CN112725748B - 一种超细纳米晶钨材料的制备方法 - Google Patents

一种超细纳米晶钨材料的制备方法 Download PDF

Info

Publication number
CN112725748B
CN112725748B CN202011250237.7A CN202011250237A CN112725748B CN 112725748 B CN112725748 B CN 112725748B CN 202011250237 A CN202011250237 A CN 202011250237A CN 112725748 B CN112725748 B CN 112725748B
Authority
CN
China
Prior art keywords
substrate
sputtering
target
film
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011250237.7A
Other languages
English (en)
Other versions
CN112725748A (zh
Inventor
陈树群
王金淑
周文元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202011250237.7A priority Critical patent/CN112725748B/zh
Publication of CN112725748A publication Critical patent/CN112725748A/zh
Application granted granted Critical
Publication of CN112725748B publication Critical patent/CN112725748B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种超细纳米晶钨材料的制备方法,属于纳米材料制备技术领域。以非晶材料晶化理论为基础,采用反应磁控溅射结合氢气热处理法制备出平均晶粒尺寸低至4nm的超细纳米晶组织,显微硬度高达22.1GPa。本方法工艺简单,过程易控制,具有较高的实际应用价值。

Description

一种超细纳米晶钨材料的制备方法
技术领域
本发明涉及一种超细纳米晶钨材料的制备方法,属于纳米材料制备技术领域。
背景技术
难熔金属钨具有高熔点、高强度、良好的导电导热性、低膨胀系数、耐腐蚀性能好等优点,广泛应用于电子、医疗、冶金等行业中。近年来纳米晶钨及其合金一直是聚变堆中面向等离子体材料的研究热点,这是由于其高密度晶界能够提高对He离子的吸附,进而抑制He离子辐照对样品的破坏。为了实现钨基材料抗辐照性能的进一步提升,如何降低其晶粒尺寸就成为亟需解决的关键问题。
磁控溅射是制备纳米金属材料的常用方法,为了避免纳米金属在沉积过程中发生晶粒长大而损失其尺寸效应,目前常用方法都采用低温或者室温来进行纳米晶钨薄膜的制备。然而当材料厚度达到一定程度时,低温沉积的纳米难熔金属极易产生应力集中,造成开裂甚至是脱落现象,这在很大程度上限制了纳米晶钨薄膜在面向等离子体材料中的实际应用。
发明内容
本发明的目的在于提供一种微米级厚度、超细纳米晶钨薄膜材料的制备方法。本发明的方法以非晶材料晶化理论为基础,采用反应磁控溅射结合氢气热处理法制备出平均晶粒尺寸低至4nm的超细纳米晶组织,显微硬度高达22.1GPa。本方法工艺简单,过程易控制,具有较高的实际应用价值。
为实现上述技术目的,本发明的技术方案如下:
1)将衬底基片利用酒精进行超声清洗,使用氮气吹干后安装在基盘上,并覆盖掩模版;
2)将溅射靶材安装在靶枪上使用,调整靶材与基片间的距离;
3)向溅射室内通入氩气和微量氧气,对靶材进行预溅射,去除靶材表层的氧化物杂质;
4)移除基片上端的掩模版,在基片表面沉积薄膜;
5)将覆膜后的基片进行切割,放入管式热处理中,在氢气气氛下进行退火处理。
所用衬底基片的尺寸为Φ101.6mm,溅射过程中衬底基片的温度为室温。
所用溅射靶材为纯钨靶材。
靶材尺寸为Φ50.8×5mm,靶材与基片间距离约12cm。
所述步骤(3)中,氩气和氧气的流量比例分别为48.5:1.5,预溅射功率为150W,预溅射时间为5-10min。
所述步骤(4)中,磁控溅射薄膜时真空度为(7.0-7.5)×10-3Toor,溅射功率为150W,沉积时间为90min。
所述步骤(5)中,氢气退火薄膜时温度为400℃,时间为1h。
本发明的优点在于:
本发明提出了一种新型的纳米晶钨材料制备方法——反应磁控溅射结合氢还原热处理法。该方法能够获得比其它方法更小的晶粒尺寸(晶粒尺寸达到4nm),实现材料力学性能的有效提升,所制备的超细晶钨薄膜组织均匀、厚度可控,在抗等离子体辐照等领域具备良好的应用前景。
附图说明
图1为实施例制备的沉积态和退火态钨薄膜XRD衍射图谱;
图2为实施例制备的退火态钨薄膜SEM图;
图3为实施例制备的退火态钨薄膜TEM和SAED图;
图4为实施例制备的退火态钨薄膜纳米压痕硬度-位移图。
具体实施方式
以下结合附图和实施例对本发明进行进一步详细说明,但并不意味着对本发明保护范围的限制。
实施例1
将直径为101.6mm的氧化硅片固定在超高真空Lesker Lab18型磁控溅射镀膜系统上装样,同时安装钨靶材。
采用机械泵与分子泵两级真空泵抽真空,当样品仓内真空度达到3×10-7Toor时向舱室内通入氩气和氧气,气体流量分别保持48.5sccm和1.5sccm。
按照磁控溅射仪的单靶直流溅射步骤在基片上沉积钨薄膜,溅射功率为150W,沉积温度为室温,沉积时间为90min,沉积时真空度为7.2×10-3Toor。
利用硅刀将圆形衬底切割成10×10mm小块,进行后续处理。
将沉积态钨薄膜放入管式热处理炉内,在氢气气氛中进行退火处理,退火温度为400℃,时间1h。
通过X射线衍射仪(XRD)对沉积态和退火态钨薄膜进行结构表征,其XRD图谱如图1所示。
XRD结果显示沉积态钨薄膜为非晶结构,经过氢气热处理后转变成为晶态的α-W结构。
通过扫描电子显微镜(SEM)对退火后的钨薄膜进行结构表征,其表面与截面SEM形貌如图2所示。
SEM结果显示退火态的钨薄膜颗粒细小、结构致密,薄膜厚度约1微米。
通过透射电子显微镜(TEM)和选区电子衍射(SAED)对退火后的钨薄膜进行结构表征,其TEM和SAED图像如图3所示。
TEM图直观的观察到大部分钨晶粒为小于5nm的超细纳米晶钨,SAED图显示样品具有良好的结晶性。
通过纳米压痕仪对退火后的钨薄膜进行力学性能表征,其硬度-位移图如图4所示。
纳米压痕测试结果显示超细纳米晶钨具有极高的显微硬度,平均硬度达22.1GPa。

Claims (1)

1.一种超细纳米晶钨材料的制备方法,其特征在于,以非晶材料晶化理论为基础,采用反应磁控溅射结合氢气热处理法,包括以下步骤:
1)将衬底基片利用酒精进行超声清洗,使用氮气吹干后安装在基盘上,并覆盖掩模版;
2)将溅射靶材安装在靶枪上使用,调整靶材与基片间的距离;
3)向溅射室内通入氩气和微量氧气,对靶材进行预溅射,去除靶材表层的氧化物杂质;
4)移除基片上端的掩模版,在基片表面沉积薄膜;
5)将覆膜后的基片进行切割,放入管式热处理中,在氢气气氛下进行退火处理;
溅射过程中衬底基片的温度为室温;
所用溅射靶材为纯钨靶材;
靶材与基片间距离为12cm;
所述步骤3)中,氩气和氧气的流量比例分别为48.5:1.5,预溅射功率为150W,预溅射时间为5-10min;
所述步骤4)中,磁控溅射薄膜时真空度为(7.0-7.5)×10-3Toor,溅射功率为150W,沉积时间为90min;
所述步骤5)中,氢气退火薄膜时温度为400℃,时间为1h。
CN202011250237.7A 2020-11-10 2020-11-10 一种超细纳米晶钨材料的制备方法 Active CN112725748B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011250237.7A CN112725748B (zh) 2020-11-10 2020-11-10 一种超细纳米晶钨材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011250237.7A CN112725748B (zh) 2020-11-10 2020-11-10 一种超细纳米晶钨材料的制备方法

Publications (2)

Publication Number Publication Date
CN112725748A CN112725748A (zh) 2021-04-30
CN112725748B true CN112725748B (zh) 2022-09-09

Family

ID=75597454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011250237.7A Active CN112725748B (zh) 2020-11-10 2020-11-10 一种超细纳米晶钨材料的制备方法

