CN112725750B - 利用磁控溅射技术制备bvo外延单晶薄膜的方法 - Google Patents

利用磁控溅射技术制备bvo外延单晶薄膜的方法 Download PDF

Info

Publication number
CN112725750B
CN112725750B CN202011453729.6A CN202011453729A CN112725750B CN 112725750 B CN112725750 B CN 112725750B CN 202011453729 A CN202011453729 A CN 202011453729A CN 112725750 B CN112725750 B CN 112725750B
Authority
CN
China
Prior art keywords
bvo
film
preparing
single crystal
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011453729.6A
Other languages
English (en)
Other versions
CN112725750A (zh
Inventor
李国强
黄改革
尉乔南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202011453729.6A priority Critical patent/CN112725750B/zh
Publication of CN112725750A publication Critical patent/CN112725750A/zh
Application granted granted Critical
Publication of CN112725750B publication Critical patent/CN112725750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于真空镀膜技术领域,公开了一种利用磁控溅射技术制备BVO外延单晶薄膜的方法,包括以下步骤:a、安装靶材,b、预处理衬底材料,c、制备ITO中间层薄膜,d、制备外延单晶BVO薄膜。本发明通过改变制备薄膜时对靶材施加功率以及氧压的大小首次获得了BVO的外延单晶薄膜,制备方法简单,制备出的薄膜表面平整致密,可进一步用于制备覆盖面积大的外延单晶薄膜;该方法也为用化学计量比靶材通过磁控技术制备出与靶材元素比例相同的金属氧化物提供了可能。

Description

利用磁控溅射技术制备BVO外延单晶薄膜的方法
技术领域
本发明属于真空镀膜技术领域,涉及一种利用磁控溅射技术制备BVO外延单晶薄膜的方法。
背景技术
随着人类社会的快速发展,能源危机和环境污染成为了人们日益关注的话题。Bi系半导体,由于具有良好的可见光光响应,被广泛的用于光催化剂的研究,成为了当下研究的热点之一。其中BVO是一种无毒的性质稳定的并且光吸收范围广的半导体光催化剂,可以用于降解水中的有机污染物,也是光电化学分解水的最常用的光电阳极。目前制备BVO的方法包括物理法和化学法,溶胶-凝胶法、水热法等方法属于化学法,制备出粉体BVO,虽然制造工艺简单,但反应条件不易精确控制,实验重复性不太好;分子束外延、脉冲激光沉积、磁控溅射等属于物理法,制备出薄膜BVO,其中前两者方法制备条件相对苛刻,要求较高的真空度和较高的温度,并且仪器也比较昂贵。
磁控溅射技术作为一种物理气相沉积法具有实验条件可精确操控、实验工艺操作简单、制备的薄膜均匀致密且与衬底接触良好、能广泛的应用于工业生产之中。但利用磁控溅射技术制备外延单晶薄膜还未见有报道。
发明内容
本发明的目的在于提供了一种利用磁控溅射技术制备BVO外延单晶薄膜的方法,产品制备成本低,周期短等优点,易于实现工业化生产。
为实现上述目的,本发明采用了以下技术方案:
本发明提供一种利用磁控溅射技术制备BVO外延单晶薄膜的方法,包括以下步骤:
a、安装靶材:将SnO2和In2O3靶材安装在直流溅射靶座,靶座连接脉冲直流电源;将Bi2O3和V2O5陶瓷靶材安装在射频磁控溅射靶座,靶座连接射频电源;
b、预处理衬底材料:选择钇稳定的氧化锆作为衬底材料,将衬底材料依次放入丙酮、乙醇、去离子水中超声清洗,随后用氮气进行干燥,放入密封袋,备用;
c、制备ITO中间层薄膜:将腔体内抽真空,向真空反应腔内通入氩气,调节氩气压为2.5pa,打开脉冲直流电源,调节沉积功率为30W、转速为5r/min、沉积温度为500℃、沉积时间为10-60min,得到ITO中间层薄膜;
d、制备外延单晶BVO薄膜:向真空反应腔内通入25sccm流量的氩气,调节氩分压为1.9pa;通入70-100sccm流量的氧气,调节氧分压在3-4pa;沉积过程中保持腔体内的总压力在2.5-19pa;连接陶瓷靶材射频电源的功率为30-80W,沉积温度为450-500℃,溅射时间为1-3h;溅射完成后稳定10-20min,然后自然降温至室温后,取出BVO薄膜。
优选地,所述SnO2和In2O3靶材的重量百分比10:90。
优选地,所述Bi2O3和V2O5陶瓷靶材的原子数百分比1.05:1。
优选地,所述衬底材料的大小为1cm×1cm,暴露晶面为(100)。
优选地,所述超声的功率为250W,超声时间为8-16min。
相比现有技术,本发明的有益效果在于:
本发明通过改变制备薄膜时对靶材施加功率以及氧压的大小首次获得了BVO的外延单晶薄膜。本发明制备方法简单,制备出的薄膜表面平整致密,可进一步用于制备覆盖面积大的外延单晶薄膜;该方法也为用化学计量比靶材通过磁控技术制备出与靶材元素比例相同的金属氧化物提供了可能。采用磁控溅射技术制备薄膜,具有产品制备成本低,周期短等优点,有明显的经济效益,易于实现工业化生产。
本发明制备的BVO外延单晶薄膜是良好的光催化材料,具有良好的光催化降解功能,可以被广泛的用于环境净化工程。同时本发明制备的BVO外延单晶薄膜又是良好的光阳极电极材料,也可以被广泛的应用于太阳能电池领域。
附图说明
图1为本发明利用磁控技术制备BVO薄膜的实验装置示意图。
图2当射频溅射功率为30W、氧流量在70-100sccm、氧分压在0-4pa之间变化的样品XRD图。
图3当氧分压为3.4pa、射频功率在30-80W之间变化的样品XRD图。
图4为BVO外延单晶薄膜表面的场发射扫描电子显微镜(FESEM)图。
图5为多晶BVO薄膜的XRD图。
图6为单晶薄膜和多晶薄膜样品的光催化降解效果。
图7为BVO外延单晶薄膜的I-V测试图。
具体实施方式
以下实施例用于说明本发明,但不用来限定本发明的保护范围。若未特别指明,实施例中所用技术手段为本领域技术人员所熟知的常规手段。下述实施例中的试验方法,如无特别说明,均为常规方法。
实施例一
如图1所示,本发明利用磁控溅射技术制备BVO外延单晶薄膜的方法,包括以下步骤:
a、安装靶材:
将直径50-60mm、厚度3-5mm、纯度99.99%的SnO2和In2O3靶材按重量百分比10:90安装在直流溅射靶座,靶座连接脉冲直流电源;将直径50-60mm、厚度3-5mm、纯度为99.9%的Bi2O3和V2O5陶瓷靶材原子数百分比为1.05:1安装在射频磁控溅射靶座,靶座连接射频电源;
b、预处理衬底材料:
选择钇稳定的氧化锆(YSZ)作为衬底材料,大小为1cm×1cm,暴露晶面为(100)将衬底材料依次放入丙酮、乙醇、去离子水中超声清洗,超声的功率为250W,超声时间为8-16min,随后用氮气进行干燥,放入密封袋,备用;
c、制备ITO中间层薄膜:
采用磁控溅射技术沉积样品之前,常温条件下,依次对两个靶材进行10min的预溅射处理,目的是为了清除由于安装过程中吸附在靶材表面的杂质。将腔体内真空背底抽至2.5×10-2pa以下,向真空反应腔内通入氩气,调节氩气压为2.5pa,打开脉冲直流电源,调节沉积功率为30W、转速为5r/min、沉积温度为500℃、沉积时间为14min,得到ITO中间层薄膜;
d、制备外延单晶BVO薄膜:
向真空反应腔内通入25sccm流量的氩气,调节氩分压为1.9pa;通入95sccm流量的氧气,调节氧分压在4pa;沉积过程中保持腔体内的总压力在19pa;连接陶瓷靶材射频电源的功率为30W,沉积温度为500℃,溅射时间为2h;溅射完成后稳定10-20min,然后自然降温至室温后,取出BVO薄膜。
实施例2
本实施例与实施例1基本相同,不同之处在于:氧气流量为86sccm,氧分压为3pa,射频电源的功率为30W,沉积温度为500℃,溅射时间为2h。
实施例3
本实施例与实施例1基本相同,不同之处在于:氧气流量为78sccm,氧分压为2.2pa,射频电源的功率为30W,沉积温度为500℃,溅射时间为2h。
实施例4
本实施例与实施例1基本相同,不同之处在于:氧气流量为93sccm,氧分压为3.4pa,射频电源的功率为80W,沉积温度为500℃,溅射时间为2h。
实施例5
本实施例与实施例1基本相同,不同之处在于:氧气流量为93sccm,氧分压为3.4pa,射频电源的功率为60W,沉积温度为500℃,溅射时间为2h。
实施例6
本实施例与实施例1基本相同,不同之处在于:氧气流量为93sccm,氧分压为3.4pa,射频电源的功率为50W,沉积温度为500℃,溅射时间为2h。
实施例1~6分别通过改变反应腔内氧分压的大小以及对Bi2O3:V2O5陶瓷靶材施加不同的射频功率来优化BVO外延单晶薄膜的生长条件,从而达到用磁控溅射技术制备出BiVO4外延单晶薄膜。
实施例1~3研究了反应腔内氧分压的大小对材料组成成分的影响,固定对Bi2O3:V2O5(1.05:1 at.%)靶材施加30W的射频功率,在450-500℃的温度下,连续沉积2h,稳定10-20min后开始降温至室温,得到一系列薄膜样品,XRD结果如图2所示。从图2可以看出,除了氧分压为4pa时,所有的薄膜都未显示出BVO(0l0)晶向的特征峰,即020、040、060、080晶向;并且随着氧分压的增大,出现了Bi4V2O11(00k)晶向的特征峰,即002、004晶向。通过分析可以得出结论:在氧分压为3-4pa之间有很大的可能通过磁控溅射技术制备出BVO的外延单晶薄膜。
实施例4~6研究了对Bi2O3:V2O5(1.05:1 at.%)陶瓷靶材施加不同射频功率对材料组成成分的影响,固定反应腔内氧分压的大小为3.4pa,在450-500℃的温度下,连续沉积2h,稳定10-20min后开始降温至室温,得到一系列薄膜样品,XRD结果如图3所示。从图3可以看出,随着功率的减小,Bi4V2O11的特征峰峰强在逐渐减小;在射频功率为50W时,除了YSZ(002)和(004)的特征峰、kα峰以及ITO(h00)晶向的特征峰外,只有BVO(020)、(040)、(060)、(080)晶向的特征峰。这表明,在反应腔内氧分压的大小为3.4pa下,通过磁控溅射技术制备出了BVO外延单晶薄膜,其定向生长关系为BVO(0l0)||ITO(h00)||YSZ(001)。
为了研究BVO外延单晶薄膜的表面形貌,对实施例6的薄膜表面进行了场发射扫描电子显微镜(FESEM)扫描,如图4所示。从图4可以看出,BVO外延单晶薄膜是成片生长的岛状形貌,每片岛之间都由较窄的沟壑状空隙分割开来,有向着沟壑逐渐变窄的方向生长的趋势,有望利用磁控溅射技术制备出沟壑消失,大面积覆盖生长的BVO外延单晶薄膜。
在石英衬底上,利用与实施例6相同的实验条件,制备出多晶BVO薄膜,XRD结果如图5所示。从图5可以看出,多晶BVO薄膜具有衍射强度最强的2个衍射峰(121)和(011)。
利用440nm单色光降解罗丹明B 3h,对比单晶薄膜和多晶薄膜样品的光催化降解效果,结果如图6所示。从图6-a可以看出,相比多晶BVO薄膜,单晶BVO薄膜具有较好的光催化性能;从图6-b可以看出,单晶BVO薄膜的表观量子效率达0.8%,高于多晶BVO薄膜的表观量子效率。
将ITO导电薄膜作为底电极利用三电极法测试了实施例6中样品的I-V曲线,测试电解质为0.5 M的硫酸钠,对电极为铂电极,参比电极为氯化银溶液,扫描速率为0.01 V/s,测试结果如图7所示。从图7可以看出,光照条件下BVO外延单晶薄膜比黑暗条件下具有更高的光电流值;插图显示了在0.4V的偏压下,氙灯开关条件下,光电流随时间的变化。可以看出,BVO外延单晶薄膜具有良好的光响应现象,光稳定性较好。
以上所述之实施例,只是本发明的较佳实施例而已,仅仅用以解释本发明,并非限制本发明实施范围,对于本技术领域的技术人员来说,当然可根据本说明书中所公开的技术内容,通过置换或改变的方式轻易做出其它的实施方式,故凡在本发明的原理上所作的变化和改进等,均应包括于本发明申请专利范围内。

Claims (3)

1.一种利用磁控溅射技术制备BVO外延单晶薄膜的方法,其特征在于,包括以下步骤:
a、安装靶材:将SnO2和In2O3靶材安装在直流溅射靶座,靶座连接脉冲直流电源;将Bi2O3和V2O5陶瓷靶材安装在射频磁控溅射靶座,靶座连接射频电源;所述SnO2和In2O3靶材的重量百分比10:90;所述Bi2O3和V2O5陶瓷靶材的原子数百分比1.05:1;
b、预处理衬底材料:选择钇稳定的氧化锆作为衬底材料,将衬底材料依次放入丙酮、乙醇、去离子水中超声清洗,随后用氮气进行干燥,放入密封袋,备用;
c、制备ITO中间层薄膜:将腔体内抽真空,向真空反应腔内通入氩气,调节氩气压为2.5pa,打开脉冲直流电源,调节沉积功率为30W、转速为5r/min、沉积温度为500℃、沉积时间为10-60min,得到ITO中间层薄膜;
d、制备外延单晶BVO薄膜:向真空反应腔内通入25sccm流量的氩气,调节氩分压为1.9pa;通入70~100sccm流量的氧气,调节氧分压在3.4pa;沉积过程中保持腔体内的总压力在2.5-19pa;连接陶瓷靶材射频电源的功率为50-80W,沉积温度为450-500℃,溅射时间为1-3h;溅射完成后稳定10-20min,然后自然降温至室温后,取出BVO薄膜。
2.根据权利要求1所述的利用磁控溅射技术制备BVO外延单晶薄膜的方法,其特征在于,所述衬底材料的大小为1cm×1cm,暴露晶面为(100)。
3.根据权利要求1所述的利用磁控溅射技术制备BVO外延单晶薄膜的方法,其特征在于,所述超声的功率为250W,超声时间为8-16min。
CN202011453729.6A 2020-12-12 2020-12-12 利用磁控溅射技术制备bvo外延单晶薄膜的方法 Active CN112725750B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011453729.6A CN112725750B (zh) 2020-12-12 2020-12-12 利用磁控溅射技术制备bvo外延单晶薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011453729.6A CN112725750B (zh) 2020-12-12 2020-12-12 利用磁控溅射技术制备bvo外延单晶薄膜的方法

Publications (2)

Publication Number Publication Date
CN112725750A CN112725750A (zh) 2021-04-30
CN112725750B true CN112725750B (zh) 2022-02-11

Family

ID=75599332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011453729.6A Active CN112725750B (zh) 2020-12-12 2020-12-12 利用磁控溅射技术制备bvo外延单晶薄膜的方法

Country Status (1)

Country Link
CN (1) CN112725750B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114194A (ja) * 1984-06-27 1986-01-22 Tatsuo Fukami マグネトロンスパッタ装置及び化合物単結晶膜の製造方法
FR2947816B1 (fr) * 2009-07-09 2011-07-22 Saint Gobain Procede de depot par pulverisation cathodique, produit obtenu et cible de pulverisation
CN102041476B (zh) * 2010-12-30 2012-07-25 陕西科技大学 双靶磁控溅射法制备钛酸钴薄膜的方法
CN103510047A (zh) * 2013-10-21 2014-01-15 研创应用材料(赣州)有限公司 一种制备新型导电氧化铟锡材料及其薄膜的方法
CN105679880A (zh) * 2016-01-19 2016-06-15 新疆中兴能源有限公司 一种光解水用大面积钒酸铋薄膜的简易制备方法
CN109371376B (zh) * 2018-12-04 2021-04-20 北京科技大学 一种单一晶体取向的NiO薄膜的可控制备方法

Also Published As

Publication number Publication date
CN112725750A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Wolcott et al. Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting
CN104711528A (zh) 一种片状三氧化钨光电极及其制备方法
Cui et al. The fabrication of dipped CdS and sputtered ITO thin films for photovoltaic solar cells
Limwichean et al. Morphology-controlled fabrication of nanostructured WO3 thin films by magnetron sputtering with glancing angle deposition for enhanced efficiency photo-electrochemical water splitting
CN103165748A (zh) 一种制备铜锌锡硫太阳能电池吸收层薄膜的方法
Acosta et al. Structural, optical and photoelectrochemical properties of tungsten oxide thin films grown by non-reactive RF-sputtering
Liu et al. CuInS2/TiO2 heterojunction with elevated photo-electrochemical performance for cathodic protection
CN105821379A (zh) 一种制备单一相透明导电氧化亚铜薄膜的方法
CN114016077A (zh) 一种硫化镉-硫铟锌异质结纳米棒阵列复合材料及其制备方法
CN110714187B (zh) 一种钒离子空位型钒酸铋光阳极薄膜及其制备方法
CN109267028B (zh) 一种镍锌氧化合物光电薄膜及其制备方法
CN113151858B (zh) 一种P掺杂SnS2纳米片阵列光电催化剂及其制备方法
Elmassi et al. Effect of RF power on structural, optical and electrical properties of sputtered nickel oxide
CN112725750B (zh) 利用磁控溅射技术制备bvo外延单晶薄膜的方法
Feng et al. Enhanced photovoltaic property and stability of perovskite solar cells using the interfacial modified layer of anatase TiO2 nanocuboids
CN101159296B (zh) 改善单室沉积本征微晶硅薄膜质量的方法
CN101413102A (zh) 两步制备NiO透明导电薄膜的方法
CN110819958A (zh) 一种改变硒化锑薄膜电学性质的方法及硒化锑太阳电池
CN109837516B (zh) 一种磁控溅射制备ZnFe2O4/Fe2O3三维异质结纳米材料的方法
CN113957394B (zh) 一种p型半导体薄膜氧化铋铜及其制备方法与应用
Soonmin et al. A short review of recent advances in copper oxide nanostructured thin films
CN112071652B (zh) 一种三维刺猬状ZnO/SnO2异质结构及其制备方法与其在紫外探测器中的应用
CN114944438A (zh) 一种新型光电器件
CN104269461A (zh) n型In2S3缓冲层的成膜方法及其应用
CN105514275B (zh) 基于NiO空穴传输层的甲胺铅碘基太阳能电池制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant