩阵,对角线上第i个元素表示为:
Figure BDA0002855866220000112
其中,hi表示为
Figure BDA0002855866220000113
上式中,μ为大于0的较小常数值,为了防止上式分母为0。
根据
Figure BDA0002855866220000114
式可以得到:Z=Q-1BHΛ
然后根据
Figure BDA0002855866220000115
的约束条件:Y=BZ,可以计算出拉格朗日变量Λ为
A=(BQ-1BH)-1Y
将上式代入到Z=Q-1BHΛ,就可以得到
Z=Q-1BH(BQ-1BH)-1Y
本实施例提供一种非高斯噪声下的雷达信号波形与目标角度联合估计方法,该方法可以应用于电子信息的智能终端。具体如图1所示,所述方法包括:
步骤S300、根据所述优化目标处理结果,得到所述回波信号的波形和目标角度。
根据对所述回波信号进行优化目标处理后的优化函数变量值,根据某种自适应算法或计算方法就可以得到所述回波信号的波形和目标角度。
为了得到所述回波信号的波形和目标角度,所述根据所述优化目标处理结果,得到所述回波信号的波形和目标角度包括如下步骤:
步骤S301、根据雷达信号波形与目标角度联合估计原理,解析所述变量值,得到所述回波信号的波形和目标角度。
雷达波形估计通常是通过估计出回波信号的频率和相位,从而恢复出回波信号的波形。目标信号角度估计通常是采用空间谱估计方法,如多重信号分类方法和旋转不变子空间方法,通过构建信号协方差矩阵,然后获得信号子空间或噪声子空间,进而估计出目标角度。因此,根据雷达信号波形与目标角度联合估计原理对这个优化函数变量值进行解析,就可以得到回波信号的波形和目标角度。具体地,根据公式
Figure BDA0002855866220000121
可知,变量Z中的前J行即为待估计的雷达回波采样信号X。根据图2可知,X的每一行刚好对应雷达扫描区间Θ的一个角度。根据X的稀疏结构,其中存在数据的行所对应的角度,即为雷达回波信号的入射角度。此外,该行的数据就是雷达回波信号的采样值,即为雷达回波信号的波形。所以,根据所恢复的X,便可以同时得到雷达回波信号的入射角度和波形。
为了验证本方案在具体实施时的良好估计性能,在本实施例中,设置均匀线性天线阵列具有80个天线阵元,相邻阵元间距d为雷达回波信号半波长,雷达扫描角度区间为Θ=[-20°,20°],以1°等间隔划分,即J=41,假定有l=4个目标回波信号,入射角度在Θ区间随机分布,信号采样点K=50,正则化因子γ=0.1,噪声采用混合高斯模型,信噪比为20dB,公式
Figure BDA0002855866220000122
中参数μ=0.1。由于本发明需要采用迭代算法,初始化参数Q为单位矩阵。附图3给出了雷达回波信号估计值X的均方误差(Mean Square Error,MSE)随着迭代次数变化的仿真图,从图中可以看出,随着迭代次数的增加,雷达回波信号估计值X的MSE逐渐降低。当迭代次数到第7次时,MSE值收敛至1×10-4,对雷达信号波形与目标角度具有很好估计性能。
示例性设备
如图4中所示,本发明实施例提供一种非高斯噪声下的雷达信号波形与目标角度联合估计装置,该装置包括回波信号获取单元401,优化目标处理单元402,回波信号的波形和目标角度获取单元403,其中:
回波信号获取单元401,用于获取非高斯噪声下的雷达阵列天线采集的回波信号;其中,所述非高斯噪声为脉冲噪声和回波数据异常值;
优化目标处理单元402,用于根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果;
回波信号的波形和目标角度获取单元403,用于根据所述优化目标处理结果,得到所述回波信号的波形和目标角度。
基于上述实施例,本发明还提供了一种智能终端,其原理框图可以如图5所示。该智能终端包括通过系统总线连接的处理器、存储器、网络接口、显示屏、温度传感器。其中,该智能终端的处理器用于提供计算和控制能力。该智能终端的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该智能终端的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种非高斯噪声下的雷达信号波形与目标角度联合估计方法。该智能终端的显示屏可以是液晶显示屏或者电子墨水显示屏,该智能终端的温度传感器是预先在智能终端内部设置,用于检测内部设备的运行温度。
本领域技术人员可以理解,图5中的原理图,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的智能终端的限定,具体的智能终端可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种智能终端,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于进行以下操作的指令:
获取非高斯噪声下的雷达阵列天线采集的回波信号;其中,所述非高斯噪声为脉冲噪声和回波数据异常值;
根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果;
根据所述优化目标处理结果,得到所述回波信号的波形和目标角度。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
综上所述,本发明公开了一种非高斯噪声下的雷达信号波形与目标角度联合估计方法、智能终端、存储介质,所述方法包括:获取非高斯噪声下的雷达阵列天线采集的回波信号;其中,所述非高斯噪声为脉冲噪声和回波数据异常值;根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果;根据所述优化目标处理结果,得到所述回波信号的波形和目标角度。本发明实施例通过在非高斯噪声背景下同时估算出雷达信号波形与目标角度,能准确估计目标的位置的同时,得到目标的成像特性。
应当理解的是,本发明公开了一种非高斯噪声下的雷达信号波形与目标角度联合估计方法,应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种非高斯噪声下的雷达信号波形与目标角度联合估计方法,其特征在于,所述方法包括:
获取非高斯噪声下的雷达阵列天线采集的回波信号;其中,所述非高斯噪声为脉冲噪声和回波数据异常值;
根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果;
根据所述优化目标处理结果,得到所述回波信号的波形和目标角度。
2.根据权利要求1所述的非高斯噪声下的雷达信号波形与目标角度联合估计方法,其特征在于,所述回波信号生成方式为:
雷达阵列天线发射若干分布于预设角度范围的脉冲信号;
当所述脉冲信号经过非高斯噪声信道后作用于目标物体时,所述脉冲信号被所述目标物体反射,生成反射信号;
所述反射信号经过非高斯噪声信道后返回至雷达阵列天线,生成回波信号。
3.根据权利要求2所述的非高斯噪声下的雷达信号波形与目标角度联合估计方法,其特征在于,所述根据所述回波信号,对所述回波信号进行优化目标处理,得到优化目标处理结果包括:
根据所述回波信号,构建雷达阵列天线的接收信号模型;
根据所述回波信号和所述接收信号模型,构建与所述回波信号对应的第一优化目标函数;
根据所述第一优化目标函数,生成第二优化目标函数;
求解所述第二优化目标函数,得到与所述第二优化目标函数对应的变量值。
4.根据权利要求3所述的非高斯噪声下的雷达信号波形与目标角度联合估计方法,其特征在于,所述根据所述第一优化目标函数,生成第二优化目标函数包括:
获取约束变量因子;其中,所述约束变量因子包含对函数进行约束的信息;
根据所述约束变量因子,得到第二优化目标函数。
5.根据权利要求4所述的非高斯噪声下的雷达信号波形与目标角度联合估计方法,其特征在于,所述根据所述约束变量因子,得到第二优化目标函数包括:
根据所述约束变量因子,对所述第一优化目标函数进行条件约束,得到条件约束目标函数;
根据雷达回波采样信号的空域稀疏特性,采用迭代重加权方法重建所述条件约束目标函数,得到第二优化目标函数。
6.根据权利要求5所述的非高斯噪声下的雷达信号波形与目标角度联合估计方法,其特征在于,所述求解所述第二优化目标函数,得到与所述第二优化目标函数对应的变量值包括:
将所述第二优化目标函数进行拉格朗日变换,得到拉格朗日变换函数;
求解所述拉格朗日变换函数,得到函数变量值。
7.根据权利要求6所述的非高斯噪声下的雷达信号波形与目标角度联合估计方法,其特征在于,所述求解所述拉格朗日变换函数,得到函数变量值包括:
对所述拉格朗日函数进行求导并将导数置0,得到导数函数;
求解所述导数函数,得到函数变量值。
8.根据权利要求7所述的非高斯噪声下的雷达信号波形与目标角度联合估计方法,其特征在于,所述根据所述优化目标处理结果,得到所述回波信号的波形和目标角度包括:
根据雷达信号波形与目标角度联合估计原理,解析所述变量值,得到所述回波信号的波形和目标角度。
9.一种智能终端,其特征在于,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于执行如权利要求1-8中任意一项所述的方法。
10.一种非临时性计算机可读存储介质,其特征在于,当所述存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行如权利要求1-8中任意一项所述的方法。
CN202011546592.9A 2020-12-24 2020-12-24 非高斯噪声下的雷达信号波形与目标角度联合估计方法 Pending CN112731326A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011546592.9A CN112731326A (zh) 2020-12-24 2020-12-24 非高斯噪声下的雷达信号波形与目标角度联合估计方法
PCT/CN2021/123929 WO2022134764A1 (zh) 2020-12-24 2021-10-14 非高斯噪声下的雷达信号波形与目标角度联合估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011546592.9A CN112731326A (zh) 2020-12-24 2020-12-24 非高斯噪声下的雷达信号波形与目标角度联合估计方法

Publications (1)

Publication Number Publication Date
CN112731326A true CN112731326A (zh) 2021-04-30

Family

ID=75605862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011546592.9A Pending CN112731326A (zh) 2020-12-24 2020-12-24 非高斯噪声下的雷达信号波形与目标角度联合估计方法

Country Status (2)

Country Link
CN (1) CN112731326A (zh)
WO (1) WO2022134764A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022134764A1 (zh) * 2020-12-24 2022-06-30 深圳大学 非高斯噪声下的雷达信号波形与目标角度联合估计方法
CN116047459A (zh) * 2023-01-13 2023-05-02 深圳大学 脉冲干扰环境下的阵列雷达回波信号恢复方法及相关设备
CN116226627A (zh) * 2023-03-08 2023-06-06 安徽大学 一种非高斯环境下洛伦茨约束角度估计方法及系统
TWI813046B (zh) * 2021-10-27 2023-08-21 為昇科科技股份有限公司 利用大型多輸入多輸出陣列天線進行高角度解析之目標物角度估測方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381612B (zh) * 2023-06-05 2023-08-11 中国人民解放军国防科技大学 一种基于分式二次规划的认知雷达波形设计方法及装置
CN116609758B (zh) * 2023-07-17 2023-10-27 山东科技大学 一种机载激光测深波形旅行时提取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044336A (en) * 1998-07-13 2000-03-28 Multispec Corporation Method and apparatus for situationally adaptive processing in echo-location systems operating in non-Gaussian environments
CN108919263A (zh) * 2018-05-14 2018-11-30 西安电子科技大学 基于最大互信息准则的isar高分辨成像方法
CN109212526A (zh) * 2018-10-17 2019-01-15 哈尔滨工业大学 用于高频地波雷达的分布式阵列目标角度测量方法
CN109683126A (zh) * 2019-01-14 2019-04-26 极目光(深圳)科技有限公司 波达角测量方法、信号处理设备及存储介质
CN110007283A (zh) * 2019-03-20 2019-07-12 海南大学 雷达波达方向估计方法、装置、计算机设备及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731326A (zh) * 2020-12-24 2021-04-30 深圳大学 非高斯噪声下的雷达信号波形与目标角度联合估计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044336A (en) * 1998-07-13 2000-03-28 Multispec Corporation Method and apparatus for situationally adaptive processing in echo-location systems operating in non-Gaussian environments
CN108919263A (zh) * 2018-05-14 2018-11-30 西安电子科技大学 基于最大互信息准则的isar高分辨成像方法
CN109212526A (zh) * 2018-10-17 2019-01-15 哈尔滨工业大学 用于高频地波雷达的分布式阵列目标角度测量方法
CN109683126A (zh) * 2019-01-14 2019-04-26 极目光(深圳)科技有限公司 波达角测量方法、信号处理设备及存储介质
CN110007283A (zh) * 2019-03-20 2019-07-12 海南大学 雷达波达方向估计方法、装置、计算机设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIANG LI,ET AL.: "Fast Signal Retrieval of Sonar in the Presence of Impulse Noise", 《2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP(SAM)》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022134764A1 (zh) * 2020-12-24 2022-06-30 深圳大学 非高斯噪声下的雷达信号波形与目标角度联合估计方法
TWI813046B (zh) * 2021-10-27 2023-08-21 為昇科科技股份有限公司 利用大型多輸入多輸出陣列天線進行高角度解析之目標物角度估測方法
CN116047459A (zh) * 2023-01-13 2023-05-02 深圳大学 脉冲干扰环境下的阵列雷达回波信号恢复方法及相关设备
CN116047459B (zh) * 2023-01-13 2023-09-29 深圳大学 脉冲干扰环境下的阵列雷达回波信号恢复方法及相关设备
CN116226627A (zh) * 2023-03-08 2023-06-06 安徽大学 一种非高斯环境下洛伦茨约束角度估计方法及系统
CN116226627B (zh) * 2023-03-08 2023-09-22 安徽大学 一种非高斯环境下洛伦茨约束角度估计方法及系统
US11994610B1 (en) 2023-03-08 2024-05-28 Anhui University Lorentz constraint angle estimation method and system in non-gaussian environment

Also Published As

Publication number Publication date
WO2022134764A1 (zh) 2022-06-30

Similar Documents

Publication Publication Date Title
CN112731326A (zh) 非高斯噪声下的雷达信号波形与目标角度联合估计方法
Sun et al. Direct data domain STAP using sparse representation of clutter spectrum
Gini et al. Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter
CN109116311B (zh) 基于知识辅助稀疏迭代协方差估计的杂波抑制方法
Liu et al. A CFAR adaptive subspace detector for first-order or second-order Gaussian signals based on a single observation
Yang et al. Knowledge‐aided STAP with sparse‐recovery by exploiting spatio‐temporal sparsity
CN111046591B (zh) 传感器幅相误差与目标到达角度的联合估计方法
CN112379327A (zh) 一种基于秩损估计的二维doa估计与互耦校正方法
CN111693975A (zh) 一种基于深度神经网络的mimo雷达稀疏阵列设计方法
CN109298420B (zh) 一种合成孔径雷达的运动目标迭代最小熵成像方法及装置
O’Rourke et al. Relaxed biquadratic optimization for joint filter-signal design in signal-dependent STAP
Riedl et al. Multimodel shrinkage for knowledge-aided space-time adaptive processing
CN115453528A (zh) 基于快速sbl算法实现分段观测isar高分辨成像方法及装置
Becquaert et al. Online sequential compressed sensing with multiple information for through-the-wall radar imaging
CN113671485B (zh) 基于admm的米波面阵雷达二维doa估计方法
Chance et al. Information-theoretic structure of multistatic radar imaging
CN116047459B (zh) 脉冲干扰环境下的阵列雷达回波信号恢复方法及相关设备
Zhu et al. Parametric Wald test for target detection with distributed MIMO radar in partially mixing homogeneous and non‐homogeneous environments
Wang et al. Fast and adaptive method for SAR superresolution imaging based on point scattering model and optimal basis selection
Zhang et al. Joint design of transmit weight sequence and receive filter for improved target information acquisition in high-resolution radar
Miller et al. An introduction to the use of model-based parameter estimation in electromagnetics
CN114996653A (zh) 一种基于原子范数最小化的二维鲁棒自适应波束形成方法
Ono et al. Towards a median signal detector through the total Bregman divergence and its robustness analysis
CN114755628A (zh) 非均匀噪声下声矢量传感器阵列波达方向估计方法
Hu et al. Improved FOCUSS method for reconstruction of cluster structured sparse signals in radar imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination