CN112725348B - Gene and method for improving single-base editing efficiency of rice and application of gene - Google Patents

Gene and method for improving single-base editing efficiency of rice and application of gene Download PDF

Info

Publication number
CN112725348B
CN112725348B CN201911029085.5A CN201911029085A CN112725348B CN 112725348 B CN112725348 B CN 112725348B CN 201911029085 A CN201911029085 A CN 201911029085A CN 112725348 B CN112725348 B CN 112725348B
Authority
CN
China
Prior art keywords
gene
abehpt
rice
sequence
expression vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911029085.5A
Other languages
Chinese (zh)
Other versions
CN112725348A (en
Inventor
李娟�
魏鹏程
秦瑞英
许蓉芳
李�浩
刘小双
徐善斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rice Research Institute of Anhui Academy of Agricultural Sciences
Original Assignee
Rice Research Institute of Anhui Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rice Research Institute of Anhui Academy of Agricultural Sciences filed Critical Rice Research Institute of Anhui Academy of Agricultural Sciences
Priority to CN201911029085.5A priority Critical patent/CN112725348B/en
Publication of CN112725348A publication Critical patent/CN112725348A/en
Application granted granted Critical
Publication of CN112725348B publication Critical patent/CN112725348B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04002Adenine deaminase (3.5.4.2)

Abstract

The invention provides a gene and a method for improving the base editing efficiency of rice and application thereof. The invention synthesizes a co-transcription unit ABEHPT of a coding gene HPT containing a hygromycin-resistant protein, a coding gene SpCas9n containing a SpCas9 protein and an adenine deaminase coding gene ABE, and also provides an expression vector containing the ABEHPT and application of the expression vector in single-base editing of rice genes. After the expression vector is introduced into a plant body, the ABE base editor and the hygromycin gene can be transcribed and translated simultaneously, and the expression quantity of the ABE base editor in plant cells is improved through hygromycin screening, so that the ABE base editing efficiency in the plant cells is improved. Experiments prove that the ABEHPT gene designed by the invention is used for constructing a plant expression vector and further constructing a rice targeting vector, the fixed-point replacement efficiency of mutation of A: T to G: C on DNA of a rice specific gene locus is greatly improved after the ABEHPT gene is introduced into a rice cell, and the ABEHPT gene has important application value in the aspect of efficiently obtaining single base replaced plants.

Description

Gene and method for improving single-base editing efficiency of rice and application of gene
Technical Field
The present invention relates to biotechnology and plant genetic engineering technology. Specifically, the invention relates to a gene for improving single base editing efficiency of rice, a method and application thereof.
Background
Gene editing technology is one of the subversive technologies that have made breakthrough progress in recent years. The CRISPR/Cas9 gene editing system is simple, convenient and efficient, and is widely applied to gene function research and utilization. Although CRISPR/Cas9 can target a gene of interest with high efficiency, its site-directed modification relies on an inefficient homologous recombination mechanism, and thus the ability to accurately edit a gene is to be improved. The single base editing technique (base editor, BE) forms a fusion protein by Cas9 nickase (Cas9 nikase, Cas9n) or nuclease-free Cas9 (nuclear de Cas9, dCas9) and cytosine deaminase, and targets the fusion protein to a target site by sgRNA (single-stranded guide RNA), and performs precise editing of cytosine C → thymine T or guanine G → adenine a on a single base of the target gene site without cutting double-stranded DNA. Existing editors can be classified into Cytosine Base Editors (CBEs) mediating the site-directed replacement of C: G into T: A, and Adenine Base Editors (ABEs) mediating the site-directed replacement of A: T into G: C. The most common CBE and ABE systems at present are the BE3 and ABE7.10 systems, respectively.
A number of plant Genome Wide Association (GWAS) analysis studies have shown that many important agronomic traits are closely related to single base variation. Therefore, the single-base editing technology has carried out high-efficiency gene site-directed mutagenesis in plant, animal and human cells, and has wide application prospect in agriculture, biomedical research and even gene therapy. At present, the system still has certain defects, such as low alkali group editing efficiency in plants. At present, the optimization work of a plant base editing system is less developed, and the improvement of the base editing efficiency is limited.
Disclosure of Invention
The traditional plant gene base editing system is to introduce the editing system into plant cells by means of transient or stable genetic transformation. In stable genetic transformation, the anti-screener genes used are all constitutively expressed, and the base editor genes are likewise constitutively expressed, but both have their own expression cassette. This is likely to occur: in the screening process, the expression level of the base editor in the cell strongly expressing the anti-screening agent gene is not high.
The invention aims to improve ABE base editing efficiency by increasing the protein level of an ABE editor in a plant body in view of the fact that the insufficient expression of the base editor is probably one of the factors causing the insufficient gene editing efficiency aiming at the outstanding problem of low ABE base editing efficiency of the adenine base editor with site-specific substitution of A: T into G: C in the plant.
Specifically, the invention provides a co-transcription unit gene ABEHPT for improving single-base editing efficiency of rice, which is characterized in that the co-transcription unit gene ABEHPT comprises a hygromycin protein-resistant encoding gene HPT, a SpCas9 protein encoding gene SpCas9n and an adenine deaminase encoding gene ABE, wherein the co-transcription unit gene ABEHPT and the sgRNA encoding gene are constructed in the same expression vector.
Preferably, each gene fragment of the co-transcriptional unit gene ABEHPT is inserted into the same expression frame, and the sequence of the co-transcriptional unit gene ABEHPT after being connected with the sgRNA coding gene at least comprises:
(a) a nucleotide sequence shown in SEQ ID No.1 in a sequence table; or
(b) A nucleotide sequence which is capable of replacing one or more nucleotides in the nucleotide sequence shown in SEQ ID No.1 in the sequence table and performing rice genome shearing; or
(c) A nucleotide sequence which is obtained by adding one or more nucleotides into the nucleotide sequence shown in SEQ ID No.1 in the sequence table and can perform rice genome shearing; or
(d) A nucleotide sequence which is obtained by deleting one or more nucleotides from the nucleotide sequence shown in SEQ ID No.1 in the sequence table and can perform rice genome shearing.
Preferably, the coding gene ABE of adenine deaminase in the co-transcription unit gene ABEHPT is positioned at the 5' end of the coding gene SpCas9n of SpCas9 protein; the encoding gene HPT of the hygromycin-resistant protein is positioned at the 3' end of the encoding gene SpCas9n of the SpCas9 protein and is connected with self-cleavage polypeptide 2A (self-cleavage 2A peptide,2A) by a 3X nuclear localization signal NLS; the 3X nuclear localization signal NLS is at the 3' end of SpCas9 n.
In another aspect, the present invention provides a method for improving single base editing efficiency of rice, wherein the method comprises introducing a gene encoding sgRNA, a gene encoding hygromycin-resistant protein HPT, a gene encoding SpCas9n of SpCas9 protein, and a gene encoding adenine deaminase ABE into a receptor, and expressing the sgRNA, the hygromycin-resistant protein, the SpCas9 protein, and the adenine deaminase in the receptor, thereby performing base editing on a target gene in the receptor genome.
Preferably, the method comprises the steps of synthesizing a gene sequence ABEHPT containing the encoding gene HPT of the hygromycin-resistant protein, the encoding gene SpCas9n of the SpCas9 protein and the encoding gene ABE of adenine deaminase, adding NotI/SacI enzyme cutting sites at two ends, utilizing NotI/SacI enzyme cutting of the plant expression vector pHUN900 vector and recycling, connecting the gene sequence ABEHPT to the expression vector, utilizing the enzyme cutting sites to cut off a promoter on the vector and the gene sequence ABEHPT, connecting the promoter and the gene sequence ABEHPT to a plant expression vector which does not contain the selection marker gene HPT, synthesizing a sgRNA expression frame containing the HindIII enzyme cutting sites, introducing the sgRNA expression frame into the plant expression vector, and then introducing the plant expression vector into a receptor.
Preferably, the gene encoding hygromycin protein HPT, the gene encoding Cas9 protein SpCas9n and the adenine deaminase encoding gene ABE use the same constitutive promoter Ubiqutin and the same 35S terminator.
Preferably, the sgRNA expression cassette comprises: the rice gene expression vector comprises a rice OsU3 promoter, a spectinomycin resistance gene SpR, an artificially synthesized sgRNA framework sequence and a Poly-T terminator, wherein the nucleotide sequence of the rice OsU3 promoter is shown as Seq ID No.2 from 1 st to 382 th positions, the nucleotide sequence of the spectinomycin resistance gene SpR is shown as Seq ID No.2 from 388 th to 1595 th positions, the nucleotide sequence of the artificially synthesized sgRNA framework sequence is shown as Seq ID No.2 from 1603 th to 1688 th positions, and the nucleotide sequence of the Poly-T terminator is shown as Seq ID No.1 from 1689 th to 1696 th positions.
A plant expression vector comprising a co-transcriptional unit gene, ABEHPT, of claim 1 and a sgRNA expression cassette comprising: the rice gene expression vector comprises a rice OsU3 promoter, a spectinomycin resistance gene SpR, an artificially synthesized sgRNA framework sequence and a Poly-T terminator, wherein the nucleotide sequence of the rice OsU3 promoter is shown as Seq ID No.2 from 1 st to 382 th positions, the nucleotide sequence of the spectinomycin resistance gene SpR is shown as Seq ID No.2 from 388 th to 1595 th positions, the nucleotide sequence of the artificially synthesized sgRNA framework sequence is shown as Seq ID No.2 from 1603 th to 1688 th positions, and the nucleotide sequence of the Poly-T terminator is shown as Seq ID No.1 from 1689 th to 1696 th positions.
Preferably, said use comprises introducing said co-transcriptional unit gene ABEHPT into plant callus.
Preferably, the application comprises the steps of infecting, co-culturing and screening to obtain edited plant callus, then differentiating the callus into a plant, and improving the fixed point replacement efficiency of mutation from A: T to G: C on a rice genome by using the ABEHPT with high editing efficiency to obtain a transgenic plant or a plant part containing a mutation site.
The method enables sgRNA, hygromycin-resistant protein, Cas9 protein and adenine deaminase to be expressed in a receptor, so that base editing is carried out on a target gene in a receptor genome.
The invention introduces the encoding gene HPT of the hygromycin-resistant protein, the encoding gene SpCas9n of the SpCas9 protein and the adenine deaminase encoding gene ABE into a receptor through a plant expression vector.
In one implementation, the gene encoding hygromycin protein, HPT, the gene encoding Cas9 protein, SpCas9n, and the adenine deaminase encoding gene, ABE, use the same constitutive promoter, Ubiqutin, and the same 35S terminator, such that they form a co-transcriptional unit, designated ABEHPT (ABE-SpCas9 n-HPT).
Preferably, the ABEHPT co-transcription unit gene with high editing efficiency is composed of a nucleotide sequence shown as SEQ ID NO.1 in a sequence table. Wherein the adenine deaminase coding gene ABE is formed by translating a nucleotide sequence shown in the 1 st to 1191 th positions from the 5 'tail end of a sequence 1 in a sequence table, and the SpCas9 protein is formed by translating a nucleotide sequence shown in the 4102 th to 5292 th positions from the 5' tail end of the sequence 1 in the sequence table; the 3X Nuclear Localization Signal (NLS) is formed by translating a nucleotide sequence shown in 5293 th to 5391 th positions from the 5' tail end of a sequence 1 in a sequence table; the hygromycin-resistant protein is formed by translating a nucleotide sequence shown in positions 5446 to 6471 from the 5 'end of a sequence 1 in a sequence table, is connected by self-cleavage polypeptide 2A (2A), and is formed by translating a nucleotide sequence shown in positions 5392 to 5445 from the 5' end of the sequence 1 in the sequence table.
Preferably, the expression vector does not contain the HPT gene on the backbone.
In another aspect, the invention provides an expression vector, wherein the expression vector backbone comprises a sgRNA expression cassette, and the nucleotide sequence of the sgRNA expression cassette is shown in SEQ ID No. 2.
In the method, the receptor may be a plant callus.
In the method, the 'introduced plant callus' can be subjected to infection, co-culture and screening steps to obtain edited plant callus, and the callus is differentiated to form a plant. Wherein hygromycin is used as the screening agent during the screening and differentiation steps.
The method for constructing the plant expression vector containing the ABEHPT gene comprises the following steps: the synthesized ABEHPT gene sequence is added with NotI/SacI enzyme cutting sites at both ends. The plant expression vector pHUN900 vector is cut by NotI/SacI enzyme and recovered, and the synthesized ABEHPT sequence has NotI/SacI enzyme cutting sites at two ends, so that the ABEHPT can be connected to the pHUN900 vector by using T4 ligase to obtain the plant expression vector pHUN 400-ABEHPT. Then, the Ubiqitin promoter and the ABEHPT sequence on the vector are cut off by using HindIII/SacI enzyme cutting sites and are connected into a plant expression vector pNNC900 vector without a screening marker gene HPT. The vector is derived from pCAMBIA1300, the basic skeleton of the pCAMBIA1300 vector is reserved, but the vector does not contain a hygromycin gene HPT expression frame of a 35S promoter, a hygromycin gene HPT and a 35S terminator, and finally the plant expression vector pHUC400-ABEHPT is obtained. Synthesizing a sgRNA expression frame with HindIII enzyme cutting sites at two ends, and utilizing HindIII enzyme cutting to connect the sgRNA expression frame into a pHUC400-ABEHPT vector to finally obtain a plant expression vector pHUC411-ABEHPTsg2.0 with both an ABEHPT co-transcription unit and a sgRNA expression frame, wherein the nucleotide sequence of the plant expression vector is shown in SEQ ID NO. 5. .
Preferably, the application comprises constructing the corresponding gene targeting vector according to the actual needs of the experiment.
A method for introducing a targeting vector into rice cells, comprising the steps of:
(1) removing the hull of the rice seed, sterilizing, separating the embryo, and placing on a callus induction culture medium to generate secondary callus;
(2) transferring the secondary callus to a new callus induction culture medium for pre-culture;
(3) contacting the callus obtained in the step (2) with agrobacterium targeting vector for 15 minutes;
(4) transferring the callus tissue of the step (3) to a culture dish on which three pieces of sterile filter paper (added with 2.5-3.5mL of agrobacterium suspension culture medium) are placed, and culturing for 48 hours at 21-23 ℃;
(5) placing the callus of the step (4) on a pre-screening culture medium for culturing for 5-7 days;
(6) transferring the callus tissue of the step (5) to a screening culture medium to obtain resistant callus tissue;
(7) transferring the resistant callus to a differentiation regeneration culture medium to differentiate into seedlings; and
(8) and (4) transferring the seedling in the step (7) to a rooting culture medium for rooting.
Wherein the seed in step (1) is a mature seed; the induction culture medium in the steps (1) and (2) is the induction culture medium listed in the description table 1; the agrobacterium is contacted in the step (3) by soaking the callus in the agrobacterium suspension; the agrobacterium suspension culture medium in the step (4) is a suspension culture medium listed in the description table 1; the pre-screening medium in the step (5) is a pre-screening medium listed in the description table 1; the screening medium in the step (6) is a screening medium listed in the description table 1; the differentiation regeneration culture medium in the step (7) is a differentiation regeneration culture medium listed in the description table 1; the rooting medium in the step (8) is the rooting medium listed in the description table 1.
In a preferred embodiment, wherein the rice is japonica rice, more preferably, the rice is japonica Nipponbare.
Table 1 exemplary formulations of the culture media
Figure BDA0002249582260000061
The "optimized N6 majors" mentioned in the table means that [ NO ] in the N6 majors3-]/[NH4+]=40mM/10mM。
Technical effects
The encoding gene HPT of the hygromycin-resistant protein and the ABE editor gene mediated by the SpCas9 protein are placed in the same expression frame, and after an expression vector containing the expression frame is introduced into a plant cell, the encoding gene HPT and the ABE editor mediated by the SpCas9 protein are transcribed into RNA and translated into protein simultaneously, and the protein amounts of the encoding gene HPT and the ABE editor are approximately the same. And the hygromycin protein and the SpCas9 protein-mediated ABE editor are separated and function respectively through the self-cleavage effect of T2A.
During the introduction process, by using hygromycin as a screening agent, plant cells with high hygromycin expression can grow rapidly, and the SpCas9 protein-mediated ABE editor can also be expressed in high quantity, so that more efficient target editing can be generated.
Drawings
FIG. 1 is a schematic diagram of pHUC411-ABEHPTsg2.0 vector plasmid.
Detailed Description
Embodiments of the present invention are described below with reference to the drawings. It should be noted that the following embodiments are only used for illustrating exemplary implementations of the present invention, and do not limit the present invention in any way. Certain equivalent modifications and obvious improvements to this invention may be made by those skilled in the art.
The operations in the following detailed description are performed by conventional operations commonly used in the art, unless otherwise specifically indicated. The skilled person can readily derive from the prior art teachings regarding such routine procedures, for example, reference may be made to the textbooks Sambrook and David Russell, Molecular Cloning: A Laboratory Manual,3rd ed., Vols1, 2; charles neural Stewart, Alisher Touraev, Vitaly Citovsky and Tzvi Tzfira, Plant Transformation Technologies, and the like. The raw materials, reagents, materials and the like used in the following examples are all commercially available products unless otherwise specified.
Example 1 pHUC411-ABEHPTsg2.0 vector construction
The sequence of the co-transcription unit ABEHPT is shown as SEQ ID NO. 1. The gene sequence is sent to Suzhou Jinwei Zhi Biotechnology limited company for synthesis, then is connected to a PUC57-AMP vector, and both ends of the gene sequence are provided with NotI/SacI enzyme cutting sites to form a PUC57-AMP-ABEHPT vector which is loaded into an escherichia coli XL-blue strain.
Extracting plasmids from the Axygen plasmid extraction kit, carrying out enzyme digestion by NotI/SacI, and recovering an ABEHPT fragment. The plant expression vector pHUN900 vector (publicly used vector) is digested with NotI/SacI and recovered, and since NotI/SacI cleavage sites are added at both ends of the synthesized ABEHPT sequence, ABEHPT can be ligated to the pHUN900 vector using T4 ligase to obtain the plant expression vector pHUN 400-ABEHPT. Then, a Ubiqitin promoter and an ABEHPT sequence on the vector are cut off by using HindIII/SacI enzyme cutting sites and are connected into a plant expression vector pNNC900 vector which does not contain a screening marker gene HPT, so that a plant expression vector pHUC400-ABEHPT is obtained.
An artificially synthesized sgRNA expression cassette comprising: a rice OsU3 promoter, a spectinomycin resistance gene SpR, a sgRNA framework sequence and a Poly-T terminator. The spectinomycin resistance gene SpR contains BsaI endonuclease at both ends. The gene sequence is synthesized by Suzhou Jinwei Zhi Biotechnology Co., Ltd, and then is connected to a PUC57-AMP vector, two ends of which are provided with HindIII enzyme cutting sites to form a PUC57-AMP-sgRNA vector, and the vector is loaded into an escherichia coli XL-blue strain.
Extracting plasmids from an Axygen plasmid extraction kit, carrying out enzyme digestion by HindIII, recovering sgRNA expression frame fragments, simultaneously carrying out enzyme digestion on a plant expression vector pHUC400-ABEHPT vector by HindIII and recovering, and connecting the sgRNA expression frame fragments to the pHUC400-ABEHPT vector by using T4 ligase to obtain a plant expression vector pHUC411-ABEHPTsg2.0, wherein a vector diagram is shown in figure 1.
Example 2 base editing target Gene vector construction
Selection of the nucleotide sequence in the Rice Pi-d3 Gene (Os06g0330100)CCCGTCTTGGGATCTAGGCAGAC (the underlined part is the PAM sequence reverse complement of the 5 'NGG-3' structure) as the targeting site. Synthesizing a forward oligonucleotide chain (Pi-d 3P 1) and a complementary reverse oligonucleotide chain (Pi-d 3P 2) according to the selected target site,
the specific sequence is as follows:
Pi-d3 P1:GGCAGTCTGCCTAGATCCCAAGAC
Pi-d3 P2:AAACGTCTTGGGATCTAGGCAGAC
wherein the part not underlined is the sequence or the complementary sequence of the target site from which NGG has been removed, and the underlined is the cohesive end for ligation to the vector.
After annealing, both strands of Pi-d 3P 1 and Pi-d 3P 2 were annealed to form duplex DNA with sticky ends as an insert for constructing a recombinant vector.
The pHUC411-ABEHPTsg2.0 vector was digested with BsaI endonuclease (NEB) at 37 ℃ for 2 hours, and the digestion system was inactivated at 65 ℃ for 10 minutes, to serve as a backbone fragment for constructing a recombinant vector.
The recombinant vector backbone fragment and the insert fragment were ligated with T4 ligase (NEB) and transformed into E.coli. Positive transformants were obtained by selecting plaques with kanamycin resistance and no spectinomycin resistance. After sequencing verification, positive plasmids are extracted to form a recombinant vector plasmid for targeting rice Pi-d3 gene CRISPR/Cas9, and the recombinant vector plasmid is named as pHUC411-ABEHPT-Pi-d 3.
The plant expression vector pHUC411-ABEHPT-Pi-d3 is transferred into an Agrobacterium tumefaciens (Agrobacterium tumefaciens) EHA105 strain (stored by the Rice research institute of agricultural sciences, Anhui province) by a freeze-thaw method for genetic transformation.
Similarly, a control expression vector pHUC411-ABE-Pi-d3 was constructed in a similar manner, using the same targeting site as pHUC411-ABEHPT-Pi-d 3. The pHUC411-ABE vector and the pHUC411-ABEHPT-sg2.0 have the same framework, except that nSpCas9 in the pHUC411-ABE vector and an ABE base editor are fused to express protein, a promoter is an Ubiqutin promoter, and a terminator is a 35S terminator; the promoter of the encoding gene HPT of the hygromycin-resistant protein is enhanced 35S promoter, and the terminator is 35S terminator. Therefore, the nspscas 9 and the ABE base editor fusion expression protein, the encoding gene HPT of the hygromycin-resistant protein, are located in two expression cassettes. The expression cassette of pHUC411-ABE vector and pHUC411-ABEHPTsg2.0 sgRNA are consistent. The control vector was transformed into Agrobacterium tumefaciens EHA105 strain for genetic transformation.
Example 3 genetic transformation of Rice with the pHUC411-ABEHPT-Pi-d3 and pHUC411-ABE-Pi-d3 targeting vectors and mutant acquisition, the subsequent steps were performed for both targeting vectors separately and will not be repeated.
1. Induction and preculture of mature embryo calli
Removing shells of mature seeds of Nipponbare, selecting seeds with normal appearance, cleanness and no mildew stains, shaking for 90sec with 70% alcohol, and pouring off the alcohol; then 50% sodium hypochlorite solution containing Tween20 (the effective chlorine concentration of the stock solution is more than 4%, 1 drop of Tween20 is added per 100 ml) is used for cleaning the seeds, and the seeds are shaken on a shaking table for 45min (180 r/min). Pouring out sodium hypochlorite, washing with sterile water for 5-10 times until no smell of sodium hypochlorite exists, adding sterile water, and soaking at 30 deg.C overnight. Embryos were separated along the aleurone layer with scalpel blade, scutellum up placed on induction medium (see table 1 for ingredients), 12 grains/dish, dark cultured at 30 ℃ to induce callus.
Spherical, rough and light yellow secondary callus appears after two weeks, and the preculture operation can be carried out, that is, the secondary callus is transferred to a new callus induction culture medium and precultured for 5 days at 30 ℃ in dark. After the pre-culture is finished, collecting the small particles with good state and vigorous division into a 50mL sterile centrifuge tube by using a spoon for agrobacterium infection.
2. Culture and suspension preparation of Agrobacterium strains
Agrobacterium strain EHA105 containing the pHUC411-ABEHPT-Pi-d3 and pHUC411-ABE-Pi-d3 vectors was streaked on LB plate containing 50mg/L kanamycin (see Table 1 for components), dark-cultured at 28 ℃ for 24 hours, and then the activated Agrobacterium was inoculated on a fresh LB plate containing 50mg/L kanamycin using a sterile inoculating loop, followed by secondary activation and dark-culture at 28 ℃ overnight. 20-30mL of Agrobacterium suspension medium (see Table 1 for ingredients) was added to a 50mL sterile centrifuge tube, the Agrobacterium activated 2 times was scraped off with an inoculating loop, OD660 was adjusted to about 0.10-0.25, and the tube was allowed to stand at room temperature for more than 30 min.
3. Infection and Co-cultivation
To the prepared callus (see step 1), the Agrobacterium suspension was added and soaked for 15min with occasional gentle shaking. After soaking, pouring off the liquid (dripping the liquid as far as possible), sucking the redundant agrobacterium liquid on the surface of the callus by using sterile filter paper, and drying the callus by using sterile wind in a super clean bench. Three pieces of sterile filter paper are placed on a disposable sterile culture dish pad with the diameter of 100 multiplied by 25mm, 2.5mL of agrobacterium suspension culture medium is added, the callus after being sucked dry is evenly dispersed on the filter paper, and the mixture is cultured in the dark for 48h at the temperature of 23 ℃.
4. Pre-screening and screening cultures
After the completion of co-culture, the co-cultured calli were uniformly spread on a pre-screening medium (see Table 1 for components), and cultured in the dark at 30 ℃ for 5 days. After the pre-screening culture is finished, transferring the callus onto a screening culture medium (the components are shown in table 1), inoculating 25 calli to each culture dish, culturing in the dark at the temperature of 30 ℃, and after 2-3 weeks, obviously growing the resistant calli and carrying out differentiation and regeneration operation.
5. Differentiation and regeneration
2-3 fresh small particles with good growth state were selected from each independent transformant and transferred to differentiation regeneration medium (see table 1 for composition). Each culture dish was inoculated with 5 independent transformants. Culturing at 28 ℃ under illumination, wherein the illumination period is 16h, the illumination period is 8h, and the light intensity is 3000-6000 lx.
6. Rooting and transplanting
When the bud differentiated from the resistant callus grows to about 2cm, only one well-grown seedling is taken from each independent transformant and transferred to a rooting medium (the components are shown in the table 1), the seedling is cultured by illumination at 28 ℃, the illumination period is 16h, the illumination period is 8h, the darkness is 8h, and the light intensity is 3000-. After two weeks, seedlings with developed root systems are selected, washed with water to remove the culture medium, and transplanted into soil.
7. Molecular identification
Before transplanting, a rice leaf sample is taken, and DNA is subjected to small extraction by a CTAB method. The resulting genomic DNA samples were used for PCR analysis. PCR primers 5'-CACCTTTGCGTATCTGCTCCAT-3' and 5'-CTTCAGGTTTGGACAGAGCAGG-3' were designed to amplify a sequence of approximately 580bp near the Pi-d3 target. The PCR components were first kept at 95 ℃ for 5 minutes and then subjected to 32 cycles: 94 ℃ for 45 seconds, 56 ℃ for 45 seconds, 72 ℃ for 45 seconds, and finally extension at 72 ℃ for 10 minutes. The PCR product was sequenced. The results were aligned to the wild type sequence.
Of the plants obtained from pHUC411-ABEHPT-Pi-d3, 21 of the 40 plants tested appeared in the target sequence
Figure BDA0002249582260000111
The T at the 9 th position in the middle is mutated into C, the single base mutation efficiency reaches 52.5 percent, and other mutation modes are not found. Similarly, in the plants obtained from pHUC411-ABE-Pi-d3, 12 target sequences in 40 tested plants showed base variation, and the mutation rate was only 30%. But T9The clean mutant plants like the mutant C have only 4 plants, the mutation rate is only 10 percent, and the rest mutant forms are inserted or deleted unnecessary bases. Therefore, pHUC411-ABEHPTsg2.0 can obtain higher single base mutation rate.
Sequence listing
<110> institute of Paddy Rice of agricultural science institute of Anhui province
<120> gene for improving single-base editing efficiency of rice, method and application
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 6471
<212> DNA
<213> man made
<400> 1
atgagcgaag tggagttctc ccatgagtac tggatgaggc atgccctcac cctggccaag 60
agggcctggg atgagaggga agtcccagtg ggcgccgtgc tcgtgcacaa caacagggtg 120
attggcgaag gttggaatcg cccgattggc aggcacgatc caaccgccca cgcggaaatt 180
atggccctcc gccagggtgg cttagttatg caaaactacc gcctcatcga tgcgacactg 240
tacgtgaccc tcgagccgtg cgtcatgtgt gcgggcgcca tgatccatag ccgcatcggg 300
agggtggtct ttggcgccag ggatgccaag acaggcgctg ctggcagcct catggacgtg 360
ctccatcatc cggggatgaa ccatagggtg gagatcaccg agggcatcct cgcggatgag 420
tgtgcggccc tcctcagcga tttcttcagg atgcgtcgtc aagagatcaa ggcccaaaag 480
aaggcgcagt cctccacaga tagcgggggc tcttctggtg gttcctccgg cagcgagaca 540
ccaggcacca gcgagtccgc gacaccagaa agcagcggtg gtagcagcgg tggtagctcc 600
gaggtggaat ttagccacga gtattggatg aggcacgcgc tcacactcgc caagagggcg 660
agggacgaga gggaagtgcc agtcggcgcg gtgctggtgc tgaacaaccg cgtgatcggc 720
gagggttgga atagggccat tggcctccac gacccgacag cccatgccga gattatggcc 780
ctcaggcagg gtggtctggt gatgcagaac tatcgcctca tcgacgccac cctctacgtc 840
acctttgagc catgcgtgat gtgcgccggc gccatgatcc actccaggat cggccgcgtc 900
gtcttcggcg tgaggaacgc caaaacaggc gccgcgggca gcctcatgga tgtgctccac 960
tacccgggga tgaatcacag ggtggaaatc accgaaggca ttctcgccga tgagtgcgct 1020
gctctgctgt gctacttctt taggatgccg aggcaggtgt ttaacgccca gaagaaggcg 1080
caatcctcca ccgatagcgg tggttcctcc gggggctcct ccggctccga aactccgggc 1140
acaagcgaaa gcgccacacc ggaatcctcc ggcgggtcct ccggtggttc cgacaagaag 1200
tactccatcg gcctcgctat cggcaccaat tctgttggct gggccgtgat caccgacgag 1260
tacaaggtgc cgtccaagaa gttcaaggtc ctcggcaaca ccgaccgcca ctccatcaag 1320
aagaatctca tcggcgccct gctgttcgac tctggcgaga cagccgaggc tacaaggctc 1380
aagaggaccg ctagacgcag gtacaccagg cgcaagaacc gcatctgcta cctccaagag 1440
atcttctcca acgagatggc caaggtggac gacagcttct tccacaggct cgaggagagc 1500
ttcctcgtcg aggaggacaa gaagcacgag cgccatccga tcttcggcaa catcgtggat 1560
gaggtggcct accacgagaa gtacccgacc atctaccacc tccgcaagaa gctcgtcgac 1620
tccaccgata aggccgacct caggctcatc tacctcgccc tcgcccacat gatcaagttc 1680
aggggccact tcctcatcga gggcgacctc aacccggaca actccgatgt ggacaagctg 1740
ttcatccagc tcgtgcagac ctacaaccag ctgttcgagg agaacccgat caacgcctct 1800
ggcgttgacg ccaaggctat tctctctgcc aggctctcta agtcccgcag gctcgagaat 1860
ctgatcgccc aacttccggg cgagaagaag aatggcctct tcggcaacct gatcgccctc 1920
tctcttggcc tcaccccgaa cttcaagtcc aacttcgacc tcgccgagga cgccaagctc 1980
cagctttcca aggacaccta cgacgacgac ctcgacaatc tcctcgccca gattggcgat 2040
cagtacgccg atctgttcct cgccgccaag aatctctccg acgccatcct cctcagcgac 2100
atcctcaggg tgaacaccga gatcaccaag gccccactct ccgcctccat gatcaagagg 2160
tacgacgagc accaccagga cctcacactc ctcaaggccc tcgtgagaca gcagctccca 2220
gagaagtaca aggagatctt cttcgaccag tccaagaacg gctacgccgg ctacatcgat 2280
ggcggcgctt ctcaagagga gttctacaag ttcatcaagc cgatcctcga gaagatggac 2340
ggcaccgagg agctgctcgt gaagctcaat agagaggacc tcctccgcaa gcagcgcacc 2400
ttcgataatg gctccatccc gcaccagatc cacctcggcg agcttcatgc tatcctccgc 2460
aggcaagagg acttctaccc gttcctcaag gacaaccgcg agaagattga gaagatcctc 2520
accttccgca tcccgtacta cgtgggcccg ctcgccaggg gcaactccag gttcgcctgg 2580
atgaccagaa agtccgagga gacaatcacc ccctggaact tcgaggaggt ggtggataag 2640
ggcgcctctg cccagtcttt catcgagcgc atgaccaact tcgacaagaa cctcccgaac 2700
gagaaggtgc tcccgaagca ctcactcctc tacgagtact tcaccgtgta caacgagctg 2760
accaaggtga agtacgtgac cgaggggatg aggaagccag ctttccttag cggcgagcaa 2820
aagaaggcca tcgtcgacct gctgttcaag accaaccgca aggtgaccgt gaagcagctc 2880
aaggaggact acttcaagaa aatcgagtgc ttcgactccg tcgagatctc cggcgtcgag 2940
gataggttca atgcctccct cgggacctac cacgacctcc tcaagattat caaggacaag 3000
gacttcctcg acaacgagga gaacgaggac atcctcgagg acatcgtgct caccctcacc 3060
ctcttcgagg accgcgagat gatcgaggag cgcctcaaga catacgccca cctcttcgac 3120
gacaaggtga tgaagcagct gaagcgcagg cgctataccg gctggggcag gctctctagg 3180
aagctcatca acggcatccg cgacaagcag tccggcaaga cgatcctcga cttcctcaag 3240
tccgacggct tcgccaaccg caacttcatg cagctcatcc acgacgactc cctcaccttc 3300
aaggaggaca tccaaaaggc ccaggtgtcc ggccaaggcg attccctcca tgaacatatc 3360
gccaatctcg ccggctcccc ggctatcaag aagggcattc tccagaccgt gaaggtggtg 3420
gacgagctgg tgaaggtgat gggcaggcac aagccagaga acatcgtgat cgagatggcc 3480
cgcgagaacc agaccacaca gaagggccaa aagaactccc gcgagcgcat gaagaggatc 3540
gaggagggca ttaaggagct gggctcccag atcctcaagg agcacccagt cgagaacacc 3600
cagctccaga acgagaagct ctacctctac tacctccaga acggccgcga catgtacgtg 3660
gaccaagagc tggacatcaa ccgcctctcc gactacgacg tggaccatat tgtgccgcag 3720
tccttcctga aggacgactc catcgacaac aaggtgctca cccgctccga caagaacagg 3780
ggcaagtccg ataacgtgcc gtccgaagag gtcgtcaaga agatgaagaa ctactggcgc 3840
cagctcctca acgccaagct catcacccag aggaagttcg acaacctcac caaggccgag 3900
agaggcggcc tttccgagct tgataaggcc ggcttcatca agcgccagct cgtcgagaca 3960
cgccagatca caaagcacgt ggcccagatc ctcgactccc gcatgaacac caagtacgac 4020
gagaacgaca agctcatccg cgaggtgaag gtcatcaccc tcaagtccaa gctcgtgtcc 4080
gacttccgca aggacttcca gttctacaag gtgcgcgaga tcaacaacta ccaccacgcc 4140
cacgacgcct acctcaatgc cgtggtgggc acagccctca tcaagaagta cccaaagctc 4200
gagtccgagt tcgtgtacgg cgactacaag gtgtacgacg tgcgcaagat gatcgccaag 4260
tccgagcaag agatcggcaa ggcgaccgcc aagtacttct tctactccaa catcatgaat 4320
ttcttcaaga ccgagatcac gctcgccaac ggcgagatta ggaagaggcc gctcatcgag 4380
acaaacggcg agacaggcga gatcgtgtgg gacaagggca gggatttcgc cacagtgcgc 4440
aaggtgctct ccatgccgca agtgaacatc gtgaagaaga ccgaggttca gaccggcggc 4500
ttctccaagg agtccatcct cccaaagcgc aactccgaca agctgatcgc ccgcaagaag 4560
gactgggacc cgaagaagta tggcggcttc gattctccga ccgtggccta ctctgtgctc 4620
gtggttgcca aggtcgagaa gggcaagagc aagaagctca agtccgtcaa ggagctgctg 4680
ggcatcacga tcatggagcg cagcagcttc gagaagaacc caatcgactt cctcgaggcc 4740
aagggctaca aggaggtgaa gaaggacctc atcatcaagc tcccgaagta cagcctcttc 4800
gagcttgaga acggccgcaa gagaatgctc gcctctgctg gcgagcttca gaagggcaac 4860
gagcttgctc tcccgtccaa gtacgtgaac ttcctctacc tcgcctccca ctacgagaag 4920
ctcaagggct ccccagagga caacgagcaa aagcagctgt tcgtcgagca gcacaagcac 4980
tacctcgacg agatcatcga gcagatctcc gagttctcca agcgcgtgat cctcgccgat 5040
gccaacctcg ataaggtgct cagcgcctac aacaagcacc gcgataagcc aattcgcgag 5100
caggccgaga acatcatcca cctcttcacc ctcaccaacc tcggcgctcc agccgccttc 5160
aagtacttcg acaccaccat cgaccgcaag cgctacacct ctaccaagga ggttctcgac 5220
gccaccctca tccaccagtc tatcacaggc ctctacgaga cacgcatcga cctctcacaa 5280
ctcggcggcg attccggcgg cagcccaaag aagaagcgga aggtgtctgg aggttctcct 5340
aagaaaaaga gaaaagtgtc cggcggctcc ccgaagaaga agcgcaaggt ggagggccgc 5400
ggctctttac tcacttgtgg cgacgtggag gaaaatccgg gcccgatgaa aaagcctgaa 5460
ctcaccgcga cgtctgtcga gaagtttctg atcgaaaagt tcgacagcgt ctccgacctg 5520
atgcagctct cggagggcga agaatctcgt gctttcagct tcgatgtagg agggcgtgga 5580
tatgtcctgc gggtaaatag ctgcgccgat ggtttctaca aagatcgtta tgtttatcgg 5640
cactttgcat cggccgcgct cccgattccg gaagtgcttg acattgggga gtttagcgag 5700
agcctgacct attgcatctc ccgccgtgca cagggtgtca cgttgcaaga cctgcctgaa 5760
accgaactgc ccgctgttct acaaccggtc gcggaggcta tggatgcgat cgctgcggcc 5820
gatcttagcc agacgagcgg gttcggccca ttcggaccgc aaggaatcgg tcaatacact 5880
acatggcgtg atttcatatg cgcgattgct gatccccatg tgtatcactg gcaaactgtg 5940
atggacgaca ccgtcagtgc gtccgtcgcg caggctctcg atgagctgat gctttgggcc 6000
gaggactgcc ccgaagtccg gcacctcgtg cacgcggatt tcggctccaa caatgtcctg 6060
acggacaatg gccgcataac agcggtcatt gactggagcg aggcgatgtt cggggattcc 6120
caatacgagg tcgccaacat cttcttctgg aggccgtggt tggcttgtat ggagcagcag 6180
acgcgctact tcgagcggag gcatccggag cttgcaggat cgccacgact ccgggcgtat 6240
atgctccgca ttggtcttga ccaactctat cagagcttgg ttgacggcaa tttcgatgat 6300
gcagcttggg cgcagggtcg atgcgacgca atcgtccgat ccggagccgg gactgtcggg 6360
cgtacacaaa tcgcccgcag aagcgcggcc gtctggaccg atggctgtgt agaagtactc 6420
gccgatagtg gaaaccgacg ccccagcact cgtccgaggg caaagaaata g 6471
<210> 2
<211> 1696
<212> DNA
<213> man made 2
<400> 2
aagggatctt taaacatacg aacagatcac ttaaagttct tctgaagcaa cttaaagtta 60
tcaggcatgc atggatcttg gaggaatcag atgtgcagtc agggaccata gcacaagaca 120
ggcgtcttct actggtgcta ccagcaaatg ctggaagccg ggaacactgg gtacgttgga 180
aaccacgtga tgtgaagaag taagataaac tgtaggagaa aagcatttcg tagtgggcca 240
tgaagccttt caggacatgt attgcagtat gggccggccc attacgcaat tggacgacaa 300
caaagactag tattagtacc acctcggcta tccacataga tcaaagctga tttaaaagag 360
ttgtgcagat gatccgtggc aagagaccaa cccagtggac ataagcctgt tcggttcgta 420
agctgtaatg caagtagcgt atgcgctcac gcaactggtc cagaaccttg accgaacgca 480
gcggtggtaa cggcgcagtg gcggttttca tggcttgtta tgactgtttt tttggggtac 540
agtctatgcc tcgggcatcc aagcagcaag cgcgttacgc cgtgggtcga tgtttgatgt 600
tatggagcag caacgatgtt acgcagcagg gcagtcgccc taaaacaaag ttaaacatca 660
tgggggaagc ggtgatcgcc gaagtatcga ctcaactatc agaggtagtt ggcgtcatcg 720
agcgccatct cgaaccgacg ttgctggccg tacatttgta cggctccgca gtggatggcg 780
gcctgaagcc acacagtgat attgatttgc tggttacggt gaccgtaagg cttgatgaaa 840
caacgcggcg agctttgatc aacgaccttt tggaaacttc ggcttcccct ggagagagcg 900
agattctccg cgctgtagaa gtcaccattg ttgtgcacga cgacatcatt ccgtggcgtt 960
atccagctaa gcgcgaactg caatttggag aatggcagcg caatgacatt cttgcaggta 1020
tcttcgagcc agccacgatc gacattgatc tggctatctt gctgacaaaa gcaagagaac 1080
atagcgttgc cttggtaggt ccagcggcgg aggaactctt tgatccggtt cctgaacagg 1140
atctatttga ggcgctaaat gaaaccttaa cgctatggaa ctcgccgccc gactgggctg 1200
gcgatgagcg aaatgtagtg cttacgttgt cccgcatttg gtacagcgca gtaaccggca 1260
aaatcgcgcc gaaggatgtc gctgccgact gggcaatgga gcgcctgccg gcccagtatc 1320
agcccgtcat acttgaagct agacaggctt atcttggaca agaagaagat cgcttggcct 1380
cgcgcgcaga tcagttggaa gaatttgtcc actacgtgaa aggcgagatc accaaggtag 1440
tcggcaaata atgtctagct agaaattcgt tcaagccgac gccgcttcgc ggcgcggctt 1500
aactcaagcg ttagatgcac taagcacata attgctcaca gccaaactat caggtcaagt 1560
ctgcttttat tatttttaag cgtgcataat aagccggtct cagtttcaga gctatgctgg 1620
aaacagcata gcaagttgaa ataaggctag tccgttatca acttgaaaaa gtggcaccga 1680
gtcggtgctt tttttt 1696
<210> 3
<211> 24
<212> DNA
<213> man made 3
<400> 3
ggcagtctgc ctagatccca agac 24
<210> 4
<211> 24
<212> DNA
<213> man made 4
<400> 4
aaacgtcttg ggatctaggc agac 24
<210> 5
<211> 19401
<212> DNA
<213> man made 5
<400> 5
taaacgctct tttctcttag gtttacccgc caatatatcc tgtcaaacac tgatagttta 60
aactgaaggc gggaaacgac aatctgatcc aagctcaagc tgctctagca ttcgccattc 120
aggctgcgca actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg 180
gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca 240
cgacgttgta aaacgacggc cagtgccaag cttaagggat ctttaaacat acgaacagat 300
cacttaaagt tcttctgaag caacttaaag ttatcaggca tgcatggatc ttggaggaat 360
cagatgtgca gtcagggacc atagcacaag acaggcgtct tctactggtg ctaccagcaa 420
atgctggaag ccgggaacac tgggtacgtt ggaaaccacg tgatgtgaag aagtaagata 480
aactgtagga gaaaagcatt tcgtagtggg ccatgaagcc tttcaggaca tgtattgcag 540
tatgggccgg cccattacgc aattggacga caacaaagac tagtattagt accacctcgg 600
ctatccacat agatcaaagc tgatttaaaa gagttgtgca gatgatccgt ggcatgagac 660
caacccagtg gacataagcc tgttcggttc gtaagctgta atgcaagtag cgtatgcgct 720
cacgcaactg gtccagaacc ttgaccgaac gcagcggtgg taacggcgca gtggcggttt 780
tcatggcttg ttatgactgt ttttttgggg tacagtctat gcctcgggca tccaagcagc 840
aagcgcgtta cgccgtgggt cgatgtttga tgttatggag cagcaacgat gttacgcagc 900
agggcagtcg ccctaaaaca aagttaaaca tcatggggga agcggtgatc gccgaagtat 960
cgactcaact atcagaggta gttggcgtca tcgagcgcca tctcgaaccg acgttgctgg 1020
ccgtacattt gtacggctcc gcagtggatg gcggcctgaa gccacacagt gatattgatt 1080
tgctggttac ggtgaccgta aggcttgatg aaacaacgcg gcgagctttg atcaacgacc 1140
ttttggaaac ttcggcttcc cctggagaga gcgagattct ccgcgctgta gaagtcacca 1200
ttgttgtgca cgacgacatc attccgtggc gttatccagc taagcgcgaa ctgcaatttg 1260
gagaatggca gcgcaatgac attcttgcag gtatcttcga gccagccacg atcgacattg 1320
atctggctat cttgctgaca aaagcaagag aacatagcgt tgccttggta ggtccagcgg 1380
cggaggaact ctttgatccg gttcctgaac aggatctatt tgaggcgcta aatgaaacct 1440
taacgctatg gaactcgccg cccgactggg ctggcgatga gcgaaatgta gtgcttacgt 1500
tgtcccgcat ttggtacagc gcagtaaccg gcaaaatcgc gccgaaggat gtcgctgccg 1560
actgggcaat ggagcgcctg ccggcccagt atcagcccgt catacttgaa gctagacagg 1620
cttatcttgg acaagaagaa gatcgcttgg cctcgcgcgc agatcagttg gaagaatttg 1680
tccactacgt gaaaggcgag atcaccaagg tagtcggcaa ataatgtcta gctagaaatt 1740
cgttcaagcc gacgccgctt cgcggcgcgg cttaactcaa gcgttagatg cactaagcac 1800
ataattgctc acagccaaac tatcaggtca agtctgcttt tattattttt aagcgtgcat 1860
aataagccgg tctcagtttc agagctatgc tggaaacagc atagcaagtt gaaataaggc 1920
tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg ctttttttta gtaaagcttg 1980
atatcgaatt cctgcagtgc agcgtgaccc ggtcgtgccc ctctctagag ataatgagca 2040
ttgcatgtct aagttataaa aaattaccac atattttttt tgtcacactt gtttgaagtg 2100
cagtttatct atctttatac atatatttaa actttactct acgaataata taatctatag 2160
tactacaata atatcagtgt tttagagaat catataaatg aacagttaga catggtctaa 2220
aggacaattg agtattttga caacaggact ctacagtttt atctttttag tgtgcatgtg 2280
ttctcctttt tttttgcaaa tagcttcacc tatataatac ttcatccatt ttattagtac 2340
atccatttag ggtttagggt taatggtttt tatagactaa tttttttagt acatctattt 2400
tattctattt tagcctctaa attaagaaaa ctaaaactct attttagttt ttttatttaa 2460
taatttagat ataaaataga ataaaataaa gtgactaaaa attaaacaaa taccctttaa 2520
gaaattaaaa aaactaagga aacatttttc ttgtttcgag tagataatgc cagcctgtta 2580
aacgccgtcg acgagtctaa cggacaccaa ccagcgaacc agcagcgtcg cgtcgggcca 2640
agcgaagcag acggcacggc atctctgtcg ctgcctctgg acccctctcg agagttccgc 2700
tccaccgttg gacttgctcc gctgtcggca tccagaaatg cgtggcggag cggcagacgt 2760
gagccggcac ggcaggcggc ctcctcctcc tctcacggca cggcagctac gggggattcc 2820
tttcccaccg ctccttcgct ttcccttcct cgcccgccgt aataaataga caccccctcc 2880
acaccctctt tccccaacct cgtgttgttc ggagcgcaca cacacacaac cagatctccc 2940
ccaaatccac ccgtcggcac ctccgcttca aggtacgccg ctcgtcctcc cccccccccc 3000
ctctctacct tctctagatc ggcgttccgg tccatggtta gggcccggta gttctacttc 3060
tgttcatgtt tgtgttagat ccgtgtttgt gttagatccg tgctgctagc gttcgtacac 3120
ggatgcgacc tgtacgtcag acacgttctg attgctaact tgccagtgtt tctctttggg 3180
gaatcctggg atggctctag ccgttccgca gacgggatcg atttcatgat tttttttgtt 3240
tcgttgcata gggtttggtt tgcccttttc ctttatttca atatatgccg tgcacttgtt 3300
tgtcgggtca tcttttcatg cttttttttg tcttggttgt gatgatgtgg tctggttggg 3360
cggtcgttct agatcggagt agaattctgt ttcaaactac ctggtggatt tattaatttt 3420
ggatctgtat gtgtgtgcca tacatattca tagttacgaa ttgaagatga tggatggaaa 3480
tatcgatcta ggataggtat acatgttgat gcgggtttta ctgatgcata tacagagatg 3540
ctttttgttc gcttggttgt gatgatgtgg tgtggttggg cggtcgttca ttcgttctag 3600
atcggagtag aatactgttt caaactacct ggtgtattta ttaattttgg aactgtatgt 3660
gtgtgtcata catcttcata gttacgagtt taagatggat ggaaatatcg atctaggata 3720
ggtatacatg ttgatgtggg ttttactgat gcatatacat gatggcatat gcagcatcta 3780
ttcatatgct ctaaccttga gtacctatct attataataa acaagtatgt tttataatta 3840
ttttgatctt gatatacttg gatgatggca tatgcagcag ctatatgtgg atttttttag 3900
ccctgccttc atacgctatt tatttgcttg gtactgtttc ttttgtcgat gctcaccctg 3960
ttgtttggtg ttacttctgc agcccggggg atccccaata cttgtatggc cgcggccgca 4020
tgagcgaagt ggagttctcc catgagtact ggatgaggca tgccctcacc ctggccaaga 4080
gggcctggga tgagagggaa gtcccagtgg gcgccgtgct cgtgcacaac aacagggtga 4140
ttggcgaagg ttggaatcgc ccgattggca ggcacgatcc aaccgcccac gcggaaatta 4200
tggccctccg ccagggtggc ttagttatgc aaaactaccg cctcatcgat gcgacactgt 4260
acgtgaccct cgagccgtgc gtcatgtgtg cgggcgccat gatccatagc cgcatcggga 4320
gggtggtctt tggcgccagg gatgccaaga caggcgctgc tggcagcctc atggacgtgc 4380
tccatcatcc ggggatgaac catagggtgg agatcaccga gggcatcctc gcggatgagt 4440
gtgcggccct cctcagcgat ttcttcagga tgcgtcgtca agagatcaag gcccaaaaga 4500
aggcgcagtc ctccacagat agcgggggct cttctggtgg ttcctccggc agcgagacac 4560
caggcaccag cgagtccgcg acaccagaaa gcagcggtgg tagcagcggt ggtagctccg 4620
aggtggaatt tagccacgag tattggatga ggcacgcgct cacactcgcc aagagggcga 4680
gggacgagag ggaagtgcca gtcggcgcgg tgctggtgct gaacaaccgc gtgatcggcg 4740
agggttggaa tagggccatt ggcctccacg acccgacagc ccatgccgag attatggccc 4800
tcaggcaggg tggtctggtg atgcagaact atcgcctcat cgacgccacc ctctacgtca 4860
cctttgagcc atgcgtgatg tgcgccggcg ccatgatcca ctccaggatc ggccgcgtcg 4920
tcttcggcgt gaggaacgcc aaaacaggcg ccgcgggcag cctcatggat gtgctccact 4980
acccggggat gaatcacagg gtggaaatca ccgaaggcat tctcgccgat gagtgcgctg 5040
ctctgctgtg ctacttcttt aggatgccga ggcaggtgtt taacgcccag aagaaggcgc 5100
aatcctccac cgatagcggt ggttcctccg ggggctcctc cggctccgaa actccgggca 5160
caagcgaaag cgccacaccg gaatcctccg gcgggtcctc cggtggttcc gacaagaagt 5220
actccatcgg cctcgctatc ggcaccaatt ctgttggctg ggccgtgatc accgacgagt 5280
acaaggtgcc gtccaagaag ttcaaggtcc tcggcaacac cgaccgccac tccatcaaga 5340
agaatctcat cggcgccctg ctgttcgact ctggcgagac agccgaggct acaaggctca 5400
agaggaccgc tagacgcagg tacaccaggc gcaagaaccg catctgctac ctccaagaga 5460
tcttctccaa cgagatggcc aaggtggacg acagcttctt ccacaggctc gaggagagct 5520
tcctcgtcga ggaggacaag aagcacgagc gccatccgat cttcggcaac atcgtggatg 5580
aggtggccta ccacgagaag tacccgacca tctaccacct ccgcaagaag ctcgtcgact 5640
ccaccgataa ggccgacctc aggctcatct acctcgccct cgcccacatg atcaagttca 5700
ggggccactt cctcatcgag ggcgacctca acccggacaa ctccgatgtg gacaagctgt 5760
tcatccagct cgtgcagacc tacaaccagc tgttcgagga gaacccgatc aacgcctctg 5820
gcgttgacgc caaggctatt ctctctgcca ggctctctaa gtcccgcagg ctcgagaatc 5880
tgatcgccca acttccgggc gagaagaaga atggcctctt cggcaacctg atcgccctct 5940
ctcttggcct caccccgaac ttcaagtcca acttcgacct cgccgaggac gccaagctcc 6000
agctttccaa ggacacctac gacgacgacc tcgacaatct cctcgcccag attggcgatc 6060
agtacgccga tctgttcctc gccgccaaga atctctccga cgccatcctc ctcagcgaca 6120
tcctcagggt gaacaccgag atcaccaagg ccccactctc cgcctccatg atcaagaggt 6180
acgacgagca ccaccaggac ctcacactcc tcaaggccct cgtgagacag cagctcccag 6240
agaagtacaa ggagatcttc ttcgaccagt ccaagaacgg ctacgccggc tacatcgatg 6300
gcggcgcttc tcaagaggag ttctacaagt tcatcaagcc gatcctcgag aagatggacg 6360
gcaccgagga gctgctcgtg aagctcaata gagaggacct cctccgcaag cagcgcacct 6420
tcgataatgg ctccatcccg caccagatcc acctcggcga gcttcatgct atcctccgca 6480
ggcaagagga cttctacccg ttcctcaagg acaaccgcga gaagattgag aagatcctca 6540
ccttccgcat cccgtactac gtgggcccgc tcgccagggg caactccagg ttcgcctgga 6600
tgaccagaaa gtccgaggag acaatcaccc cctggaactt cgaggaggtg gtggataagg 6660
gcgcctctgc ccagtctttc atcgagcgca tgaccaactt cgacaagaac ctcccgaacg 6720
agaaggtgct cccgaagcac tcactcctct acgagtactt caccgtgtac aacgagctga 6780
ccaaggtgaa gtacgtgacc gaggggatga ggaagccagc tttccttagc ggcgagcaaa 6840
agaaggccat cgtcgacctg ctgttcaaga ccaaccgcaa ggtgaccgtg aagcagctca 6900
aggaggacta cttcaagaaa atcgagtgct tcgactccgt cgagatctcc ggcgtcgagg 6960
ataggttcaa tgcctccctc gggacctacc acgacctcct caagattatc aaggacaagg 7020
acttcctcga caacgaggag aacgaggaca tcctcgagga catcgtgctc accctcaccc 7080
tcttcgagga ccgcgagatg atcgaggagc gcctcaagac atacgcccac ctcttcgacg 7140
acaaggtgat gaagcagctg aagcgcaggc gctataccgg ctggggcagg ctctctagga 7200
agctcatcaa cggcatccgc gacaagcagt ccggcaagac gatcctcgac ttcctcaagt 7260
ccgacggctt cgccaaccgc aacttcatgc agctcatcca cgacgactcc ctcaccttca 7320
aggaggacat ccaaaaggcc caggtgtccg gccaaggcga ttccctccat gaacatatcg 7380
ccaatctcgc cggctccccg gctatcaaga agggcattct ccagaccgtg aaggtggtgg 7440
acgagctggt gaaggtgatg ggcaggcaca agccagagaa catcgtgatc gagatggccc 7500
gcgagaacca gaccacacag aagggccaaa agaactcccg cgagcgcatg aagaggatcg 7560
aggagggcat taaggagctg ggctcccaga tcctcaagga gcacccagtc gagaacaccc 7620
agctccagaa cgagaagctc tacctctact acctccagaa cggccgcgac atgtacgtgg 7680
accaagagct ggacatcaac cgcctctccg actacgacgt ggaccatatt gtgccgcagt 7740
ccttcctgaa ggacgactcc atcgacaaca aggtgctcac ccgctccgac aagaacaggg 7800
gcaagtccga taacgtgccg tccgaagagg tcgtcaagaa gatgaagaac tactggcgcc 7860
agctcctcaa cgccaagctc atcacccaga ggaagttcga caacctcacc aaggccgaga 7920
gaggcggcct ttccgagctt gataaggccg gcttcatcaa gcgccagctc gtcgagacac 7980
gccagatcac aaagcacgtg gcccagatcc tcgactcccg catgaacacc aagtacgacg 8040
agaacgacaa gctcatccgc gaggtgaagg tcatcaccct caagtccaag ctcgtgtccg 8100
acttccgcaa ggacttccag ttctacaagg tgcgcgagat caacaactac caccacgccc 8160
acgacgccta cctcaatgcc gtggtgggca cagccctcat caagaagtac ccaaagctcg 8220
agtccgagtt cgtgtacggc gactacaagg tgtacgacgt gcgcaagatg atcgccaagt 8280
ccgagcaaga gatcggcaag gcgaccgcca agtacttctt ctactccaac atcatgaatt 8340
tcttcaagac cgagatcacg ctcgccaacg gcgagattag gaagaggccg ctcatcgaga 8400
caaacggcga gacaggcgag atcgtgtggg acaagggcag ggatttcgcc acagtgcgca 8460
aggtgctctc catgccgcaa gtgaacatcg tgaagaagac cgaggttcag accggcggct 8520
tctccaagga gtccatcctc ccaaagcgca actccgacaa gctgatcgcc cgcaagaagg 8580
actgggaccc gaagaagtat ggcggcttcg attctccgac cgtggcctac tctgtgctcg 8640
tggttgccaa ggtcgagaag ggcaagagca agaagctcaa gtccgtcaag gagctgctgg 8700
gcatcacgat catggagcgc agcagcttcg agaagaaccc aatcgacttc ctcgaggcca 8760
agggctacaa ggaggtgaag aaggacctca tcatcaagct cccgaagtac agcctcttcg 8820
agcttgagaa cggccgcaag agaatgctcg cctctgctgg cgagcttcag aagggcaacg 8880
agcttgctct cccgtccaag tacgtgaact tcctctacct cgcctcccac tacgagaagc 8940
tcaagggctc cccagaggac aacgagcaaa agcagctgtt cgtcgagcag cacaagcact 9000
acctcgacga gatcatcgag cagatctccg agttctccaa gcgcgtgatc ctcgccgatg 9060
ccaacctcga taaggtgctc agcgcctaca acaagcaccg cgataagcca attcgcgagc 9120
aggccgagaa catcatccac ctcttcaccc tcaccaacct cggcgctcca gccgccttca 9180
agtacttcga caccaccatc gaccgcaagc gctacacctc taccaaggag gttctcgacg 9240
ccaccctcat ccaccagtct atcacaggcc tctacgagac acgcatcgac ctctcacaac 9300
tcggcggcga ttccggcggc agcccaaaga agaagcggaa ggtgtctgga ggttctccta 9360
agaaaaagag aaaagtgtcc ggcggctccc cgaagaagaa gcgcaaggtg gagggccgcg 9420
gctctttact cacttgtggc gacgtggagg aaaatccggg cccgatgaaa aagcctgaac 9480
tcaccgcgac gtctgtcgag aagtttctga tcgaaaagtt cgacagcgtc tccgacctga 9540
tgcagctctc ggagggcgaa gaatctcgtg ctttcagctt cgatgtagga gggcgtggat 9600
atgtcctgcg ggtaaatagc tgcgccgatg gtttctacaa agatcgttat gtttatcggc 9660
actttgcatc ggccgcgctc ccgattccgg aagtgcttga cattggggag tttagcgaga 9720
gcctgaccta ttgcatctcc cgccgtgcac agggtgtcac gttgcaagac ctgcctgaaa 9780
ccgaactgcc cgctgttcta caaccggtcg cggaggctat ggatgcgatc gctgcggccg 9840
atcttagcca gacgagcggg ttcggcccat tcggaccgca aggaatcggt caatacacta 9900
catggcgtga tttcatatgc gcgattgctg atccccatgt gtatcactgg caaactgtga 9960
tggacgacac cgtcagtgcg tccgtcgcgc aggctctcga tgagctgatg ctttgggccg 10020
aggactgccc cgaagtccgg cacctcgtgc acgcggattt cggctccaac aatgtcctga 10080
cggacaatgg ccgcataaca gcggtcattg actggagcga ggcgatgttc ggggattccc 10140
aatacgaggt cgccaacatc ttcttctgga ggccgtggtt ggcttgtatg gagcagcaga 10200
cgcgctactt cgagcggagg catccggagc ttgcaggatc gccacgactc cgggcgtata 10260
tgctccgcat tggtcttgac caactctatc agagcttggt tgacggcaat ttcgatgatg 10320
cagcttgggc gcagggtcga tgcgacgcaa tcgtccgatc cggagccggg actgtcgggc 10380
gtacacaaat cgcccgcaga agcgcggccg tctggaccga tggctgtgta gaagtactcg 10440
ccgatagtgg aaaccgacgc cccagcactc gtccgagggc aaagaaatag gagctccggc 10500
cgggagcatg cgacgtcgat ctaactgact agccgcggcc atgctagagt ccgcaaaaat 10560
caccagtctc tctctacaaa tctatctctc tctatttttc tccagaataa tgtgtgagta 10620
gttcccagat aagggaatta gggttcttat agggtttcgc tcatgtgttg agcatataag 10680
aaacccttag tatgtatttg tatttgtaaa atacttctat caataaaatt tctaattcct 10740
aaaaccaaaa tccagtgacc tgaattcgta atcatgtcat agctgtttcc tgtgtgaaat 10800
tgttatccgc tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg 10860
ggtgcctaat gagtgagcta actcacatta attgcgttgc gctcactgcc cgctttccag 10920
tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt 10980
ttgcgtattg gctagagcag cttgccaaca tggtggagca cgacactctc gtctactcca 11040
agaatatcaa agatacagtc tcagaagacc aaagggctat tgagactttt caacaaaggg 11100
taatatcggg aaacctcctc ggattccatt gcccagctat ctgtcacttc atcaaaagga 11160
cagtagaaaa ggaaggtggc acctacaaat gccatcattg cgataaagga aaggctatcg 11220
ttcaagatgc ctctgccgac agtggtccca aagatggacc cccacccacg aggagcatcg 11280
tggaaaaaga agacgttcca accacgtctt caaagcaagt ggattgatgt gataacatgg 11340
tggagcacga cactctcgtc tactccaaga atatcaaaga tacagtctca gaagaccaaa 11400
gggctattga gacttttcaa caaagggtaa tatcgggaaa cctcctcgga ttccattgcc 11460
cagctatctg tcacttcatc aaaaggacag tagaaaagga aggtggcacc tacaaatgcc 11520
atcattgcga taaaggaaag gctatcgttc aagatgcctc tgccgacagt ggtcccaaag 11580
atggaccccc acccacgagg agcatcgtgg aaaaagaaga cgttccaacc acgtcttcaa 11640
agcaagtgga ttgatgtgat atctccactg acgtaaggga tgacgcacaa tcccactatc 11700
cttcgcaaga ccttcctcta tataaggaag ttcatttcat ttggagagga cacgctgaaa 11760
tcaccagtct ctctctacaa atctatctct ctcgagcttt cgcagatccc ggggggcaat 11820
gagatatgaa aaagcctgaa ctcaccgcga cgtctgtcga gaagtttctg atcgaaaagt 11880
tcgacagcgt ctccgacctg atgcagctct cggagggcga agaatctcgt gctttcagct 11940
tcgatgtagg agggcgtgga tatgtcctgc gggtaaatag ctgcgccgat ggtttctaca 12000
aagatcgtta tgtttatcgg cactttgcat cggccgcgct cccgattccg gaagtgcttg 12060
acattgggga gtttagcgag agcctgacct attgcatctc ccgccgtgca cagggtgtca 12120
cgttgcaaga cctgcctgaa accgaactgc ccgctgttct acaaccggtc gcggaggcta 12180
tggatgcgat cgctgcggcc gatcttagcc agacgagcgg gttcggccca ttcggaccgc 12240
aaggaatcgg tcaatacact acatggcgtg atttcatatg cgcgattgct gatccccatg 12300
tgtatcactg gcaaactgtg atggacgaca ccgtcagtgc gtccgtcgcg caggctctcg 12360
atgagctgat gctttgggcc gaggactgcc ccgaagtccg gcacctcgtg cacgcggatt 12420
tcggctccaa caatgtcctg acggacaatg gccgcataac agcggtcatt gactggagcg 12480
aggcgatgtt cggggattcc caatacgagg tcgccaacat cttcttctgg aggccgtggt 12540
tggcttgtat ggagcagcag acgcgctact tcgagcggag gcatccggag cttgcaggat 12600
cgccacgact ccgggcgtat atgctccgca ttggtcttga ccaactctat cagagcttgg 12660
ttgacggcaa tttcgatgat gcagcttggg cgcagggtcg atgcgacgca atcgtccgat 12720
ccggagccgg gactgtcggg cgtacacaaa tcgcccgcag aagcgcggcc gtctggaccg 12780
atggctgtgt agaagtactc gccgatagtg gaaaccgacg ccccagcact cgtccgaggg 12840
caaagaaata gagtagatgc cgaccggatc tgtcgatcga caagctcgag tttctccata 12900
ataatgtgtg agtagttccc agataaggga attagggttc ctatagggtt tcgctcatgt 12960
gttgagcata taagaaaccc ttagtatgta tttgtatttg taaaatactt ctatcaataa 13020
aatttctaat tcctaaaacc aaaatccagt actaaaatcc agatcccccg aattaattcg 13080
gcgttaattc agtacattaa aaacgtccgc aatgtgttat taagttgtct aagcgtcaat 13140
ttgtttacac cacaatatat cctgccacca gccagccaac agctccccga ccggcagctc 13200
ggcacaaaat caccactcga tacaggcagc ccatcagtcc gggacggcgt cagcgggaga 13260
gccgttgtaa ggcggcagac tttgctcatg ttaccgatgc tattcggaag aacggcaact 13320
aagctgccgg gtttgaaaca cggatgatct cgcggagggt agcatgttga ttgtaacgat 13380
gacagagcgt tgctgcctgt gatcaccgcg gtttcaaaat cggctccgtc gatactatgt 13440
tatacgccaa ctttgaaaac aactttgaaa aagctgtttt ctggtattta aggttttaga 13500
atgcaaggaa cagtgaattg gagttcgtct tgttataatt agcttcttgg ggtatcttta 13560
aatactgtag aaaagaggaa ggaaataata aatggctaaa atgagaatat caccggaatt 13620
gaaaaaactg atcgaaaaat accgctgcgt aaaagatacg gaaggaatgt ctcctgctaa 13680
ggtatataag ctggtgggag aaaatgaaaa cctatattta aaaatgacgg acagccggta 13740
taaagggacc acctatgatg tggaacggga aaaggacatg atgctatggc tggaaggaaa 13800
gctgcctgtt ccaaaggtcc tgcactttga acggcatgat ggctggagca atctgctcat 13860
gagtgaggcc gatggcgtcc tttgctcgga agagtatgaa gatgaacaaa gccctgaaaa 13920
gattatcgag ctgtatgcgg agtgcatcag gctctttcac tccatcgaca tatcggattg 13980
tccctatacg aatagcttag acagccgctt agccgaattg gattacttac tgaataacga 14040
tctggccgat gtggattgcg aaaactggga agaagacact ccatttaaag atccgcgcga 14100
gctgtatgat tttttaaaga cggaaaagcc cgaagaggaa cttgtctttt cccacggcga 14160
cctgggagac agcaacatct ttgtgaaaga tggcaaagta agtggcttta ttgatcttgg 14220
gagaagcggc agggcggaca agtggtatga cattgccttc tgcgtccggt cgatcaggga 14280
ggatatcggg gaagaacagt atgtcgagct attttttgac ttactgggga tcaagcctga 14340
ttgggagaaa ataaaatatt atattttact ggatgaattg ttttagtacc tagaatgcat 14400
gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg tagaaaagat 14460
caaaggatct tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa 14520
accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc tttttccgaa 14580
ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt agccgtagtt 14640
aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc taatcctgtt 14700
accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact caagacgata 14760
gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt 14820
ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag aaagcgccac 14880
gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg gaacaggaga 14940
gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg 15000
ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga gcctatggaa 15060
aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat 15120
gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct ttgagtgagc 15180
tgataccgct cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga 15240
agagcgcctg atgcggtatt ttctccttac gcatctgtgc ggtatttcac accgcatatg 15300
gtgcactctc agtacaatct gctctgatgc cgcatagtta agccagtata cactccgcta 15360
tcgctacgtg actgggtcat ggctgcgccc cgacacccgc caacacccgc tgacgcgccc 15420
tgacgggctt gtctgctccc ggcatccgct tacagacaag ctgtgaccgt ctccgggagc 15480
tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgaggcaggg tgccttgatg 15540
tgggcgccgg cggtcgagtg gcgacggcgc ggcttgtccg cgccctggta gattgcctgg 15600
ccgtaggcca gccatttttg agcggccagc ggccgcgata ggccgacgcg aagcggcggg 15660
gcgtagggag cgcagcgacc gaagggtagg cgctttttgc agctcttcgg ctgtgcgctg 15720
gccagacagt tatgcacagg ccaggcgggt tttaagagtt ttaataagtt ttaaagagtt 15780
ttaggcggaa aaatcgcctt ttttctcttt tatatcagtc acttacatgt gtgaccggtt 15840
cccaatgtac ggctttgggt tcccaatgta cgggttccgg ttcccaatgt acggctttgg 15900
gttcccaatg tacgtgctat ccacaggaaa cagacctttt cgaccttttt cccctgctag 15960
ggcaatttgc cctagcatct gctccgtaca ttaggaaccg gcggatgctt cgccctcgat 16020
caggttgcgg tagcgcatga ctaggatcgg gccagcctgc cccgcctcct ccttcaaatc 16080
gtactccggc aggtcatttg acccgatcag cttgcgcacg gtgaaacaga acttcttgaa 16140
ctctccggcg ctgccactgc gttcgtagat cgtcttgaac aaccatctgg cttctgcctt 16200
gcctgcggcg cggcgtgcca ggcggtagag aaaacggccg atgccgggat cgatcaaaaa 16260
gtaatcgggg tgaaccgtca gcacgtccgg gttcttgcct tctgtgatct cgcggtacat 16320
ccaatcagct agctcgatct cgatgtactc cggccgcccg gtttcgctct ttacgatctt 16380
gtagcggcta atcaaggctt caccctcgga taccgtcacc aggcggccgt tcttggcctt 16440
cttcgtacgc tgcatggcaa cgtgcgtggt gtttaaccga atgcaggttt ctaccaggtc 16500
gtctttctgc tttccgccat cggctcgccg gcagaacttg agtacgtccg caacgtgtgg 16560
acggaacacg cggccgggct tgtctccctt cccttcccgg tatcggttca tggattcggt 16620
tagatgggaa accgccatca gtaccaggtc gtaatcccac acactggcca tgccggccgg 16680
ccctgcggaa acctctacgt gcccgtctgg aagctcgtag cggatcacct cgccagctcg 16740
tcggtcacgc ttcgacagac ggaaaacggc cacgtccatg atgctgcgac tatcgcgggt 16800
gcccacgtca tagagcatcg gaacgaaaaa atctggttgc tcgtcgccct tgggcggctt 16860
cctaatcgac ggcgcaccgg ctgccggcgg ttgccgggat tctttgcgga ttcgatcagc 16920
ggccgcttgc cacgattcac cggggcgtgc ttctgcctcg atgcgttgcc gctgggcggc 16980
ctgcgcggcc ttcaacttct ccaccaggtc atcacccagc gccgcgccga tttgtaccgg 17040
gccggatggt ttgcgaccgc tcacgccgat tcctcgggct tgggggttcc agtgccattg 17100
cagggccggc agacaaccca gccgcttacg cctggccaac cgcccgttcc tccacacatg 17160
gggcattcca cggcgtcggt gcctggttgt tcttgatttt ccatgccgcc tcctttagcc 17220
gctaaaattc atctactcat ttattcattt gctcatttac tctggtagct gcgcgatgta 17280
ttcagatagc agctcggtaa tggtcttgcc ttggcgtacc gcgtacatct tcagcttggt 17340
gtgatcctcc gccggcaact gaaagttgac ccgcttcatg gctggcgtgt ctgccaggct 17400
ggccaacgtt gcagccttgc tgctgcgtgc gctcggacgg ccggcactta gcgtgtttgt 17460
gcttttgctc attttctctt tacctcatta actcaaatga gttttgattt aatttcagcg 17520
gccagcgcct ggacctcgcg ggcagcgtcg ccctcgggtt ctgattcaag aacggttgtg 17580
ccggcggcgg cagtgcctgg gtagctcacg cgctgcgtga tacgggactc aagaatgggc 17640
agctcgtacc cggccagcgc ctcggcaacc tcaccgccga tgcgcgtgcc tttgatcgcc 17700
cgcgacacga caaaggccgc ttgtagcctt ccatccgtga cctcaatgcg ctgcttaacc 17760
agctccacca ggtcggcggt ggcccatatg tcgtaagggc ttggctgcac cggaatcagc 17820
acgaagtcgg ctgccttgat cgcggacaca gccaagtccg ccgcctgggg cgctccgtcg 17880
atcactacga agtcgcgccg gccgatggcc ttcacgtcgc ggtcaatcgt cgggcggtcg 17940
atgccgacaa cggttagcgg ttgatcttcc cgcacggccg cccaatcgcg ggcactgccc 18000
tggggatcgg aatcgactaa cagaacatcg gccccggcga gttgcagggc gcgggctaga 18060
tgggttgcga tggtcgtctt gcctgacccg cctttctggt taagtacagc gataaccttc 18120
atgcgttccc cttgcgtatt tgtttattta ctcatcgcat catatacgca gcgaccgcat 18180
gacgcaagct gttttactca aatacacatc acctttttag acggcggcgc tcggtttctt 18240
cagcggccaa gctggccggc caggccgcca gcttggcatc agacaaaccg gccaggattt 18300
catgcagccg cacggttgag acgtgcgcgg gcggctcgaa cacgtacccg gccgcgatca 18360
tctccgcctc gatctcttcg gtaatgaaaa acggttcgtc ctggccgtcc tggtgcggtt 18420
tcatgcttgt tcctcttggc gttcattctc ggcggccgcc agggcgtcgg cctcggtcaa 18480
tgcgtcctca cggaaggcac cgcgccgcct ggcctcggtg ggcgtcactt cctcgctgcg 18540
ctcaagtgcg cggtacaggg tcgagcgatg cacgccaagc agtgcagccg cctctttcac 18600
ggtgcggcct tcctggtcga tcagctcgcg ggcgtgcgcg atctgtgccg gggtgagggt 18660
agggcggggg ccaaacttca cgcctcgggc cttggcggcc tcgcgcccgc tccgggtgcg 18720
gtcgatgatt agggaacgct cgaactcggc aatgccggcg aacacggtca acaccatgcg 18780
gccggccggc gtggtggtgt cggcccacgg ctctgccagg ctacgcaggc ccgcgccggc 18840
ctcctggatg cgctcggcaa tgtccagtag gtcgcgggtg ctgcgggcca ggcggtctag 18900
cctggtcact gtcacaacgt cgccagggcg taggtggtca agcatcctgg ccagctccgg 18960
gcggtcgcgc ctggtgccgg tgatcttctc ggaaaacagc ttggtgcagc cggccgcgtg 19020
cagttcggcc cgttggttgg tcaagtcctg gtcgtcggtg ctgacgcggg catagcccag 19080
caggccagcg gcggcgctct tgttcatggc gtaatgtctc cggttctagt cgcaagtatt 19140
ctactttatg cgactaaaac acgcgacaag aaaacgccag gaaaagggca gggcggcagc 19200
ctgtcgcgta acttaggact tgtgcgacat gtcgttttca gaagacggct gcactgaacg 19260
tcagaagccg actgcactat agcagcggag gggttggatc aaagtacttt gatcccgagg 19320
ggaaccctgt ggttggcatg cacatacaaa tggacgaacg gataaacctt ttcacgccct 19380
tttaaatatc cgttattcta a 19401

Claims (6)

1. The utility model provides a improve co-transcription unit gene ABEHPT of rice single base editing efficiency which characterized in that, co-transcription unit gene ABEHPT includes the encoding gene HPT of anti-hygromycin protein, the encoding gene SpCas9n of SpCas9 protein and the encoding gene ABE of adenine deaminase, wherein, co-transcription unit gene ABEHPT constructs in same expression vector with the encoding gene of sgRNA, each gene fragment of co-transcription unit gene ABEHPT inserts in same expression frame, and the sequence of co-transcription unit gene ABEHPT is: the nucleotide sequence shown in SEQ ID No.1 in the sequence table.
2. A method for improving single base editing efficiency of rice is characterized in that the method comprises the steps of introducing a coding gene of sgRNA, a coding gene HPT of hygromycin-resistant protein, a coding gene of SpCas9 protein, a coding gene of SpCas9n of adenine deaminase and a coding gene ABE of adenine deaminase into a receptor, and expressing the sgRNA, the hygromycin-resistant protein, the SpCas9 protein and the adenine deaminase in the receptor so as to edit the base of a target gene in a receptor genome, and further comprises the steps of synthesizing a coding gene of HPT containing the hygromycin-resistant protein, SpCas9 protein, a coding gene of SpCas9n and a gene sequence ABEHPT of adenine deaminase, adding NotI/SacI enzyme cutting sites at two ends, carrying out enzyme cutting on a plant expression vector UNpH900 vector by utilizing NotI/SacI, recovering, connecting the gene sequence ABEHPT to an expression vector, cutting off the promoter on the ABEHPT together with the gene sequence ABEHPT by utilizing the enzyme cutting sites, the method comprises the following steps of connecting a plant expression vector without a screening marker gene HPT, synthesizing a sgRNA expression frame containing a HindIII enzyme cutting site, introducing the sgRNA expression frame into the plant expression vector, and introducing the plant expression vector into a receptor, wherein the coding gene HPT of the hygromycin protein resistant, the coding gene SpCas9n of the SpCas9 protein and the adenine deaminase coding gene ABE use the same constitutive promoter Ubiqutin and the same 35S terminator, and the sequence of ABEHPT is as follows: the nucleotide sequence shown in SEQ ID No.1 in the sequence table.
3. The method for improving rice single base editing efficiency according to claim 2, wherein the sgRNA expression cassette comprises: the rice gene expression vector comprises a rice OsU3 promoter, a spectinomycin resistance gene SpR, an artificially synthesized sgRNA framework sequence and a Poly-T terminator, wherein the nucleotide sequence of the rice OsU3 promoter is shown as Seq ID No.2 from 1 st to 382 th positions, the nucleotide sequence of the spectinomycin resistance gene SpR is shown as Seq ID No.2 from 388 th to 1595 th positions, the nucleotide sequence of the artificially synthesized sgRNA framework sequence is shown as Seq ID No.2 from 1603 th to 1688 th positions, and the nucleotide sequence of the Poly-T terminator is shown as Seq ID No.2 from 1689 th to 1696 th positions.
4. A plant expression vector comprising a co-transcriptional unit gene, ABEHPT, of claim 1, and a sgRNA expression cassette comprising: the rice gene expression vector comprises a rice OsU3 promoter, a spectinomycin resistance gene SpR, an artificially synthesized sgRNA framework sequence and a Poly-T terminator, wherein the nucleotide sequence of the rice OsU3 promoter is shown as Seq ID No.2 from 1 st to 382 th positions, the nucleotide sequence of the spectinomycin resistance gene SpR is shown as Seq ID No.2 from 388 th to 1595 th positions, the nucleotide sequence of the artificially synthesized sgRNA framework sequence is shown as Seq ID No.2 from 1603 th to 1688 th positions, and the nucleotide sequence of the Poly-T terminator is shown as Seq ID No.2 from 1689 th to 1696 th positions.
5. Use of the co-transcriptional unit gene ABEHPT as claimed in claim 1 comprising introducing said co-transcriptional unit gene ABEHPT into plant callus by the steps of infecting, co-culturing and screening to obtain edited plant callus.
6. The use of claim 5, wherein said use comprises differentiating said plant callus into a plant, and increasing the efficiency of site-specific replacement of A: T to G: C on the rice genome using said co-transcriptional unit gene ABEHPT, to obtain a transgenic plant or plant part containing a mutation site.
CN201911029085.5A 2019-10-28 2019-10-28 Gene and method for improving single-base editing efficiency of rice and application of gene Active CN112725348B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911029085.5A CN112725348B (en) 2019-10-28 2019-10-28 Gene and method for improving single-base editing efficiency of rice and application of gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911029085.5A CN112725348B (en) 2019-10-28 2019-10-28 Gene and method for improving single-base editing efficiency of rice and application of gene