Country Status (1)

Country Link
CN (1) CN112725748B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799443A (zh) * 2010-03-16 2010-08-11 天津大学 制备多孔硅基底氧化钨纳米薄膜气敏传感器的方法
CN102199756A (zh) * 2011-05-11 2011-09-28 北京航空航天大学 非晶态钨薄膜的制备方法
CN103361613A (zh) * 2013-06-06 2013-10-23 北京航空航天大学 一种制备纳米柱状金属钨的方法
CN106756853A (zh) * 2017-03-03 2017-05-31 东南大学 具有表面增强拉曼散射功能的氧化钨基底及其制备方法
CN108914075A (zh) * 2018-07-12 2018-11-30 中国科学院合肥物质科学研究院 一种基于含氦w基纳米晶薄膜材料的制备方法
CN109576644A (zh) * 2018-12-14 2019-04-05 北京工业大学 一种制备涂层导体用高钨合金基带的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799443A (zh) * 2010-03-16 2010-08-11 天津大学 制备多孔硅基底氧化钨纳米薄膜气敏传感器的方法
CN102199756A (zh) * 2011-05-11 2011-09-28 北京航空航天大学 非晶态钨薄膜的制备方法
CN103361613A (zh) * 2013-06-06 2013-10-23 北京航空航天大学 一种制备纳米柱状金属钨的方法
CN106756853A (zh) * 2017-03-03 2017-05-31 东南大学 具有表面增强拉曼散射功能的氧化钨基底及其制备方法
CN108914075A (zh) * 2018-07-12 2018-11-30 中国科学院合肥物质科学研究院 一种基于含氦w基纳米晶薄膜材料的制备方法
CN109576644A (zh) * 2018-12-14 2019-04-05 北京工业大学 一种制备涂层导体用高钨合金基带的方法

Also Published As

Publication number Publication date
CN112725748A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN113789503B (zh) 一种具有抗氧化特性的高熵硅化物薄膜的原位合成方法
EP0588350B1 (en) Hard film of Ti-Si-N composite material and method for production thereof
CN111441025B (zh) 一种耐腐蚀高熵合金薄膜、制备方法及其在海水环境下的应用
CN113913751B (zh) 一种Cu-高熵合金薄膜及其制备方法
CN113293331A (zh) 一种高熵合金表面碳化物/金刚石涂层及其制备方法
CN114703452B (zh) 一种CoCrFeNi高熵合金掺杂非晶碳薄膜及其制备方法
Ahmed et al. Microstructure and residual stress dependence of molybdenum films on DC magnetron sputtering conditions
CN110643965A (zh) 一种高结晶性钒薄膜的制备方法
CN112831766B (zh) 一种利用磁控溅射在硅衬底上制备金属锆薄膜的方法及应用
CN112725748B (zh) 一种超细纳米晶钨材料的制备方法
EP0616046B1 (en) Highly hard thin film and method for production thereof
JP3281173B2 (ja) 高硬度薄膜及びその製造方法
CN112746320B (zh) 利用磁控溅射在硅衬底上制备氮化锆薄膜的方法
CN114807849A (zh) 一种纳米复合高熵氮化物涂层及其复合沉积方法
CN113584446A (zh) 利用磁控溅射在硅衬底上制备的金属铪薄膜、方法和应用
CN114672778A (zh) 一种纳米晶NbMoTaWTi难熔高熵合金涂层及其制备方法
CN106637116A (zh) 一种二次电子发射薄膜的简易制备方法
Lu et al. Effect of sputtering power on the properties of TaN thin films prepared by the magnetron sputtering
Jing et al. Dependence of characteristics of LaB6 films on DC magnetron sputtering power
CN113293353B (zh) 一种金属掺杂的二硼化锆薄膜及其制备方法
CN115747604B (zh) 一种Mo基高熵合金及其应用
CN113224200B (zh) 一种氮化镓半导体辐射探测器及其制备方法和检测设备
CN109957757B (zh) 一种两步法PVD技术制备超厚Ti-Al-C三元涂层的方法
CN113235060B (zh) 一种全α相钽涂层的制备方法
CN116356249A (zh) 一种Zr纳米相增强FeMnCoCr高熵合金复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant