CN114480474B - Construction and application of marine nannochloropsis transcription activation CRISPRa system - Google Patents

Construction and application of marine nannochloropsis transcription activation CRISPRa system Download PDF

Info

Publication number
CN114480474B
CN114480474B CN202011253679.7A CN202011253679A CN114480474B CN 114480474 B CN114480474 B CN 114480474B CN 202011253679 A CN202011253679 A CN 202011253679A CN 114480474 B CN114480474 B CN 114480474B
Authority
CN
China
Prior art keywords
sequence
protein
vector
nannochloropsis
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011253679.7A
Other languages
Chinese (zh)
Other versions
CN114480474A (en
Inventor
魏力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN202011253679.7A priority Critical patent/CN114480474B/en
Publication of CN114480474A publication Critical patent/CN114480474A/en
Application granted granted Critical
Publication of CN114480474B publication Critical patent/CN114480474B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention belongs to the technical field of biology, and particularly relates to a marine nannochloropsis transcriptional activation CRISPRa system, a construction method and application thereof. The system vector contains a Cas9 inactivating protein, a transcriptional activation effector protein VP64, a resistance selection marker gene, at least one gRNA scaffold sequence, and a specific sequence that enhances transcriptional activation (SunTag sequence). The CRISPRa vector for transcription activation of the nannochloropsis gene is applied to gene transformation. The invention provides a new model and a feasibility method for the functional research of the nannochloropsis gene.

Description

Construction and application of marine nannochloropsis transcription activation CRISPRa system
Technical Field
The invention belongs to the technical field of biology, and particularly relates to a marine nannochloropsis transcriptional activation CRISPRa system, a construction method and application thereof.
Background
The marine parachloropsis microalgae is a single-cell photosynthetic microalgae and is widely distributed in different water environment water areas such as oceans, lakes, marshes and the like. Because of the characteristics of high grease content, good environmental adaptability, suitability for flue gas culture and the like, the microbial fertilizer is favored in the fields of microalgae biological energy, microalgae functional foods, microalgae feeds and the like, and is one of important biological resources of a blue granary. With the rise of synthetic biology in recent years, nannochloropsis has risen as one of new generation synthetic biological photosynthetic chassis cells, and developed to a position of equal importance as model algae strains such as chlamydomonas reinhardtii, chlorella and the like. To date, the entire genome of a number of nannochloropsis has been sequenced, covering essentially the known representative species within this genus, including N.oceanica IMET1, N.oceanica CCMP1779, N.oceanica CCMP526, etc. Despite their full genome sequencing, most of their genes (more than 50%) are of unknown function and an understanding of metabolic processes remains a "black box". This requires the development of genetic transformation methods and genetic manipulation tools to reveal the "black box" puzzle. Fortunately, genetic transformation methods based on electric transformation or gene gun and the like are also basically established in several strains of nannochloropsis (N.oceanica IMET1, N.oceanica CCMP1779, N.oceanica CCMP526, N.oceanica CCMP526 and the like) representative species, and forward and reverse genetic tools such as random insertion mutation, overexpression, RNAi technology and homologous recombination methods are reported in different species (such as N.salina). In addition, gene editing techniques have also been established in several representative species (e.g., n. Salina), such as episome-based non-selective pressure gene editing, and the like.
Gene editing CRISPR-Cas9 is currently the most widely used CRISPR system, and is widely used in many other fields in addition to genes used to rapidly and efficiently edit prokaryotic and eukaryotic cells at the cell line, stem cell and induced multifunctional stem cell level. For example, by using inactivated CRISPR-Cas9 protein (dCAS 9 protein for short) and domain proteins with specific functions (such as a transcription activation domain VP64, a transcription inhibition domain KRAB, an epigenetic regulatory acetylation domain P300, a methylation domain DnMT3a and the like) for fusion expression, and combining specific guide RNA, the aim of specifically regulating the expression level of a certain gene can be achieved. This technology system has been successfully used in mammalian and plant research systems. At present, a high coverage sgRNA library is produced, each gene of cells can be covered, and the channels or genes of interest are screened by a positive and negative screening method, so that the technology greatly expands the method of scientists for researching functional genomics. However, this technology is very rare in plants, especially in microalgae, because of the slow establishment of gene editing methods, and because of the recognition of the transcriptional activation complex system and the lack of knowledge of other commonly used transcriptional activation domains that can be applied or not clearly established in microalgae.
Disclosure of Invention
The invention aims to provide a marine nannochloropsis transcription activation CRISPRa system, a construction method thereof and application of the system in metabolic engineering transformation and synthetic biology research of nannochloropsis, and optimization of specific economic characters of nannochloropsis species.
In order to achieve the above purpose, the invention adopts the technical scheme that:
a marine nannochloropsis transcriptional activation CRISPRa system, the system carrier contains Cas9 inactivating protein, transcriptional activation effector protein VP64, resistance selection marker gene, at least one gRNA bracket sequence and a specific sequence (SunTag sequence) for enhancing transcriptional activation.
The system takes a Cas9 expression vector (pNOC-ARS-CRISPR) of nannochloropsis as a framework, and contains an endogenous promoter and a terminator, wherein the promoter is a Ribi bidirectional promoter and a LDSP promoter, and the terminator is a LDSP terminator.
One end of the backbone vector Ribi bidirectional promoter is sequentially connected with dCAS9 protein, a specific sequence for enhancing transcription activation and transcription activation effector protein; the other end is connected with a gRNA bracket sequence which drives gRNA expression; the hygromycin resistance gene is positioned downstream of the skeleton vector LDSP promoter; the dCas9 protein, specific sequences that enhance transcriptional activation, and transcriptional activation effector proteins were all preceded by a leader localization signal.
Further, aiming at the nannoc skeleton vector pNOC-ARS-CRISPR, the key structure dCAS9-SunTag-VP64 for transcriptional activation of specific target genes is designed and fusion expressed in series. That is, three proteins of dCAS9-SunTag-VP64 are fused and expressed in the nannochloropsis, and are placed in a triple complex of the same reading frame (the codon optimization of the nannochloropsis, the GC content is changed, so that the triple complex is more suitable for expression in the nannochloropsis or the expression efficiency is higher), and a leader nuclear localization signal (SLV 40; used for nuclear localization expression and increasing the expression copy number of dCAS9 protein and transcription activation domain) is connected before each structure. In addition, sunTag sequences (10 XGCN4 was selected) were used to increase transcriptional activation efficiency, and to enhance transcriptional activation VP64, and also to increase expression efficiency using nuclear localization expression.
The vector contains at least one gRNA scaffold sequence, and the multiple gRNA scaffold sequences are formed by serially connecting gRNAs designed by multiple target genes; each gRNA scaffold sequence is a guide sequence designed for a specific target gene; wherein the specific target gene is a candidate gene related to the trait.
The multiple gRNAs are connected in series to realize simultaneous transcriptional activation of multiple genes, and genes in the same metabolic pathway can be designed as target genes, so that the whole metabolic pathway is activated.
The above and the propertiesThe related candidate genes are directly or indirectly involved in photosynthesis, carbon fixation, stress resistance, grease accumulation, high temperature resistance and high CO resistance 2 Concentration, acid, oxygen and water stress resistance related genes
The dmas 9 protein mentioned above is a protein which is obtained by point mutation and has the function of inactivating and cutting a target sequence, only retains the targeting function of the gene, but the function of cutting a DNA sequence disappears, and in order to improve the expression efficiency, the GC content is changed through codon optimization, so that the dmas 9 protein is more suitable for expressing in nannochloropsis;
the gRNA knockout sequence is a nannochloropsis methyltransferase gene and any DNA sequence on the genome (the gRNA sequence can be designed for different target genes);
the resistance gene is hygromycin gene and all genes corresponding to antibiotics and pesticides sensitive to the nannochloropsis;
the transcriptional activation effector protein VP64 is a heterologous protein domain that is codon optimized for (and made suitable for expression in) nannochloropsis, and comprises a codon optimized nuclear localization signal sequence;
the Cas9 inactivated protein, the transcriptional activation effector protein, the resistance selection marker gene, the gRNA bracket sequence and the specific sequence for enhancing transcriptional activation are respectively corresponding gene sequences after the optimization of the nannochloropsis codon; wherein, the base of the codon-optimized dCAS9 protein is from 6279bp to 10379bp in SEQ ID NO. 1, the codon-optimized transcriptional activation effector protein VP64 is from 5187bp to 5336bp in SEQ ID NO. 1, the codon-optimized resistance selection marker gene is from 2617bp to 3642bp in SEQ ID NO. 1, and the specific sequence of the codon-optimized enhanced transcriptional activation is from 5397bp to 6101bp in SEQ ID NO. 1.
A construction method of the system comprises the following steps:
(1) Constructing an expression vector containing Cas9 inactivated protein, transcriptional activation effector protein VP64 and a SunTag sequence for enhancing transcriptional activation by using a framework vector, and driving the expression by the same promoter;
(2) Construction of specific gRNA sequences was ligated to the above vectors to construct transcription activation vectors.
The construction of the recombinant plasmid in the step (1), namely (1) constructing a recombinant plasmid containing a Cas9 inactivated protein, a promoter, a terminator and a hygromycin resistance gene by utilizing a skeleton vector, and inactivating the original carrier Cas9 protein into dCAS9 protein; (2) The transcriptional activation effector protein VP64 and the SunTag sequence for enhancing transcriptional activation are connected to the downstream of dCAS9 protein and are driven to express by the same promoter; (3) And (3) connecting at least one gRNA scaffold sequence to the recombinant plasmid, and constructing and obtaining a transcription activation system.
An application of a nannochloropsis gene transcription activation CRISPRa system in gene transformation.
A host cell comprising said vector.
The host cell is marine nannochloropsis.
The method successfully constructs a CRISPRa (dCAS 9-SunTag-VP64 mediated transcriptional regulation) based transcriptional activation expression system of the nannochloropsis. The invention designs the gRNA of specific target genes or the gRNA series connection of a plurality of target genes, can effectively activate the transcription level of the nannochloropsis target genes, and obtains the transgenic mutant alga strain through molecular and physiological phenotype screening. Compared with the prior art, the invention realizes the key breakthrough of the genome engineering technology of the nannochloropsis, and has the following beneficial effects:
1. the invention establishes a transcription activation platform based on dCS 9-VP64/gRNA genes in marine nannochloropsis, uses inactivated dCS 9 to combine with a transcription activation domain VP64, realizes the transcription activation of target genes by using the recruitment function of dCS 9 under the guidance of gRNA, and can be used for the transcription activation of multiple genes in series, namely, the vector can be used for gene function research and large-scale genetic screening, and is a preferred tool for non-coding RNA research.
2. The present invention provides dCS 9-SunTag-VP64/gRNA (CRISPRa) systems for metabolic engineering of nannochloropsis or design of synthetic biological chassis cells. The CRISPRa system can be used for resolving the regulation and control mechanism of all related proteins, enzymes and non-coding RNA in the genome of the nannochloropsis and improving specific biological properties (such as improving the efficiency of capturing, absorbing and utilizing light and converting energy, improving the multi-element stress resistance, greatly improving the biomass yield, improving the grease yield and the like).
3. The invention provides a dmas 9-SunTag-VP64/gRNA sequence for transcription activation (CRISPRa) of nannochloropsis, which comprises a SunTag sequence designed and codon optimized, can be used for a genetic modification system for nannochloropsis or a genetic modification system for single-cell nannochloropsis of a plurality of species, and can also be used for constructing an apparent genome editing system of nannochloropsis.
4. The invention can target the endogenous gene of transcription activation nannochloropsis, and constructs a dCAS9-SunTag-VP64/gRNA gene transcription activation system of nannochloropsis by using the methyltransferase gene.
5. The invention utilizes the sensitivity of the nannochloropsis to hygromycin, adopts a feasible selection marker gene-selection pressure combination (Hyg gene-hygromycin; the gene is already optimized by the codon of the nannochloropsis) to construct a dCAS9-SunTag-VP64/gRNA gene transcription activation system.
6. The CRISPRa system can regulate and control the transcription level of endogenous genes of the nannochloropsis so as to influence the metabolic pathway of target genes.
7. The transgenic engineering microalgae constructed by the invention can have more excellent multielement stress resistance, such as insect resistance, disease resistance, salt resistance, drought resistance, herbicide resistance and the like. The low-cost high-light-efficiency reaction facility aiming at the specific engineering microalgae is designed and constructed, and the large-scale culture cost is reduced. The nannochloropsis is a substrate with high added value (polyunsaturated fatty acids such as EPA and DHA, pigments, astaxanthin, sterols and the like) accumulated, and the yield of the high added value product can be further improved by means of the constructed transgenic engineering microalgae; meanwhile, the nannochloropsis has the characteristics of high photosynthetic efficiency, rapid propagation and strong environmental adaptability, and the carbon fixation efficiency of the constructed transgenic engineering nannochloropsis can be further improved by means of the constructed transgenic engineering nannochloropsis, so that the carbon dioxide can be effectively fixed, and the concentration of the carbon dioxide in the atmosphere is reduced;
8. the nannochloropsis nuclear genome sequence, the chloroplast genome sequence and the non-coding RNA genome sequence have been determined, and the invention can be used for carrying out functional genomics research on the nannochloropsis and the interaction between the nuclear genome and the chloroplast genome; functional genomics research can also be carried out on the nannochloropsis; meanwhile, the functional genomics research can be carried out on the nannochloropsis, and the research on non-coding RNA is carried out by means of a CRISPRa system;
9. the nannochloropsis can screen a condition specific promoter and drive a transcription activation system to which the method belongs, so that the condition specific transcription activation can be realized. In addition, the transcription activation system of the method can be driven by a promoter for screening specific organelle expression, so that the transcription activation of chloroplast or mitochondrial genes can be realized. Thus, the present system can be used to develop space-time specific transcription activation expression.
Drawings
FIG. 1 is a physical map of a transcription activation system expression vector for simultaneously expressing dmas 9 protein, a codon optimized VP64 transcription activation domain, a codon optimized SunTag sequence, gRNA and hygromycin genes by artificial synthesis provided by the embodiment of the invention.
FIG. 2 is a diagram showing the identification of DNA level of a target gene methyltransferase-activated transformant according to an embodiment of the present invention.
FIG. 3 shows the identification of the levels of target gene methyltransferases in nannochloropsis (wild type and mutant) in which WT is wild type, according to the examples of the present invention.
FIG. 4 shows the growth of a mutant strain transcribed and activated by a nannochloropsis methyl transferase provided by the embodiment of the invention.
FIG. 5 shows the phenotype identification of growth curves of the nannochloropsis methyltransferase transcriptional activation mutants (M4 and M7) and the wild type (white circles) provided by the embodiment of the invention.
FIG. 6 shows the measurement of photosynthetic parameters of a nannochloropsis methyltransferase transcriptional activation mutant strain provided by the embodiment of the present invention.
Detailed Description
The following description of the embodiments of the present invention is further provided in connection with the accompanying examples, and it should be noted that the embodiments described herein are for the purpose of illustration and explanation only, and are not limiting of the invention.
The invention establishes a dCAS9-VP64/gRNA gene transcription activation system based on gene editing in marine nannochloropsis, wherein, a transcription activator is connected with Cas9 (dCAS 9) of which the CRISPRa is catalyzed and inactivated, and can effectively promote the transcription of specific sites of genome, namely, sunTag and VP64 systems are introduced into the nannochloropsis, wherein, the SunTag system is similar to a set of molecular hooks, which can hang a plurality of copies of bioactive molecules on a protein bracket which can be used for targeting some genes or other molecules, and VP64 catalytic domain has a transcription activation function, and the two are fused and realize the transcription activation of specific genes under the targeting effect of dCAS9 protein.
The obtained mutant strain of the transgenic transcription activation system of the nannochloropsis is obtained by introducing the dCS 9-SunTag-VP64/gRNA vector containing the invention into the nannochloropsis by using the targeting function of dCS 9 protein under the guidance of gRNA and the activation function of VP64 transcription activation domain, and the transcription level of target genes is directionally improved.
It is simpler to use than cDNA overexpression, which is a common method of up-regulating the expression levels of individual genes, and allows for simultaneous activation of multiple genes. Furthermore, CRISPRa is a powerful weapon for non-coding RNA research.
Examples:
realizing the construction of a targeted transcription activation system of an endogenous gene methyltransferase gene (g 1248) in nannochloropsis:
1. synthetic transcription activation vector (CRISPR/dCas 9-SunTag-VP 64) that can express dCas9 protein (codon optimization, adjustment of GC content to fit expression in nannochloropsis), VP64 domain (codon optimization), sunTag sequence (codon optimization), hygromycin resistance gene (codon optimization), nuclear localization signal SLV (codon optimization):
1) Framework carrier: using the known marine nannochloropsis genome (NCBI:ASM187094v1) The sequence takes the nannochloropsis gene editing vector (pNOC-ARS-CRISPR) as a framework, and the framework vector contains an endogenous promoter (Ribi and LDSP) and an LDSP terminator, which are expression vectors capable of driving the expression of Cas9 protein to express and capable of gene editing.
2) Synthesis of dCas9 protein: the Cas9 protein is inactivated or the original vector Cas9 protein is replaced with the inactivated dCas protein (DNA sequence is fully synthesized). Namely, the 2539-2541 locus (CAT) of the DNA sequence of the original Cas9 protein is mutated into (GCC) so that the function of cutting a target sequence is lost, the targeting function is only reserved, and the dCAS9 protein complete sequence is synthesized by a chemical synthesis mode.
3) The VP64 domain is derived from sequences commonly used in plant or mammalian systems and codon optimized for expression in marine nannochloropsis, its VP64 sequence (3 '-5'): from 5187bp to 5336bp in the sequence table, the length is 150bp,
the SunTag sequence is derived from sequences commonly used in plant or mammalian systems and codon optimized for expression in marine nannochloropsis, and its SunTag sequence (3 '-5'): from 5397bp to 6101bp in the sequence table, the length is 705bpDNA,
the nuclear localization signal SLV40 is derived from the original vector pNOC-ARS-CRISPR and has a DNA sequence of CCGAAAAAGAAGAGGAAGGTC.
4) And (3) constructing a carrier:
the synthesized dCAS9 protein, VP64 structural domain (fusion expression with dCAS9 protein), sunTag sequence (fusion expression with dCAS9 protein), hygromycin resistance gene and gRNA are respectively put at the downstream of different promoters to be respectively expressed; wherein dCAS9 protein, 10XSuntag and VP64 are expressed by the Ribi bi-directional promoter, and gRNA is also expressed by the Ribi bi-directional promoter. The hygromycin resistance gene is expressed driven by the LDSP promoter (FIG. 1); meanwhile, dCAS9 protein, a specific sequence for enhancing transcriptional activation and transcriptional activation effector protein are all connected by a leader nuclear localization signal before; the specific process is as follows: firstly, carrying out point mutation design on a functional domain of a cleavage target sequence of a Cas9 protein of a primary carrier, and then synthesizing a DNA sequence of a dCAS9 protein with optimized codons (enzyme cleavage sites PspXI and HpaI are designed at two ends and used for replacing the Cas9 protein of the primary carrier), so as to obtain a carrier of the inactivated dCAS9 protein; next, sunTag sequence and VP64 domain were synthesized, the two domains were sequence synthesized in the same reading frame, and cleavage sites (HpaI and NheI) were designed at both ends, and the two cleavage sites were used to ligate into a vector containing dCas9 protein in the previous step, thereby obtaining a transcription activation vector (CRISPR/dCas 9-SunTag-VP 64) (fig. 1).
2. gRNA design and construction of transcription activation vector
The gRNA design of the transcription activation vector used in this example uses the ChopChop (http:// ChopChop. Cbu. Uib. No /) software to select the target gene (g 1248; the potential involved in the transcription activation of genes, i.e., the promoter region or transcription initiation site upstream sequence that may be capable of activating the expression of genes related to some economic traits, such as activating photosynthetic carbon fixation or oil accumulation, etc.) as the target site region (CGACGTGAAGAAACGATGCAGGG; red GGG is a PAM site), and then designs the synthetic primer F:
5-cgaACGTCGctgatgagtccgtgaggacgaaacgagtaagctcgtcCGACGTGAAGAAACGATGCA-3; and, a step of, in the first embodiment,
R5-AAATGCATCGTTTCTTCACGTCGgacgagcttactcgtttcgtcctcacggactcatcagCGACGT-3, firstly mixing forward and reverse primers in equal volume ratio, boiling in water bath at 100 ℃ for 10 minutes, then naturally cooling to room temperature to form double chains, finally connecting with a transcription activation vector (CRISPR/dCAS 9-Suntag-VP 64) by using T4 ligase to obtain the dCAS9-SunTag-VP64/gRNA gene transcription activation system of the nannochloropsis, wherein the base sequence of the system is shown as SEQ ID NO. 1, converting E.coli DH5 alpha, and finally obtaining positive clone pSV64. After culturing pSV64 in liquid, the plasmid was extracted and digested with the restriction enzyme AseI to linearize the fragment (at a concentration of 1. Mu.g/. Mu.L or more) for the next electrotransformation.
Full sequence of EQ ID NO. 1 transcription activation vector
Transcription activation vector complete sequence (reverse)
accggtttcttagacggatcgcttgcctgtaacttacacgcgcctcgtatcttttaatgatggaataatttgggaatttactctgtgtttatttatttttatgttttgtatttggattttagaaagtaaataaagaaggtagaagagttacggaatgaagaaaaaaaaataaacaaaggtttaaaaaatttcaacaaaaagcgtactttacatatatatttattagacaagaaaagcagattaaatagatatacattcgattaacgataagtaaaatgtaaaatcacaggattttcgtgtgtggtcttctacacagacaagatgaaacaattcggcattaatacctgagagcaggaagtacaagataaaaggtagtatttgttggcgatccccctagagtcttttacatcttcggaaaacaaaaactattttttctttaatttctttttttactttctatttttaatttatatatttatattaaaaaatttaaattataattatttttatagcacgtgatgaaaaggacccaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggtttaaaccaggtcactggattttggttttaggaattagaaattttattgatagaagtattttacaaatacaaatacatactaagggtttcttatatgctcaacacatgagcgaaaccctataagaaccctaattcccttatctgggaactactcacacattattctggagaaaaatagagagagatagatttgtagagagagactggtgatttttgcggactccggtcggcatctactactagcctattcctttgccctcggacgagtgctggggcgtcggtttccactatcggcgagtacttctacacagccatcggtccagacggccgcgcttctgcgggcgatttgtgtacgcccgacagtcccggctccggatcggacgattgcgtcgcatcgaccctgcgcccaagctgcatcatcgaaattgccgtcaaccaagctctgatagagttggtcaagaccaatgcggagcatatacgcccggagccgcggcgatcctgcaagctccggatgcctccgctcgaagtagcgcgtctgctgctccatacaagccaaccacggcctccagaagaagatgttggcgacctcgtattgggaatccccgaacatcgcctcgctccagtcaatgaccgctgttatgcggccattgtccgtcaggacattgttggagccgaaatccgcgtgcacgaggtgccggacttcggggcagtcctcggcccaaagcatcagctcatcgagagcctgcgcgacggacgcactgacggtgtcgtccatcacagtttgccagtgatacacatggggatcagcaatcgcgcatatgaaatcacgccatgtagtgtattgaccgattccttgcggtccgaatgggccgaacccgctcgtctggctaagatcggccgcagcgatcgcatccatggcctccgcgaccggctgcagaacagcgggcagttcggtttcaggcaggtcttgcaacgtgacaccctgtgcacggcgggagatgcaataggtcaggctctcgctgaattccccaatgtcaagcacttccggaatcgggagcgcggccgatgcaaagtgccgataaacataacgatctttgtagaaaccatcggcgcagctatttacccgcaggacatatccacgccctcctacatcgaagctgaaagcacgagattcttcgccctccgagagctgcatcaggtcggagacgctgtcgaacttttcgatcagaaacttctcgacagacgtcgcggtgagttcaggctttttcatatcttattgccccccggggccctcgactgtgttgatgcgggctgagattggtggtggtctatcacgaatatgtgtgaggggtaagtgcggtgttttgcgtgagattttagaatattgccccgccccggggcaggccggcgtggcggaacaaccaggcacacgagcgcgaatggtgataccgacggagtcaaaactttgtgacaagtagctgcaccatgggcagtggtgagctttcagacgtggtatcactgtccactagttcacacacagaatgcgtgtccaaaaggtctagagccgtctcgcttgcgtctctccgtcgaagaacagtgaagaggctcgtcacgtcgaccagacgacgggaggctggtcaccatcgcagatgtctcccacaaagcagcacggcaactcctactccttcacacaatggaagaaaaggtggtctgatggttctcagtggaaaagaacgatatcaggctgaaaaaaatgatctgcaggctccagattcctgaatcacgtcgactgtgacgaagcaaaccgcgtcgaacaacatcggtcatgccaacgggtctcgtctctcgagcccttttggcggcgactaagaagtatgaagcttcaggccgcaacgcgcgacacagcgttttgtgtggtgggcctcggcattgctctttgcatggcccagcgtgattagtgcgtggattttaagcccgagaccgaaggattgcgacatgtgcctggctgtataactcacgcttgctgctacgctcgcctcctcctccatccactccatcgcggccgccatggcctctagtggatcagcttgcatgcctgcaggagacgatatcacctcttctgtttccacgataaaaatagactgctcatttcttcgtcgtcttcatcgtctgctttttctgcttcgcctctgtctggggtctgaaaccactacacacacacacaacactcgtactcccactttcacaaaagcgtaagctcaccggcttttcttacacgtacattttagtggatcccatcacgccactaccacgcccgcgggggatggaacggaggggagagagagaagggggaagcatggatgaatgagacattgagggaaaggaggggagggagcagtccatcagggcgctacctctcttgtcccccaaaccctgttgagccgttcaacatgtttcatgtttcctccctccccccttccctccctggcctttccgcggagccattcaagtgacgtctggaccgcaccgtaacaaaatcgtttctatggggggtttgtttgacaaccacgtcttcagcgtttttaaaaaaaaaagcgggcaagccctctcaccctcactcatgcccatcctcctcctctcctgcggaacattcttacaaaaggcgtaactcgacgacaactcaaagaacgacaaacatcaatcccaaaaaaaaaatctctactcgtctctcttggatctttCCAATTGTCAGACCTTCCTCTTCTTTTTCGGGCTAGCcaccatGGACGCGTAGTCGGGCACGTCGTAGGGGTACAGCATGTCCAGGTCGAAGTCATCCAGGGCGTCCGAACCCAGCATATCCAGGTCGAAGTCGTCCAGCGCGTCCGAGCCCAGCATGTCCAGGTCAAAGTCGTCCAGGGCGTCCGAGCCCAGCATGTCGAGGTCGAAGTCGTCCAGCGCGTCCGCGTCCTCGACCTTGCGCTTCTTCTTCGGGTCCTCGGAGCCGCCGCCCGAGCCGCCACCCTTCTTCAGGCGGGCGACCTCATTCTCCAGGTGGTAGTTCTTGCTCAACAGCTCCTCGCCCGAGCCAGAGCCCTTCTTGAGGCGCGCGACCTCGTTCTCCAGGTGATAGTTCTTCGACAGGAGCTCCTCTCCGGATCCGGAGCCCTTCTTGAGGCGGGCCACTTCGTTCTCGAGGTGGTAGTTTTTGCTCAGGAGCTCCTCGCCGCTGCCGCTGCCCTTCTTTAGGCGCGCGACCTCGTTCTCGAGGTGGTAGTTCTTCGAGAGCAGCTCCTCCCCCGAGCCGCTGCCCTTCTTCAGACGGGCAACCTCGTTCTCAAGGTGGTAATTCTTCGACAGCAGTTCCTCGCCGGAGCCGGAGCCCTTCTTAAGGCGGGCAACCTCGTTCTCCAGATGGTAATTCTTGGAGAGAAGCTCCTCACCGCTGCCCGAGCCCTTCTTCAGCCGGGCCACCTCGTTCTCAAGGTGGTAGTTTTTGGACAGCAGTTCCTCGCCCGAGCCGGAACCCTTCTTCAGGCGGGCCACCTCGTTTTCGAGGTGGTAATTCTTGCTCAGCAGCTCCTCACCGCTGCCCGAGCCCTTCTTAAGGCGGGCCACTTCGTTCTCCAGATGGTAGTTCTTGCTGAGCAGCTCCTCGCCGCTGCCCGATCCCTTCTTGAGCCGCGCCACCTCGTTCTCGAGATGGTAGTTCTTCGACAGCAGCTCCTCCTCGGCGGCGTCGGTCGGGCCGTTCGAGCCGGACGAGCCGTTCGAGCCGGAGCCGATGCCGTCGACCTTGCGTTTCTTCTTCGGGGCGTCCTCGACCTTACGCTTCTTCTTGGGGTCCTCCACCTTGCGCTTCTTCTTCGGGTTAACGgacccgctgccggacccgtcagccctgctgtctccaccgagctgagagaggtcgattcttgtttcatagagccccgtaattgactgatgaatcagtgtggcgtccaggacctcctttgtagaggtgtaccgctttctgtctatggtggtgtcgaagtacttgaaggctgcaggcgcgcccaagttggtcagagtaaacaagtggataatgttttctgcctgctccctgatgggcttatccctgtgcttattgtaagcagaaagcaccttatcgaggttagcgtcggcgaggatcactcttttggagaattcgcttatttgctcgatgatctcatcaaggtagtgtttgtgttgttccacgaacagctgcttctgctcattatcttcgggagaccctttgagcttttcatagtggctggccagatacaagaaattaacgtatttagagggcagtgccagctcgttacctttctgcagctcgcccgcactagcgagcattcgtttccggccgttttcaagctcaaagagagagtacttgggaagcttaatgatgaggtcttttttgacctctttatatcctttcgcctcgagaaagtcgatggggtttttttcgaagcttgatcgctccatgattgtgatgcccagcagttccttgacgcttttgagttttttagacttccctttctccactttggccacaaccagtacactgtaagcgactgtaggagaatcgaatccgccgtatttcttggggtcccaatcttttttgcgtgcgatcagcttgtcgctgttccttttcgggaggatactttccttggagaagcctccggtctgtacttcggtctttttaacgatgttcacctgcggcatggacaggaccttccggactgtcgcgaaatccctacccttgtcccacacgatttctcctgtttctccgtttgtttcgataagtggtcgcttccgaatctctccattggccagtgtaatctcggtcttgaaaaaattcataatattgctgtaaaagaagtacttagcggtggccttgcctatttcctgctcagactttgcgatcattttcctaacatcgtacactttatagtctccgtaaacaaattcagattcaagcttgggatattttttgataagtgcagtgcctaccactgcattcaggtaggcatcatgcgcatggtggtaattgttgatctctctcaccttataaaactgaaagtcctttctgaaatctgagaccagcttagacttcagagtaataactttcacctctcgaatcagtttgtcattttcatcgtacttggtgttcatgcgtgaatcgagaatttgggccacgtgcttggtgatctggcgtgtctcaacaagctgccttttgatgaagccggctttatccaactcagacaggccacctcgttcagccttagtcagattatcgaacttccgttgtgtgatcagtttggcgttcagcagctgccgccaataatttttcattttcttgacaacttcttctgaggggacgttatcactcttccctctatttttatcggatcttgtcaacactttattatcaatagaatcatctttgagaaaagactggggcacgatggcatccacgtcgtagtcggagagccgattgatgtccagttcctgatccacgtacatgtccctgccgttctgcaggtagtacaggtagagcttctcattctgaagctgggtgttttcaactgggtgttccttaaggatttgggaccccagttcttttataccctcttcaatcctcttcatcctttccctactgttcttctgtcccttctgggtagtttggttctctcgggccatctcgataacgatattctcgggcttatgccttcccattactttgacgagttcatccacgaccttaacggtctgcagtattccctttttgatagctgggctacctgcaagattagcgatgtgctcgtgaagactgtccccctggccagaaacttgtgctttctggatgtcctccttaaaggtgagagagtcatcatggatcaactgcatgaagttccggttggcaaatccatcggacttaagaaaatccaggattgtctttccactctgcttgtctcggatcccattgatcagttttcttgacagccgcccccatcctgtatatcggcgcctcttgagctgtttcatgactttgtcgtcgaagagatgagcgtaagttttcaagcgttcttcaatcatctccctatcttcaaacaacgtaagggtgaggacaatgtcctcaagaatgtcctcgttctcctcattgtccaggaagtccttgtctttaatgattttcaggagatcgtgatacgttcccagggatgcgttgaagcgatcctccactccgctgatttcaacagagtcgaaacattcaatctttttgaaatagtcttctttgagctgtttcacggtaactttccggttcgtcttgaagaggaggtccacgatagctttcttctgctctccagacaggaatgctggctttctcatcccttctgtgacgtatttgaccttggtgagctcgttataaactgtgaagtactcgtacagcagagagtgtttaggaagcaccttttcgttaggcagatttttatcaaagttagtcatcctttcgatgaaggactgggcagaggcccccttatccacgacttcctcgaagttccagggagtgatggtctcttctgatttgcgagtcatccacgcgaatctggaatttccccgggcgagggggcctacatagtagggtatccgaaatgtgaggattttctcaatcttttccctgttatctttcaaaaaggggtagaaatcctcttgccgcctgaggatagcgtgcagttcgcccaggtgaatctggtgggggatgcttccattgtcgaaagtgcgctgtttgcgcaacagatcttctctgttaagctttaccagcagctcctcggtgccgtccattttttccaagatgggcttaataaatttgtaaaattcctcctggcttgctccgccgtcaatgtatccggcgtagccatttttagactgatcgaagaaaatttccttgtacttctcaggcagttgctgtctgacaagggccttcagcaaagtcaagtcttggtggtgctcatcatagcgcttgatcatactagcgctcagcggagctttggtgatctccgtgttcactcgcagaatatcactcagcagaatggcgtctgacaggttctttgccgccaaaaaaaggtctgcgtactggtcgccgatctgggccagcagattgtcgagatcatcatcgtaggtgtctttgctcagttgaagcttggcatcttcggccaggtcgaagttagatttaaagttgggggtcagcccgagtgacagggcgataagattaccaaacaggccgttcttcttctccccagggagctgtgcgatgaggttttcgagccgccgggatttggacagcctagcgctcaggattgctttggcgtcaactccggatgcgttgatcgggttctcttcgaaaagctgattgtaagtctgaaccagttggataaagagtttgtcgacatcgctgttgtctgggttcaggtccccctcgatgaggaagtgtccccgaaatttgatcatatgcgccagcgcgagatagatcaaccgcaagtcagccttatcagtactgtctacaagcttcttcctcagatgatatatggttgggtacttttcatggtacgccacctcgtccacgatattgccaaagattgggtggcgctcgtgctttttatcctcctccaccaaaaaggactcctccagcctatggaagaaagagtcatccaccttagccatctcattactaaagatctcctgcaggtagcagatccgattctttctgcgggtatatctgcgccgtgctgttcttttgagccgcgtggcttcggccgtctccccggagtcgaacaggagggcgccaatgaggttcttctttatgctgtggcgatcggtattgcccagaactttgaattttttgctcggcaccttgtactcgtccgtaatgacggcccagccgacgctgtttgtgccgatggcgagcccaatggagtacttcttgtccaccttccgctttttcttgggcatgctcgagggttgcgtgtgtatctgtgtgcagtggatattgttaccgagtttggtgagcgtgagtccgttagtgccctggtggtggtggattaggagagtgggtgactcggtgtccatggctttcttcgctcattataggaggggaaaggaatgagggagggtggggagaccgcgtctgttgttgaccaccgatttacttcttgcctcccttcccctccctcccctcaatccgtacgacacaaatagtagccgagtgtctgctgcagagcgcatgattagtgtggtagacaacgagggagggaaggatgtacagggcatggcacggagaagcgatggtggccaggaagaggagaggtcgcgagaacaggatgtgttgcgaatggataaaaacagaaagcgatggctctgggcttcgaaagcaggggacattaggacgtgtagaccatctcgacggatccctctgtatctctgttgtgcgtgaatgttttctgtgcacgtgtagtgtgtgagagtagaacccgggaactcgaacagagaaaagcatgggtggctgtggtgtggaggcttcgttcccaccacatgcccttctccttcgcctcgcctctccctgccttcttccacgcacccttgcgcccctcgttctcaatacctggctcacttccaccattcaaacaaccatcacgatacaggcatttatctatcgttgaagacttcttcctccggtagatcttagccaaggtaagaagaggggcatgcagcaaggagaaagaaatgatgcatgatgaggaatagaaggggaggagggagggatatgatgggaagcgaaagcgcatattctggtggtctgctgcctgatggggacgcgtctagctgtgacactgaggacggtggctgctggtggctgcgggcgctgccttggtgatcaatgggagtaaagggagggaaggaggtagcgtgaacggatgacgcggagaagtttaggggtctctttacgtatcgcccctgccgcccgcctctctgcgataaatgtgcctgttaccctgcagcctctattcttcactgtgttcctgttttccaacagcctctattcttccctgtcttttgttgcagtggcgtcatcctctctttgccccagtcgtcgttctctcgactcactcactccccccctccttccctccctccatccacagaatcgatgaagagcaggccttggctcttcgttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcttttggccggcatggtcccagcctcctcgctggcgccggctgggcaacatgcttcggcatggcgaatgggactcctgggtaccatgggaaagaaaggatgagaaaggagaaaggacatctagataaccggcatatcacggtggtgtattagtgtagaatagtgaagagaagacttgggaaaatgtgtaggaaaggttgtttctgtgtatgtgggttgggatgggtggctgtttgagaaggaacagcgggcagggcgatgtagtgctgaacgggcacggaaccactgagactgaaggaagtagggagagagaggggcaggggacgtgcactttaatctttgcctcggtagagtatacccatgcaagagtatgtggccacctgtggtggcttttggccaggtctggtgcagtgccaatcatctcccatcaataatacaacttcagaacaacggcgcattgatggggagagagaaagtaaatttaagtaaggggtacgtagtagaggattcaactgaaatattttcgaggagcggttgggaagttgaccgattgaaaggagaagggaggggagcaggtgtgatagtcatgtgtaaagtaattcttttttgccgtcgtcacacaatccacatcaatgataaaatatgtttaaggatcaatcacacggagtcggtcataaggcaaccgcaaacgcaatgcaaactagcaagcaagcaggaccacaacaacaaccattaccatcacaggcgacagcagcagcagctgcagcagcagcaaggcaagcaaaggccatctgcgcgtggacttttccaggcaccggctttaagcgtaattttcaatgattgttgtccgtgtatcctctcaccctttcaccgcttgcgcgcacgtgagcagcacaactggtaatgcccgaggacaatagacgaggaaaaagaagaagaaaaatgaagagggagtgatgaagaagaagagaagaataaaagaagacagaaaagaagataaaaaagtcaaaagacgacaaagacggaaaaaaaagaaacgcgcaattttaacaccagcaacgacgacgaaaagggcgtcagctttgc
Length of DNA sequence: 12782bp
dCAS9 sequence (3 '-5'): from 6279bp to 10379bp, the length is 4101bp
VP64 sequence (3 '-5'): from 5187bp to 5336bp, the length is 150bp
SunTag sequence (3 '-5'): from 5397bp to 6101bp, the length is 705bp
Resistance gene Hyg sequence (3 '-5'): from 2617bp to 3642bp with length 1026bp
Promoter Ribi sequence (3 '-5'): from 10411bp to 11594bp, the length is 1184bp
The nuclear localization signal SLV40 sequence is: CCGAAAAAGAAGAGGAAGGTC
3. Electroporation method of introducing linearized vector fragment into nannochloropsis and selecting monoclonal
Taking Chlorella liquid cultured to logarithmic phase 1 hr before transformation, and its concentration is about 1-3×10 7 cells/mL, centrifuged at 4500g for 5min at 4deg.C, the supernatant discarded, rinsed 2 times with 375mM sorbitol solution (pre-chilled to 4deg.C) and finally adjusted to a cell concentration of 2X 10 with 375mM sorbitol 8 cells/mL. The concentrated algae bodies were split into 200. Mu.l aliquots, each aliquot was added with 3-10. Mu.g of the linearized vector obtained in step two above and 1. Mu.l of denatured salmon sperm DNA (to a final concentration of 15. Mu.g/mL), and the mixture was placed on ice for 10min. After precooling, the mixture of algae liquid and carrier was transferred into a 2mm shock transforming cup, shocked at 2200V (HV), 50 μf, immediately after which algae were transferred into 5mL fresh F/2 medium. Culturing and recovering at low speed of 50rpm in a 25 ℃ shaking table, and recovering for 48 hours in weak light or darkness. Microalgae cells were spread evenly on f/2 solid plates of hygromycin (5. Mu.g/ml), after 15-25 days of culture, 10-20 were picked and placed on a 24-well plate for 14 days of culture. Colony PCR was used to verify whether the transformants were transformed successfully.
4. qPCR verification of transformant strain and target gene expression level by algae colony or algae liquid PCR method
Transformants were selected by the algae-colony or algae-liquid PCR method, i.e., 2. Mu.l of algae liquid was taken in using Q5 buffer produced by NEB company as a lysate, 2. Mu.l of Q5 buffer was added, and water was added to supplement 10. Mu.l, the mixture was boiled in boiling water for 10min or heated on a thermocycler for 10min, and after cooling to room temperature or 4 ℃, PCR amplification was performed by polymerase chain reaction with a premix of primers and Taq enzyme for PCR, and the transformants were verified by electrophoresis of the PCR products (FIG. 2). The positive transformants were subjected to liquid expansion culture for verification of the expression level of the target gene.
The mutant strain and the wild strain obtained are respectively treated with CO at the air level 2 Culturing under concentration, and controlling light intensity to be consistent at 50umol/m 2 The aeration rate was 100ml/min. Collecting microalgae when the microalgae is cultivated to logarithmic phase, centrifuging for 5min at 5000g, rapidly freezing with liquid nitrogen, and storing at-80deg.C.
The experimental measurement of the expression abundance of the mutant strain is divided into the following three steps:
extracting RNA in the first step, extracting RNA from cryopreserved algae cells (mutant strain or wild type), crushing algae cells by liquid nitrogen grinding, generally liquid nitrogen grinding for 5-10min, adding 1ml Trizol (Invitrogen company), rapidly and fully mixing, adding 200ul chloroform, centrifuging at 12000rpm for 10min, sucking supernatant, transferring to a new eppendorf tube, adding equal volume chloroform, fully shaking, mixing, standing for 2-3min, centrifuging at 12000rpm for 10min, transferring supernatant to a new centrifuge tube, adding equal volume isopropanol, precipitating at room temperature for 15min, centrifuging for 15min, washing precipitate with 75% ethanol, blow drying, and adding ddH processed with 50ul DEPC 2 O, after measuring the concentration of RNA, storing at-80 ℃ for standby;
second, cDNA preparation, the RNA samples obtained above were subjected to Takara reagent
Figure BDA0002772426210000141
RT reagent Kit With gDNA Eraser kit the procedure illustrates the synthesis of cDNA using random primers, remarking a genomic DNA removal reaction system of 20ul, which includes 2ug total RNA, 5X reaction buffer and gDNA Eraser enzyme;
third, fluorescent quantitative PCR reaction is performed by
Figure BDA0002772426210000142
(rapid with Roche)And starting the universal green fluorescence) fluorescent quantitative qRT-PCR for quantification. The PCR reaction system was 1ul of cDNA (from the reverse transcription preparation of the previous step), 1ul of forward and reverse primers, 10ul of 2X Roche FastStart SYBR Green Master (ROX), and ddH 2 O was added 7ul to 20ul, with the primer sequence being forward primer: 5 'tccgagaaatattgcgtccatgg 3'; reverse primer: 5 'TAATTTCCTCCAGCAACCAGGTGA 3'. The reaction conditions were performed with reference to the Roche kit. Analysis of real-time fluorescence qPCR result data using 2 -ΔΔCt In the method, the method comprises the steps of, wherein the method comprises the steps of ΔΔΔCt the value is (Ct CA-2209 gene -Ct Reference gene ) Mutant strains -(Ct CA-2209 gene -Ct Reference gene ) Wild type
The relative wild type gene expression abundance of the g1248 gene in the mutant was calculated by the above method, and as a result, it was confirmed that the g1248 gene expression abundance of the mutant (M4 or M7) was at air level CO 2 Expression of the g1248 gene was significantly higher than wild-type g1248 under concentrated culture conditions, confirming that the g1248 gene was activated at the transcriptional level, approximately up-regulated 2-7-fold (fig. 3).
5. Physiological phenotype identification of target gene methyltransferase transcriptional activation mutants
The wild microalgae and the mutant strain (M4 and M7 are selected from the figure 4) are respectively inoculated into a fresh f/2 liquid culture medium in a 200ml column reactor, and are cultivated under the condition of ventilation, and physiological indexes such as a growth curve and photosynthesis parameters Fv/Fm are measured every day and cultivated for 6 days.
As a result of measurement, as shown in FIG. 5, the mutant strain was found to be at the air level CO 2 Growth was significantly faster than the wild type at the concentration, and the growth rate increased by more than 20% over 10 days of culture (FIGS. 4 and 5). In addition, the photosynthesis parameters Fv/Fm of the mutant strain were also increased by 15% as compared to the wild type (FIG. 6), further confirming that the gene may regulate its function by affecting methylation of the photosynthesis gene. Therefore, the gene function of methyltransferase g1248 was initially verified by the gene transcription activation method, and the gene plays an important role in the growth of nannochloropsis, probably capable of indirectly regulating and controlling CO 2 The specific function of this gene is to be studied intensively, for the fixation or important enzymes of photosynthesis.
6. Design of simultaneous transcriptional activation of multiple genes
To achieve simultaneous transcriptional activation of multiple genes, the gRNA sequences of multiple genes may be designed, then the multiple gRNA sequences designed (i.e., different grnas are designed corresponding to the different target genes associated with the trait) are concatenated with a short intermediate sequence (the short intermediate sequence may be a 20-40bp random sequence, no frame of reading may be considered, no special requirements such as CTTACCGCATGACTAATCTTTAAGGCTA), and BspQI cleavage sites are designed at both ends of the multiple gRNA tandem sequences, by which sites multiple grnas may be expressed synchronously with the vector described above under the driving of the initiation. Then, dCAS9 protein and a corresponding transcription activation domain are targeted to a plurality of specific genes by utilizing the guiding function of the gene, so that the simultaneous transcription activation of a plurality of genes can be realized, and the genes in the same metabolic pathway can be designed as target genes, so that the whole metabolic pathway is activated.
Sequence listing
<110> university of Hainan teachers and students
<120> construction of CRISPRa system for transcriptional activation of marine nannochloropsis and application thereof
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 12782
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 1
accggtttct tagacggatc gcttgcctgt aacttacacg cgcctcgtat cttttaatga 60
tggaataatt tgggaattta ctctgtgttt atttattttt atgttttgta tttggatttt 120
agaaagtaaa taaagaaggt agaagagtta cggaatgaag aaaaaaaaat aaacaaaggt 180
ttaaaaaatt tcaacaaaaa gcgtacttta catatatatt tattagacaa gaaaagcaga 240
ttaaatagat atacattcga ttaacgataa gtaaaatgta aaatcacagg attttcgtgt 300
gtggtcttct acacagacaa gatgaaacaa ttcggcatta atacctgaga gcaggaagta 360
caagataaaa ggtagtattt gttggcgatc cccctagagt cttttacatc ttcggaaaac 420
aaaaactatt ttttctttaa tttctttttt tactttctat ttttaattta tatatttata 480
ttaaaaaatt taaattataa ttatttttat agcacgtgat gaaaaggacc caggtggcac 540
ttttcgggga aatgtgcgcg gaacccctat ttgtttattt ttctaaatac attcaaatat 600
gtatccgctc atgagacaat aaccctgata aatgcttcaa taatattgaa aaaggaagag 660
tatgagtatt caacatttcc gtgtcgccct tattcccttt tttgcggcat tttgccttcc 720
tgtttttgct cacccagaaa cgctggtgaa agtaaaagat gctgaagatc agttgggtgc 780
acgagtgggt tacatcgaac tggatctcaa cagcggtaag atccttgaga gttttcgccc 840
cgaagaacgt tttccaatga tgagcacttt taaagttctg ctatgtggcg cggtattatc 900
ccgtattgac gccgggcaag agcaactcgg tcgccgcata cactattctc agaatgactt 960
ggttgagtac tcaccagtca cagaaaagca tcttacggat ggcatgacag taagagaatt 1020
atgcagtgct gccataacca tgagtgataa cactgcggcc aacttacttc tgacaacgat 1080
cggaggaccg aaggagctaa ccgctttttt gcacaacatg ggggatcatg taactcgcct 1140
tgatcgttgg gaaccggagc tgaatgaagc cataccaaac gacgagcgtg acaccacgat 1200
gcctgtagca atggcaacaa cgttgcgcaa actattaact ggcgaactac ttactctagc 1260
ttcccggcaa caattaatag actggatgga ggcggataaa gttgcaggac cacttctgcg 1320
ctcggccctt ccggctggct ggtttattgc tgataaatct ggagccggtg agcgtgggtc 1380
tcgcggtatc attgcagcac tggggccaga tggtaagccc tcccgtatcg tagttatcta 1440
cacgacgggg agtcaggcaa ctatggatga acgaaataga cagatcgctg agataggtgc 1500
ctcactgatt aagcattggt aactgtcaga ccaagtttac tcatatatac tttagattga 1560
tttaaaactt catttttaat ttaaaaggat ctaggtgaag atcctttttg ataatctcat 1620
gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg tagaaaagat 1680
caaaggatct tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa 1740
accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc tttttccgaa 1800
ggtaactggc ttcagcagag cgcagatacc aaatactgtt cttctagtgt agccgtagtt 1860
aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc taatcctgtt 1920
accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact caagacgata 1980
gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt 2040
ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag aaagcgccac 2100
gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg gaacaggaga 2160
gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg 2220
ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga gcctatggaa 2280
aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat 2340
gttctttcct gcgttatccc ctgattctgt ggtttaaacc aggtcactgg attttggttt 2400
taggaattag aaattttatt gatagaagta ttttacaaat acaaatacat actaagggtt 2460
tcttatatgc tcaacacatg agcgaaaccc tataagaacc ctaattccct tatctgggaa 2520
ctactcacac attattctgg agaaaaatag agagagatag atttgtagag agagactggt 2580
gatttttgcg gactccggtc ggcatctact actagcctat tcctttgccc tcggacgagt 2640
gctggggcgt cggtttccac tatcggcgag tacttctaca cagccatcgg tccagacggc 2700
cgcgcttctg cgggcgattt gtgtacgccc gacagtcccg gctccggatc ggacgattgc 2760
gtcgcatcga ccctgcgccc aagctgcatc atcgaaattg ccgtcaacca agctctgata 2820
gagttggtca agaccaatgc ggagcatata cgcccggagc cgcggcgatc ctgcaagctc 2880
cggatgcctc cgctcgaagt agcgcgtctg ctgctccata caagccaacc acggcctcca 2940
gaagaagatg ttggcgacct cgtattggga atccccgaac atcgcctcgc tccagtcaat 3000
gaccgctgtt atgcggccat tgtccgtcag gacattgttg gagccgaaat ccgcgtgcac 3060
gaggtgccgg acttcggggc agtcctcggc ccaaagcatc agctcatcga gagcctgcgc 3120
gacggacgca ctgacggtgt cgtccatcac agtttgccag tgatacacat ggggatcagc 3180
aatcgcgcat atgaaatcac gccatgtagt gtattgaccg attccttgcg gtccgaatgg 3240
gccgaacccg ctcgtctggc taagatcggc cgcagcgatc gcatccatgg cctccgcgac 3300
cggctgcaga acagcgggca gttcggtttc aggcaggtct tgcaacgtga caccctgtgc 3360
acggcgggag atgcaatagg tcaggctctc gctgaattcc ccaatgtcaa gcacttccgg 3420
aatcgggagc gcggccgatg caaagtgccg ataaacataa cgatctttgt agaaaccatc 3480
ggcgcagcta tttacccgca ggacatatcc acgccctcct acatcgaagc tgaaagcacg 3540
agattcttcg ccctccgaga gctgcatcag gtcggagacg ctgtcgaact tttcgatcag 3600
aaacttctcg acagacgtcg cggtgagttc aggctttttc atatcttatt gccccccggg 3660
gccctcgact gtgttgatgc gggctgagat tggtggtggt ctatcacgaa tatgtgtgag 3720
gggtaagtgc ggtgttttgc gtgagatttt agaatattgc cccgccccgg ggcaggccgg 3780
cgtggcggaa caaccaggca cacgagcgcg aatggtgata ccgacggagt caaaactttg 3840
tgacaagtag ctgcaccatg ggcagtggtg agctttcaga cgtggtatca ctgtccacta 3900
gttcacacac agaatgcgtg tccaaaaggt ctagagccgt ctcgcttgcg tctctccgtc 3960
gaagaacagt gaagaggctc gtcacgtcga ccagacgacg ggaggctggt caccatcgca 4020
gatgtctccc acaaagcagc acggcaactc ctactccttc acacaatgga agaaaaggtg 4080
gtctgatggt tctcagtgga aaagaacgat atcaggctga aaaaaatgat ctgcaggctc 4140
cagattcctg aatcacgtcg actgtgacga agcaaaccgc gtcgaacaac atcggtcatg 4200
ccaacgggtc tcgtctctcg agcccttttg gcggcgacta agaagtatga agcttcaggc 4260
cgcaacgcgc gacacagcgt tttgtgtggt gggcctcggc attgctcttt gcatggccca 4320
gcgtgattag tgcgtggatt ttaagcccga gaccgaagga ttgcgacatg tgcctggctg 4380
tataactcac gcttgctgct acgctcgcct cctcctccat ccactccatc gcggccgcca 4440
tggcctctag tggatcagct tgcatgcctg caggagacga tatcacctct tctgtttcca 4500
cgataaaaat agactgctca tttcttcgtc gtcttcatcg tctgcttttt ctgcttcgcc 4560
tctgtctggg gtctgaaacc actacacaca cacacaacac tcgtactccc actttcacaa 4620
aagcgtaagc tcaccggctt ttcttacacg tacattttag tggatcccat cacgccacta 4680
ccacgcccgc gggggatgga acggagggga gagagagaag ggggaagcat ggatgaatga 4740
gacattgagg gaaaggaggg gagggagcag tccatcaggg cgctacctct cttgtccccc 4800
aaaccctgtt gagccgttca acatgtttca tgtttcctcc ctcccccctt ccctccctgg 4860
cctttccgcg gagccattca agtgacgtct ggaccgcacc gtaacaaaat cgtttctatg 4920
gggggtttgt ttgacaacca cgtcttcagc gtttttaaaa aaaaaagcgg gcaagccctc 4980
tcaccctcac tcatgcccat cctcctcctc tcctgcggaa cattcttaca aaaggcgtaa 5040
ctcgacgaca actcaaagaa cgacaaacat caatcccaaa aaaaaaatct ctactcgtct 5100
ctcttggatc tttccaattg tcagaccttc ctcttctttt tcgggctagc caccatggac 5160
gcgtagtcgg gcacgtcgta ggggtacagc atgtccaggt cgaagtcatc cagggcgtcc 5220
gaacccagca tatccaggtc gaagtcgtcc agcgcgtccg agcccagcat gtccaggtca 5280
aagtcgtcca gggcgtccga gcccagcatg tcgaggtcga agtcgtccag cgcgtccgcg 5340
tcctcgacct tgcgcttctt cttcgggtcc tcggagccgc cgcccgagcc gccacccttc 5400
ttcaggcggg cgacctcatt ctccaggtgg tagttcttgc tcaacagctc ctcgcccgag 5460
ccagagccct tcttgaggcg cgcgacctcg ttctccaggt gatagttctt cgacaggagc 5520
tcctctccgg atccggagcc cttcttgagg cgggccactt cgttctcgag gtggtagttt 5580
ttgctcagga gctcctcgcc gctgccgctg cccttcttta ggcgcgcgac ctcgttctcg 5640
aggtggtagt tcttcgagag cagctcctcc cccgagccgc tgcccttctt cagacgggca 5700
acctcgttct caaggtggta attcttcgac agcagttcct cgccggagcc ggagcccttc 5760
ttaaggcggg caacctcgtt ctccagatgg taattcttgg agagaagctc ctcaccgctg 5820
cccgagccct tcttcagccg ggccacctcg ttctcaaggt ggtagttttt ggacagcagt 5880
tcctcgcccg agccggaacc cttcttcagg cgggccacct cgttttcgag gtggtaattc 5940
ttgctcagca gctcctcacc gctgcccgag cccttcttaa ggcgggccac ttcgttctcc 6000
agatggtagt tcttgctgag cagctcctcg ccgctgcccg atcccttctt gagccgcgcc 6060
acctcgttct cgagatggta gttcttcgac agcagctcct cctcggcggc gtcggtcggg 6120
ccgttcgagc cggacgagcc gttcgagccg gagccgatgc cgtcgacctt gcgtttcttc 6180
ttcggggcgt cctcgacctt acgcttcttc ttggggtcct ccaccttgcg cttcttcttc 6240
gggttaacgg acccgctgcc ggacccgtca gccctgctgt ctccaccgag ctgagagagg 6300
tcgattcttg tttcatagag ccccgtaatt gactgatgaa tcagtgtggc gtccaggacc 6360
tcctttgtag aggtgtaccg ctttctgtct atggtggtgt cgaagtactt gaaggctgca 6420
ggcgcgccca agttggtcag agtaaacaag tggataatgt tttctgcctg ctccctgatg 6480
ggcttatccc tgtgcttatt gtaagcagaa agcaccttat cgaggttagc gtcggcgagg 6540
atcactcttt tggagaattc gcttatttgc tcgatgatct catcaaggta gtgtttgtgt 6600
tgttccacga acagctgctt ctgctcatta tcttcgggag accctttgag cttttcatag 6660
tggctggcca gatacaagaa attaacgtat ttagagggca gtgccagctc gttacctttc 6720
tgcagctcgc ccgcactagc gagcattcgt ttccggccgt tttcaagctc aaagagagag 6780
tacttgggaa gcttaatgat gaggtctttt ttgacctctt tatatccttt cgcctcgaga 6840
aagtcgatgg ggtttttttc gaagcttgat cgctccatga ttgtgatgcc cagcagttcc 6900
ttgacgcttt tgagtttttt agacttccct ttctccactt tggccacaac cagtacactg 6960
taagcgactg taggagaatc gaatccgccg tatttcttgg ggtcccaatc ttttttgcgt 7020
gcgatcagct tgtcgctgtt ccttttcggg aggatacttt ccttggagaa gcctccggtc 7080
tgtacttcgg tctttttaac gatgttcacc tgcggcatgg acaggacctt ccggactgtc 7140
gcgaaatccc tacccttgtc ccacacgatt tctcctgttt ctccgtttgt ttcgataagt 7200
ggtcgcttcc gaatctctcc attggccagt gtaatctcgg tcttgaaaaa attcataata 7260
ttgctgtaaa agaagtactt agcggtggcc ttgcctattt cctgctcaga ctttgcgatc 7320
attttcctaa catcgtacac tttatagtct ccgtaaacaa attcagattc aagcttggga 7380
tattttttga taagtgcagt gcctaccact gcattcaggt aggcatcatg cgcatggtgg 7440
taattgttga tctctctcac cttataaaac tgaaagtcct ttctgaaatc tgagaccagc 7500
ttagacttca gagtaataac tttcacctct cgaatcagtt tgtcattttc atcgtacttg 7560
gtgttcatgc gtgaatcgag aatttgggcc acgtgcttgg tgatctggcg tgtctcaaca 7620
agctgccttt tgatgaagcc ggctttatcc aactcagaca ggccacctcg ttcagcctta 7680
gtcagattat cgaacttccg ttgtgtgatc agtttggcgt tcagcagctg ccgccaataa 7740
tttttcattt tcttgacaac ttcttctgag gggacgttat cactcttccc tctattttta 7800
tcggatcttg tcaacacttt attatcaata gaatcatctt tgagaaaaga ctggggcacg 7860
atggcatcca cgtcgtagtc ggagagccga ttgatgtcca gttcctgatc cacgtacatg 7920
tccctgccgt tctgcaggta gtacaggtag agcttctcat tctgaagctg ggtgttttca 7980
actgggtgtt ccttaaggat ttgggacccc agttctttta taccctcttc aatcctcttc 8040
atcctttccc tactgttctt ctgtcccttc tgggtagttt ggttctctcg ggccatctcg 8100
ataacgatat tctcgggctt atgccttccc attactttga cgagttcatc cacgacctta 8160
acggtctgca gtattccctt tttgatagct gggctacctg caagattagc gatgtgctcg 8220
tgaagactgt ccccctggcc agaaacttgt gctttctgga tgtcctcctt aaaggtgaga 8280
gagtcatcat ggatcaactg catgaagttc cggttggcaa atccatcgga cttaagaaaa 8340
tccaggattg tctttccact ctgcttgtct cggatcccat tgatcagttt tcttgacagc 8400
cgcccccatc ctgtatatcg gcgcctcttg agctgtttca tgactttgtc gtcgaagaga 8460
tgagcgtaag ttttcaagcg ttcttcaatc atctccctat cttcaaacaa cgtaagggtg 8520
aggacaatgt cctcaagaat gtcctcgttc tcctcattgt ccaggaagtc cttgtcttta 8580
atgattttca ggagatcgtg atacgttccc agggatgcgt tgaagcgatc ctccactccg 8640
ctgatttcaa cagagtcgaa acattcaatc tttttgaaat agtcttcttt gagctgtttc 8700
acggtaactt tccggttcgt cttgaagagg aggtccacga tagctttctt ctgctctcca 8760
gacaggaatg ctggctttct catcccttct gtgacgtatt tgaccttggt gagctcgtta 8820
taaactgtga agtactcgta cagcagagag tgtttaggaa gcaccttttc gttaggcaga 8880
tttttatcaa agttagtcat cctttcgatg aaggactggg cagaggcccc cttatccacg 8940
acttcctcga agttccaggg agtgatggtc tcttctgatt tgcgagtcat ccacgcgaat 9000
ctggaatttc cccgggcgag ggggcctaca tagtagggta tccgaaatgt gaggattttc 9060
tcaatctttt ccctgttatc tttcaaaaag gggtagaaat cctcttgccg cctgaggata 9120
gcgtgcagtt cgcccaggtg aatctggtgg gggatgcttc cattgtcgaa agtgcgctgt 9180
ttgcgcaaca gatcttctct gttaagcttt accagcagct cctcggtgcc gtccattttt 9240
tccaagatgg gcttaataaa tttgtaaaat tcctcctggc ttgctccgcc gtcaatgtat 9300
ccggcgtagc catttttaga ctgatcgaag aaaatttcct tgtacttctc aggcagttgc 9360
tgtctgacaa gggccttcag caaagtcaag tcttggtggt gctcatcata gcgcttgatc 9420
atactagcgc tcagcggagc tttggtgatc tccgtgttca ctcgcagaat atcactcagc 9480
agaatggcgt ctgacaggtt ctttgccgcc aaaaaaaggt ctgcgtactg gtcgccgatc 9540
tgggccagca gattgtcgag atcatcatcg taggtgtctt tgctcagttg aagcttggca 9600
tcttcggcca ggtcgaagtt agatttaaag ttgggggtca gcccgagtga cagggcgata 9660
agattaccaa acaggccgtt cttcttctcc ccagggagct gtgcgatgag gttttcgagc 9720
cgccgggatt tggacagcct agcgctcagg attgctttgg cgtcaactcc ggatgcgttg 9780
atcgggttct cttcgaaaag ctgattgtaa gtctgaacca gttggataaa gagtttgtcg 9840
acatcgctgt tgtctgggtt caggtccccc tcgatgagga agtgtccccg aaatttgatc 9900
atatgcgcca gcgcgagata gatcaaccgc aagtcagcct tatcagtact gtctacaagc 9960
ttcttcctca gatgatatat ggttgggtac ttttcatggt acgccacctc gtccacgata 10020
ttgccaaaga ttgggtggcg ctcgtgcttt ttatcctcct ccaccaaaaa ggactcctcc 10080
agcctatgga agaaagagtc atccacctta gccatctcat tactaaagat ctcctgcagg 10140
tagcagatcc gattctttct gcgggtatat ctgcgccgtg ctgttctttt gagccgcgtg 10200
gcttcggccg tctccccgga gtcgaacagg agggcgccaa tgaggttctt ctttatgctg 10260
tggcgatcgg tattgcccag aactttgaat tttttgctcg gcaccttgta ctcgtccgta 10320
atgacggccc agccgacgct gtttgtgccg atggcgagcc caatggagta cttcttgtcc 10380
accttccgct ttttcttggg catgctcgag ggttgcgtgt gtatctgtgt gcagtggata 10440
ttgttaccga gtttggtgag cgtgagtccg ttagtgccct ggtggtggtg gattaggaga 10500
gtgggtgact cggtgtccat ggctttcttc gctcattata ggaggggaaa ggaatgaggg 10560
agggtgggga gaccgcgtct gttgttgacc accgatttac ttcttgcctc ccttcccctc 10620
cctcccctca atccgtacga cacaaatagt agccgagtgt ctgctgcaga gcgcatgatt 10680
agtgtggtag acaacgaggg agggaaggat gtacagggca tggcacggag aagcgatggt 10740
ggccaggaag aggagaggtc gcgagaacag gatgtgttgc gaatggataa aaacagaaag 10800
cgatggctct gggcttcgaa agcaggggac attaggacgt gtagaccatc tcgacggatc 10860
cctctgtatc tctgttgtgc gtgaatgttt tctgtgcacg tgtagtgtgt gagagtagaa 10920
cccgggaact cgaacagaga aaagcatggg tggctgtggt gtggaggctt cgttcccacc 10980
acatgccctt ctccttcgcc tcgcctctcc ctgccttctt ccacgcaccc ttgcgcccct 11040
cgttctcaat acctggctca cttccaccat tcaaacaacc atcacgatac aggcatttat 11100
ctatcgttga agacttcttc ctccggtaga tcttagccaa ggtaagaaga ggggcatgca 11160
gcaaggagaa agaaatgatg catgatgagg aatagaaggg gaggagggag ggatatgatg 11220
ggaagcgaaa gcgcatattc tggtggtctg ctgcctgatg gggacgcgtc tagctgtgac 11280
actgaggacg gtggctgctg gtggctgcgg gcgctgcctt ggtgatcaat gggagtaaag 11340
ggagggaagg aggtagcgtg aacggatgac gcggagaagt ttaggggtct ctttacgtat 11400
cgcccctgcc gcccgcctct ctgcgataaa tgtgcctgtt accctgcagc ctctattctt 11460
cactgtgttc ctgttttcca acagcctcta ttcttccctg tcttttgttg cagtggcgtc 11520
atcctctctt tgccccagtc gtcgttctct cgactcactc actccccccc tccttccctc 11580
cctccatcca cagaatcgat gaagagcagg ccttggctct tcgttttaga gctagaaata 11640
gcaagttaaa ataaggctag tccgttatca acttgaaaaa gtggcaccga gtcggtgctt 11700
ttggccggca tggtcccagc ctcctcgctg gcgccggctg ggcaacatgc ttcggcatgg 11760
cgaatgggac tcctgggtac catgggaaag aaaggatgag aaaggagaaa ggacatctag 11820
ataaccggca tatcacggtg gtgtattagt gtagaatagt gaagagaaga cttgggaaaa 11880
tgtgtaggaa aggttgtttc tgtgtatgtg ggttgggatg ggtggctgtt tgagaaggaa 11940
cagcgggcag ggcgatgtag tgctgaacgg gcacggaacc actgagactg aaggaagtag 12000
ggagagagag gggcagggga cgtgcacttt aatctttgcc tcggtagagt atacccatgc 12060
aagagtatgt ggccacctgt ggtggctttt ggccaggtct ggtgcagtgc caatcatctc 12120
ccatcaataa tacaacttca gaacaacggc gcattgatgg ggagagagaa agtaaattta 12180
agtaaggggt acgtagtaga ggattcaact gaaatatttt cgaggagcgg ttgggaagtt 12240
gaccgattga aaggagaagg gaggggagca ggtgtgatag tcatgtgtaa agtaattctt 12300
ttttgccgtc gtcacacaat ccacatcaat gataaaatat gtttaaggat caatcacacg 12360
gagtcggtca taaggcaacc gcaaacgcaa tgcaaactag caagcaagca ggaccacaac 12420
aacaaccatt accatcacag gcgacagcag cagcagctgc agcagcagca aggcaagcaa 12480
aggccatctg cgcgtggact tttccaggca ccggctttaa gcgtaatttt caatgattgt 12540
tgtccgtgta tcctctcacc ctttcaccgc ttgcgcgcac gtgagcagca caactggtaa 12600
tgcccgagga caatagacga ggaaaaagaa gaagaaaaat gaagagggag tgatgaagaa 12660
gaagagaaga ataaaagaag acagaaaaga agataaaaaa gtcaaaagac gacaaagacg 12720
gaaaaaaaag aaacgcgcaa ttttaacacc agcaacgacg acgaaaaggg cgtcagcttt 12780
gc 12782

Claims (6)

1. A marine nannochloropsis transcriptional activation crispla system vector, which is characterized in that the system vector comprises a Cas9 inactivating protein (namely dCas9 protein), a transcriptional activation effector protein VP64, a resistance selection marker gene, at least one gRNA scaffold sequence and a specific sequence SunTag sequence for enhancing transcriptional activation;
the system vector takes a Cas9 expression vector pNOC-ARS-CRISPR of the nannochloropsis as a framework, and contains an endogenous promoter and a terminator, wherein the promoter is a Ribi bidirectional promoter and a LDSP promoter, and the terminator is a LDSP terminator;
one end of a Ribi bidirectional promoter in the skeleton carrier is sequentially connected with dCAS9 protein, a specific sequence SunTag sequence for enhancing transcriptional activation and transcriptional activation effector protein VP64; the other end is connected with a gRNA bracket sequence which drives gRNA expression; the hygromycin resistance gene is positioned downstream of the skeleton vector LDSP promoter;
the Cas9 inactivated protein, the transcriptional activation effector protein VP64, the resistance selection marker gene, the gRNA bracket sequence and the specific sequence SunTag sequence for enhancing transcriptional activation are respectively corresponding gene sequences after the codon optimization of the nannochloropsis; wherein the coding nucleic acid sequence of the codon-optimized dCAS9 protein is from 6279bp to 10379bp in SEQ ID NO. 1, the coding nucleic acid sequence of the codon-optimized transcription activation effector protein VP64 is from 5187bp to 5336bp in SEQ ID NO. 1, the codon-optimized resistance selection marker gene is from 2617bp to 3642bp in SEQ ID NO. 1, and the codon-optimized specific sequence SunTag for enhancing transcription activation is from 5397bp to 6101bp in SEQ ID NO. 1.
2. A method of constructing the system carrier of claim 1, comprising the steps of:
(1) Constructing an expression vector containing Cas9 inactivated protein, transcriptional activation effector protein VP64 and a SunTag sequence for enhancing transcriptional activation by using a framework vector, and driving the expression by the same promoter;
(2) Construction of specific gRNA sequences the expression vector in step (1) is ligated to construct a transcription activation vector, i.e.the system vector of claim 1.
3. A method of constructing the system carrier of claim 1, comprising the steps of:
(1) Construction of recombinant plasmids: constructing a gene containing a Cas9 inactivated protein, a promoter and a terminator and a hygromycin resistance gene by utilizing a skeleton vector, and inactivating the original carrier Cas9 protein into dCS 9 protein;
(2) The transcriptional activation effector protein VP64 and the SunTag sequence for enhancing transcriptional activation are connected to the downstream of dCAS9 protein and are driven to express by the same promoter;
(3) At least one gRNA scaffold sequence is connected to the recombinant plasmid, so that a transcription activation vector, namely the system vector of claim 1, is constructed.
4. Use of the system vector of claim 1 in metabolic engineering and synthetic biology research of nannochloropsis.
5. A host cell characterized in that said host cell is a vector comprising the system of claim 1.
6. The host cell of claim 5, wherein the host is a marine nannochloropsis.
CN202011253679.7A 2020-11-11 2020-11-11 Construction and application of marine nannochloropsis transcription activation CRISPRa system Active CN114480474B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011253679.7A CN114480474B (en) 2020-11-11 2020-11-11 Construction and application of marine nannochloropsis transcription activation CRISPRa system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011253679.7A CN114480474B (en) 2020-11-11 2020-11-11 Construction and application of marine nannochloropsis transcription activation CRISPRa system

Publications (2)

Publication Number Publication Date
CN114480474A CN114480474A (en) 2022-05-13
CN114480474B true CN114480474B (en) 2023-06-06

Family

ID=81490541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011253679.7A Active CN114480474B (en) 2020-11-11 2020-11-11 Construction and application of marine nannochloropsis transcription activation CRISPRa system

Country Status (1)

Country Link
CN (1) CN114480474B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846019B (en) * 2021-03-05 2023-08-01 海南师范大学 Marine nannochloropsis targeted epigenomic genetic control method
CN116286574B (en) * 2023-02-09 2023-12-12 中国农业大学 CRISPRa method for accurately regulating Bacillus subtilis endogenous polygene expression and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114461A (en) * 2016-08-17 2019-08-09 博德研究所 Novel C RISPR enzyme and system
CN111511902A (en) * 2017-12-28 2020-08-07 J·大卫格莱斯顿研究所-根据J·大卫格莱斯顿遗嘱的遗嘱信托 Generation of induced pluripotent cells by CRISPR activation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089513A1 (en) * 2012-12-06 2014-06-12 Synthetic Genomics, Inc. Autonomous replication sequences and episomal dna molecules

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114461A (en) * 2016-08-17 2019-08-09 博德研究所 Novel C RISPR enzyme and system
CN111511902A (en) * 2017-12-28 2020-08-07 J·大卫格莱斯顿研究所-根据J·大卫格莱斯顿遗嘱的遗嘱信托 Generation of induced pluripotent cells by CRISPR activation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering;Jason Fontana 等人;Current Opinion in Biotechnology;第190-198页 *
CRISPR-dCas9转录调控系统及其在遗传病治疗研究中的应用;李博文 等人;生命科学;第628-636页 *
Non-transgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, Nannochloropsis oceanica CCMP1779;Eric Poliner 等人;Plant J. Author manuscript;第1-16页 *

Also Published As

Publication number Publication date
CN114480474A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
CN108368491B (en) Algal mutants with improved lipid productivity
CN114480474B (en) Construction and application of marine nannochloropsis transcription activation CRISPRa system
CN113106113B (en) Recombinant bacterium and construction and application thereof
CN111139260B (en) Method for improving whiteness of wheat flour by using gene editing
CN107739728A (en) A kind of recombination bacillus coli of efficiently production Glucosamine and its application
CN112725348B (en) Gene and method for improving single-base editing efficiency of rice and application of gene
CN111394399B (en) Method for reducing content of acylglycerol ester impurities in long-chain dibasic acid
CN113736797B (en) Culture method for improving yield of microalgae Triglyceride (TAG) and application thereof
CN111996235A (en) Detection probe, preparation method and application thereof
CN110684783B (en) Long-chain dibasic acid with low content of fatty acid impurities and production method thereof
CN110684784B (en) Long-chain dibasic acid with low content of monobasic acid impurity and production method thereof
CN112011579B (en) Method for reducing non-target carbon chain length diacid impurities in diacid production
CN114045302A (en) Single-base editing vector and construction and application thereof
CN111433220A (en) Algal lipid productivity enhancement by genetic modification of TRP domain-containing proteins
CN111394400B (en) Application of SCT1 gene in production of long-chain dicarboxylic acid
US20030084474A1 (en) Antibiotics-independent vector for constant high-expression and method for gene expression using the same
RU2752904C1 (en) Integration vector for multi-copy gene integration in 18spphk of pichia pastoris yeast
CN104988167A (en) Siraitia grosvenorii swingle cucurbitadienol synthetase gene SgCbQ and applications thereof
CN110684785B (en) Long-chain dibasic acid with low content of low-carbon-chain long-chain dibasic acid hetero acid and preparation method thereof
CN114908030B (en) Recombinant bacterium for displaying beta-cyclodextrin glucosyltransferase on surface of bacillus subtilis and application thereof
CN110684676B (en) Long-chain dibasic acid with low content of hydroxy acid impurities and production method thereof
CN110616220A (en) Method for improving hardness of wheat grains
CN111065737A (en) Method for producing double-stranded DNA fragment
CN115992164A (en) CRISPRi gene suppression system, genetically engineered bacterium containing CRISPRi gene suppression system and application of CRISPRi gene suppression system
CN112384619A (en) Microorganisms and compositions with increased lipid production and methods of making and using the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20220513

Assignee: HAINAN QINGFENG BIOTECHNOLOGY Co.,Ltd.

Assignor: HAINAN NORMAL University

Contract record no.: X2023980037637

Denomination of invention: Construction and application of a marine microalgae transcriptional activation CRISPRa system

Granted publication date: 20230606

License type: Common License

Record date: 20230705