CN112725765A - 一种高致密涂层的复合制备方法 - Google Patents
一种高致密涂层的复合制备方法 Download PDFInfo
- Publication number
- CN112725765A CN112725765A CN202011602697.1A CN202011602697A CN112725765A CN 112725765 A CN112725765 A CN 112725765A CN 202011602697 A CN202011602697 A CN 202011602697A CN 112725765 A CN112725765 A CN 112725765A
- Authority
- CN
- China
- Prior art keywords
- coating
- chemical vapor
- preparation
- vapor deposition
- deposition technology
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/18—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明公开了一种高致密涂层的复合制备方法,采用原子层沉积和化学气相沉积交替制备的方式完成高致密涂层的制备,本发明利用原子层沉积涂层的高致密性,实现对化学气相沉积涂层中裂纹、微孔等缺陷的阻隔,防止各类缺陷的遗传和发展,使涂层具有很好的阻隔性能,同时,克服了原子层沉积效率低的缺点。该方法可用于对涂层致密性具有高要求且涂层厚度较大的涂层制备。解决目前单纯采用化学气相沉积技术制备的高致密涂层因缺陷导致失效的难题。
Description
技术领域
本发明涉及真空镀膜技术领域,具体涉及一种高致密涂层的复合制备方法。
背景技术
高致密涂层在航天、航空、民用包装等各个领域具有非常广泛的应用。目前高致密涂层的制备主要采用化学气相沉积技术。然而由于化学气相沉积技术的局限性,在涂层的制备过程中会无法避免地产生裂纹和微孔等缺陷。涂层在使用时,这些裂纹和微孔会形成通道,导致基体材料被破坏,从而使得涂层失效。原子层沉积技术是一种精密的制备技术,可以制备高致密性、近乎完美的无缺陷涂层,但其制备速率非常低,一般仅为0.1μm/h左右,而高致密涂层的厚度一般为100~200μm,因此,采用原子层沉积技术制备高致密涂层是不现实的。
发明内容
有鉴于此,本发明提供了一种高致密涂层的复合制备方法,结合原子层沉积和化学气相沉积技术,交替采用两种技术制备,可以利用原子层沉积涂层的高致密性,实现对化学气相沉积涂层中裂纹、微孔等缺陷的阻隔,防止各类缺陷的遗传和发展,使涂层具有很好的阻隔性能,同时,制备时间也在可实现的合理范围中。
本发明的高致密涂层的复合制备方法,包括下列步骤:
步骤1,将需镀膜的基底放置于反应室内,将反应室抽真空;
步骤2,利用加热装置对基底加热并保持;
步骤3,利用原子层沉积技术在基底上制备一层所需的涂层;
步骤4,随后利用化学气相沉积技术制备一层相同材料的涂层;
步骤5,重复上述步骤3~4,直到涂层的厚度满足要求为止。
所述步骤1中真空度范围为1×10-3Pa~5×10-3Pa。
所述步骤2中的加热温度范围为400~900℃。
所述步骤3中原子层沉积技术制备的涂层厚度范围为0.05~0.1μm。
所述步骤4中利用化学气相沉积技术制备的抗氧化涂层厚度范围为2~2.5μm。
有益效果:
本发明与现有技术相比,有如下优点:目前用于制备高致密涂层的化学气相沉积技术,不可避免会在涂层中产生微观缺陷,在使用过程中缺陷扩展形成通道;本发明通过两种技术交替制备的涂层,可以阻止贯通性缺陷的产生,防止在使用时形成通道,提高涂层的阻隔性能。
附图说明
图1为本发明制备方式示意图。
其中,1-基底;2、4-为原子层沉积制备的涂层;3、5-化学气相沉积制备的涂层。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
以原子层沉积和化合物化学气相沉积制备铱(Ir)和氧化铪(HfO2)高致密涂层为例说明发明复合制备方法。
实施例1
(1)将基底放置于反应室内,将反应室抽真空至1×10-3Pa;
(2)将基底加热至700℃并保持;
(3)利用原子层沉积技术制备铱(Ir)涂层,两种前驱体分别为乙酰丙酮铱(Ir(acac)3)和氧气(O2),涂层厚度为0.1μm;
(4)利用化学气相沉积技术制备铱(Ir)涂层,制备源气体为乙酰丙酮铱(Ir(acac)3),涂层厚度为2μm;
(5)交替重复上述步骤(3)和(4),其中步骤(3)重复51次,步骤(4)重复50次。
实施例2
(1)将基底放置于反应室内,将反应室抽真空至2×10-3Pa;
(2)将基底加热至600℃并保持;
(3)利用原子层沉积技术制备氧化铪(HfO2)涂层,两种前驱体分别为叔丁醇铪(Hf(t-BuO)4)和氧气(O2),涂层厚度为0.05μm;
(4)利用化学气相沉积技术制备氧化铪(HfO2)涂层,制备源气体分别为叔丁醇铪(Hf(t-BuO)4)和氧气(O2),涂层厚度为2μm;
(5)交替重复上述步骤(3)和(4),其中步骤(3)重复51次,步骤(4)重复50次。
实施例3
(1)将基底放置于反应室内,将反应室抽真空至4×10-3Pa;
(2)将基底加热至700℃并保持;
(3)利用原子层沉积技术制备铱(Ir)涂层,两种前驱体分别为乙酰丙酮铱(Ir(acac)3)和氢气(H2),涂层厚度为0.1μm;
(4)利用化学气相沉积技术制备铱(Ir)涂层,制备源气体为乙酰丙酮铱(Ir(acac)3),涂层厚度为2.5μm;
(5)交替重复上述步骤(3)和(4),其中步骤(3)重复41次,步骤(4)重复40次。
本发明将原子层沉积和化学气相沉积两种技术结合起来,采用两种技术交替制备涂层,可以利用原子层沉积涂层的高致密性,实现对化学气相沉积涂层中裂纹、微孔等缺陷的阻隔,防止各类缺陷的遗传和发展,使涂层具有很好的阻隔性能,同时,可以克服原子层沉积效率低的缺点。该方法可用于对涂层致密性具有高要求且涂层厚度较大的涂层制备。解决目前单纯采用化学气相沉积技术制备的高致密涂层因缺陷导致失效的难题。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (5)
1.一种高致密涂层的复合制备方法,其特征在于,包括如下步骤:
步骤1,将基底放置于反应室内,并将反应室抽真空;
步骤2,利用加热装置对基底加热并保持;
步骤3,利用原子层沉积技术在基底上制备一层所需的涂层;
步骤4,利用化学气相沉积技术制备一层同种材料的涂层;
步骤5,重复上述步骤3~步骤4,直到涂层的厚度满足要求为止。
2.如权利要求1所述的复合制备方法,其特征在于,所述步骤1中,将反应室的真空度抽至1×10-3Pa~5×10-3Pa。
3.如权利要求1所述的复合制备方法,其特征在于,所述步骤2中的加热温度为400~900℃,依据所制备材料选取。
4.如权利要求1所述的复合制备方法,其特征在于,所述步骤3中,采用原子层沉积技术制备的涂层的厚度为0.05~0.1μm。
5.如权利要求1所述的复合制备方法,其特征在于,所述步骤4中,采用化学气相沉积技术制备的涂层的厚度为2~2.5μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011602697.1A CN112725765A (zh) | 2020-12-29 | 2020-12-29 | 一种高致密涂层的复合制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011602697.1A CN112725765A (zh) | 2020-12-29 | 2020-12-29 | 一种高致密涂层的复合制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112725765A true CN112725765A (zh) | 2021-04-30 |
Family
ID=75610502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011602697.1A Pending CN112725765A (zh) | 2020-12-29 | 2020-12-29 | 一种高致密涂层的复合制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112725765A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115572400A (zh) * | 2022-10-10 | 2023-01-06 | 兰州空间技术物理研究所 | 一种高致密复合型原子氧防护薄膜的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105132888A (zh) * | 2015-09-11 | 2015-12-09 | 兰州空间技术物理研究所 | 一种高温抗氧化涂层的复合沉积方法 |
CN110528003A (zh) * | 2018-05-25 | 2019-12-03 | 北京航空航天大学 | 一种涂层的复合制备方法 |
-
2020
- 2020-12-29 CN CN202011602697.1A patent/CN112725765A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105132888A (zh) * | 2015-09-11 | 2015-12-09 | 兰州空间技术物理研究所 | 一种高温抗氧化涂层的复合沉积方法 |
CN110528003A (zh) * | 2018-05-25 | 2019-12-03 | 北京航空航天大学 | 一种涂层的复合制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115572400A (zh) * | 2022-10-10 | 2023-01-06 | 兰州空间技术物理研究所 | 一种高致密复合型原子氧防护薄膜的制备方法 |
CN115572400B (zh) * | 2022-10-10 | 2023-11-07 | 兰州空间技术物理研究所 | 一种高致密复合型原子氧防护薄膜的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10541429B2 (en) | SOFC interconnect barriers and methods of making same using masks | |
US6846558B2 (en) | Colloidal spray method for low cost thin coating deposition | |
CN107119264B (zh) | 同腔原位复合沉积铱-氧化铝高温涂层设备与工艺 | |
JP2015225855A (ja) | 固体電解質が濃度勾配を有する全固体電極の製造方法 | |
CN109072432B (zh) | 抗等离子蚀刻膜及其制造方法 | |
CN104529498B (zh) | 放电等离子烧结一步制备多层环境障碍涂层的方法 | |
TWI606008B (zh) | 奈米管膜 | |
JP2007217782A (ja) | 希土類元素のフッ化物皮膜を有する耐食性皮膜およびその製造方法 | |
CN109320275B (zh) | 一种抗氧化SiC纤维增强陶瓷基复合材料的制备方法 | |
CN108947588A (zh) | 一种C/SiC复合材料和用于该材料的抗氧化涂层及其制备方法 | |
CN112725765A (zh) | 一种高致密涂层的复合制备方法 | |
KR100810443B1 (ko) | 화학적 기상 반응 방법을 이용한 흑연에 내산화성을 갖게하는 방법 및 그 제조물 | |
TWI573892B (zh) | 一奈米管膜的製備方法 | |
CN105132888B (zh) | 一种高温抗氧化涂层的复合沉积方法 | |
Wang et al. | Rapid thermal processing of tubular cobalt oxide silica membranes | |
KR101920565B1 (ko) | 우수한 열적 내구성을 가지는 열차폐 코팅층 및 이의 제조방법 | |
CN110528003B (zh) | 一种涂层的复合制备方法 | |
EP2935155B1 (en) | Method for sealing an oxygen transport membrane assembly | |
KR101807459B1 (ko) | 결함-치유 환원된 그래핀 산화물 히터를 이용한 자가치유 고분자의 자가치유 방법 | |
JP2007320797A (ja) | 複合構造物及びその製造方法 | |
JP2008007343A (ja) | アルミナ被覆材およびその製造方法 | |
RU2497750C1 (ru) | Способ изготовления герметичных изделий из углерод-углеродного композиционного материала | |
JP6649115B2 (ja) | 積層構造 | |
US20170170485A1 (en) | Dual conductor surface modified sofc cathode particles and methods of making same | |
Badini et al. | Corrosion behavior of SiC laminate under decomposed sulfuric acid at 850° C |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20210430 |