Publications (2)

Publication Number Publication Date
CN112725348A CN112725348A (en) 2021-04-30
CN112725348B true CN112725348B (en) 2022-04-01

Family

ID=75588789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911029085.5A Active CN112725348B (en) 2019-10-28 2019-10-28 Gene and method for improving single-base editing efficiency of rice and application of gene

Country Status (1)

Country Link
CN (1) CN112725348B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667689B (en) * 2021-07-12 2023-04-11 中国农业科学院烟草研究所(中国烟草总公司青州烟草研究所) Vector capable of carrying out efficient gene editing in tobacco and application thereof
CN115820691B (en) * 2022-07-25 2023-08-22 安徽农业大学 LbCPf1 variant-based rice base editing system and application
CN116731984A (en) * 2023-07-24 2023-09-12 合肥戬谷生物科技有限公司 Editing tool for realizing base transversion based on TadA8e mutant and application

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492611A (en) * 2013-06-17 2016-04-13 布罗德研究所有限公司 Optimized CRISPR-CAS double nickase systems, methods and compositions for sequence manipulation
CN107099544A (en) * 2017-06-28 2017-08-29 安徽省农业科学院水稻研究所 The PL LbCpf1 RVR genes of identification specific site and its application in paddy gene target practice
WO2018202199A1 (en) * 2017-05-05 2018-11-08 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Methods for isolating cells without the use of transgenic marker sequences
WO2018218166A1 (en) * 2017-05-25 2018-11-29 The General Hospital Corporation Using split deaminases to limit unwanted off-target base editor deamination
CN109295186A (en) * 2018-09-30 2019-02-01 中山大学 A kind of method based on genome sequencing detection adenine single base editing system undershooting-effect and its application in gene editing
CN109306361A (en) * 2018-02-11 2019-02-05 华东师范大学 A kind of gene editing system of new A/T to G/C base fixed point conversion
CN109321584A (en) * 2017-12-27 2019-02-12 华东师范大学 A kind of reporting system of simple qualitative/quantitative detection single base gene editing technical work efficiency
CN109652439A (en) * 2018-12-27 2019-04-19 宜春学院 Utilize the method for the CRISPR/Cas9 adenine base editing system improvement rice blast resistance of wide spectrum mediated
CN109652422A (en) * 2019-01-31 2019-04-19 安徽省农业科学院水稻研究所 Efficient single base editing system OsSpCas9-eCDA and its application
CN109679989A (en) * 2018-12-29 2019-04-26 北京市农林科学院 A method of improving base editing system editorial efficiency
WO2019120283A1 (en) * 2017-12-21 2019-06-27 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Method for base editing in plants
CN110157726A (en) * 2018-02-11 2019-08-23 中国科学院上海生命科学研究院 The method of Plant Genome fixed point replacement

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492611A (en) * 2013-06-17 2016-04-13 布罗德研究所有限公司 Optimized CRISPR-CAS double nickase systems, methods and compositions for sequence manipulation
WO2018202199A1 (en) * 2017-05-05 2018-11-08 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Methods for isolating cells without the use of transgenic marker sequences
WO2018218166A1 (en) * 2017-05-25 2018-11-29 The General Hospital Corporation Using split deaminases to limit unwanted off-target base editor deamination
CN107099544A (en) * 2017-06-28 2017-08-29 安徽省农业科学院水稻研究所 The PL LbCpf1 RVR genes of identification specific site and its application in paddy gene target practice
WO2019120283A1 (en) * 2017-12-21 2019-06-27 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Method for base editing in plants
CN109321584A (en) * 2017-12-27 2019-02-12 华东师范大学 A kind of reporting system of simple qualitative/quantitative detection single base gene editing technical work efficiency
CN109306361A (en) * 2018-02-11 2019-02-05 华东师范大学 A kind of gene editing system of new A/T to G/C base fixed point conversion
CN110157726A (en) * 2018-02-11 2019-08-23 中国科学院上海生命科学研究院 The method of Plant Genome fixed point replacement
CN109295186A (en) * 2018-09-30 2019-02-01 中山大学 A kind of method based on genome sequencing detection adenine single base editing system undershooting-effect and its application in gene editing
CN109652439A (en) * 2018-12-27 2019-04-19 宜春学院 Utilize the method for the CRISPR/Cas9 adenine base editing system improvement rice blast resistance of wide spectrum mediated
CN109679989A (en) * 2018-12-29 2019-04-26 北京市农林科学院 A method of improving base editing system editorial efficiency
CN109652422A (en) * 2019-01-31 2019-04-19 安徽省农业科学院水稻研究所 Efficient single base editing system OsSpCas9-eCDA and its application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CRISPR/Cas9-Mediated Adenine Base Editing in Rice Genome;LI Hao et al.;《Rice Science》;20190331;第26卷(第2期);第125-128页 *
基因组编辑技术在作物育种中的应用及监管现状;秦瑞英 等;《中国农学通报》;20190225;第35卷(第6期);第96-100页 *

Also Published As

Publication number Publication date
CN112725348A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
CN112725348B (en) Gene and method for improving single-base editing efficiency of rice and application of gene
CN109652422B (en) Efficient single-base editing system OsSpCas9-eCDA and application thereof
CN101405394B (en) D-amino acid selection for soybean
CN111139260B (en) Method for improving whiteness of wheat flour by using gene editing
CN108368491B (en) Algal mutants with improved lipid productivity
AU2016315655A1 (en) Ochrobactrum-mediated transformation of plants
AU2016350610A1 (en) Methods and compositions of improved plant transformation
WO2016057515A2 (en) Genetic control of axillary bud growth in tobacco plants
AU2019297209B2 (en) Method of obtaining multi-leaf alfalfa material by means of MsPALM1 artificial site-directed mutant
CN111630175B (en) Method for improving gene editing efficiency based on homologous recombination in plant body
CN112522302B (en) Rice bidirectional single-base edited co-transcription unit gene ABE-CBE system and application thereof
CN101942480A (en) The nucleic acid molecule of encoding fatty acid desaturase genes from plants and using method thereof
CN108026150A (en) Stem rust of wheat resistant gene and application method
CN108753815A (en) A kind of method that big flux screening plant virus replicates required host&#39;s gene
CN113801891B (en) Construction method and application of beet BvCENH3 gene haploid induction line
CN114480474B (en) Construction and application of marine nannochloropsis transcription activation CRISPRa system
CN109811004B (en) Application of expression vector in producing brown yellow fiber by specifically expressing GhPSY2 gene in secondary wall development stage of cotton
KR101206928B1 (en) RNA interference cassette against a self-incompatibility factor of Brassica genus, vector comprising the same and transgenic Brassica plant comprising the same
CN114045302A (en) Single-base editing vector and construction and application thereof
CN110616220A (en) Method for improving hardness of wheat grains
CN111433220A (en) Algal lipid productivity enhancement by genetic modification of TRP domain-containing proteins
CN111534522B (en) Wheat TaRDR6 gene and application thereof in male sterility
CN111269935B (en) Wheat TaDA2 gene Cas9 vector and application thereof
CN111424044B (en) Wheat TaDCL4 gene and application thereof in pollen fertility
CN111269934B (en) Method for improving phosphorus utilization rate of wheat by using gene editing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant