CN112703609A - 红外线传感器及其制造方法 - Google Patents

红外线传感器及其制造方法 Download PDF

Info

Publication number
CN112703609A
CN112703609A CN201980059015.6A CN201980059015A CN112703609A CN 112703609 A CN112703609 A CN 112703609A CN 201980059015 A CN201980059015 A CN 201980059015A CN 112703609 A CN112703609 A CN 112703609A
Authority
CN
China
Prior art keywords
quantum dots
infrared
infrared sensor
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980059015.6A
Other languages
English (en)
Inventor
宫永昭治
伊藤哲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
NS Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Materials Inc filed Critical NS Materials Inc
Publication of CN112703609A publication Critical patent/CN112703609A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/28Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using photoemissive or photovoltaic cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/024Arrangements for cooling, heating, ventilating or temperature compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

本发明的目的在于提供一种优化了量子点的红外线传感器。本发明的特征在于,具备吸收红外线的光吸收层(5)的红外线传感器(1),所述光吸收层含有多个球状量子点(21)。或者,本发明的特征在于,具备吸收红外线的光吸收层的红外线传感器,所述光吸收层含有多个量子点,所述量子点含有PbS、PbSe、CdHgTe、Ag2S、Ag2Se、Ag2Te、AgInSe2、AgInTe2、CuInSe2、CuInTe2、InAs中至少任意1种。

Description

红外线传感器及其制造方法
技术领域
本发明涉及一种可检测红外线的红外线传感器及其制造方法。
背景技术
下述专利文献1中公开了与量子点型红外线检测器相关的发明。专利文献1中记载的红外线检测器具备层压结构,该层压结构具有由多个量子点构成的量子点层、和夹进量子点层的中间层。
根据专利文献1,多个量子点被微细加工成岛状。量子点由InAs形成。
现有技术文献
专利文献
专利文献1:日本特开2015-162478号公报
发明内容
发明所要解决的课题
然而,如专利文献1那样,在将多个量子点微细加工成岛状的红外线传感器中,微细加工调节以及制造工序的复杂化、进而制造成本的上升都容易成为问题。
此外,因微细加工成岛状的量子点的成长程度等会引起灵敏度降低、不规则方面的担心。
本发明是鉴于上述问题而完成的,其目的在于提供一种优化了量子点的红外线传感器及其制造方法。
用于解决课题的手段
本发明为具备吸收红外线的光吸收层的红外线传感器,其特征在于,所述光吸收层含有多个量子点,所述量子点为球状。
此外,本发明为具备吸收红外线的光吸收层的红外线传感器的制造方法,其特征在于,具有:通过液相合成法来形成量子点的工序;涂覆含有多个所述量子点的组合物而形成所述光吸收层的工序。
发明效果
根据本发明的红外线传感器,能够优化含有量子点的光吸收层的结构。
附图说明
图1为具备本实施方式的红外线传感器的红外线摄像装置的立体图。
图2为本实施方式的红外线传感器的部分剖视图。
图3为与图2部分不同的、本实施方式的红外线传感器的部分剖视图。
图4为本实施方式中的量子点的示意图。
图5为与图2部分不同的、本实施方式的红外线传感器的部分剖视图。
图6为具备本实施方式的红外线传感器的红外线摄像装置的部分放大剖视图。
图7为表示本实施方式的光电转换元件的一个示例的部分剖视图。
图8为表示本实施方式的光电转换元件的一个示例的部分剖视图。
图9为使用核壳结构的量子点的情况下的能级图。
具体实施方式
以下,对本发明的一个实施方式(以下简称为“实施方式”)进行详细说明。另外,本发明并不局限于以下的实施方式,可以在其主旨的范围内实施各种变形。
以往,在具备具有量子点的光吸收层的红外线传感器中,采用外延生长(epitaxial growth)等微细加工技术将量子点微细加工成岛状而形成光吸收层,但在该结构中,光吸收层的粗糙度容易增大,而灵敏度不规律、灵敏度下降会成为问题。在此,作为本发明人反复专心研究的结果,研发出如下红外线传感器,即,不采用上述的微细加工技术,而是例如采用液相合成法,来形成光吸收层中所含有的量子点并成为球状,从而能够抑制灵敏度不规律且能够提高灵敏度。以下对本实施方式的红外线传感器的结构进行说明。
图1为具备本实施方式的红外线传感器的红外线摄像装置的立体图。如图1所示,红外线摄像装置100被构成为,具备红外线传感器101、电路基板102。
如图1所示,红外线传感器101经由多个凸块104而被倒装芯片绑定在电路基板102上。
例如,红外线传感器101具备排列有多个像素的QDIP(Quantum Dot InfraredPhoto-detector,量子点红外光电探测器)阵列。每个像素设置凸块104。另外,在本实施方式中并未特定像素的个数。
图1所示的红外线传感器101的表面101a为受光面,从箭头方向照射红外线时,会激发被封闭在红外线传感器101内的量子点的载流子,并且红外线在电路基板102侧作为光电流而被检测出。
本实施方式中,能够实现可检测红外线的图像传感器。不对本实施方式的红外线摄像装置100的用途进行限定,例如,可应用于夜视装置、热源探知装置、安全装置、以及医疗器械等。
图2为本实施方式的红外线传感器的部分剖视图。如图2所示,红外线传感器1例如为从下按顺序具有半绝缘基板2、第一电极形成层3、第一间隔层4、光吸收层5、第二间隔层6、第二电极形成层7的层压结构。
如图2所示,光吸收层5被设为中间层8与量子点层9交替层压的结构。在图2中形成有多层量子点层9,但如图3所示,也可以是1层。
中间层8与量子点层9中所含有的量子点20相比带隙较宽。量子点层9的上下被中间层8夹着。虽为进行限定,但例如,作为中间层8,可使用AlyGa1-yAs(0≤y<1)。此外,作为间隔层4、6,可使用AlzGa1-zAs(0≤y<1)。中间层8与间隔层4、6为相同材质的情况下,也可以不采用2层结构而由单层形成相邻的中间层8与间隔层4、6。此外,作为半绝缘基板2,例如,可使用半绝缘性GaAs基板。然后,在半绝缘性GaAs基板的表面,例如,可以以掺杂Si等方式形成n型GaAs的第一电极形成层3。
如图2所示,例如,在第一电极形成层3的表面设置有发射极11,在第二电极形成层7的表面设置有集电极12。
在检测红外线时,通过电源(未图示)经由发射极11及集电极12向光吸收层5施加电压。
通过施加电压,发射极11处于与集电极12相比能量更高的状态。由此,在光吸收层5形成倾斜电场。当红外线被入射至光吸收层5时,被量子点的传导带侧的量子能级束缚的电子被激发而逸出。逸出的电子通过电场而移向集电极12,从而形成光电流。
如图2所示,在量子点层9内分散地配置有多个球状量子点20。在此“球状”并不局限于圆球状,而是指满足圆球度在0.7以上、优选为0.8以上、更优选为0.9以上的条件。作为圆球度的测量方法,例如可由电子显微镜进行图像处理,并根据所观察到的量子点的面积以及周长,用4π×(面积)÷(周长)2计算圆球度。或者,只要由所观察到的量子点的长径/短径所表示的纵横比为1.5以下,优选为1.2以下,更优选为1.3以下,则可定义为“球状”。
本实施方式中,可通过液相合成来形成量子点20。本实施方式的量子点20优选为上述球状,但并不局限于此。通过液相合成法而合成的量子点20为上述球状,或者有时也由球状以外的形状形成。作为球状以外的形状,例如可例示出棒状、树枝状。
例如,在本实施方式中,多个球状量子点20分散于树脂的树脂组合物可以以与中间层8交替涂覆的方式形成。在此,相对于量子点20的分散树脂并未特地限定,但可例示出聚丙烯、聚乙烯、聚苯乙烯、AS树脂、ABS树脂、甲基丙烯酸树脂、聚氯乙烯、聚缩醛、聚酰胺、聚碳酸酯、改性聚苯醚、聚对苯二甲酸丁二醇酯、聚对苯二甲酸乙二醇酯、聚砜、聚酯砜、聚硫化苯、聚酰胺酰亚胺、聚甲基戊烯、液晶聚合物、环氧树脂、苯酚树脂、尿素树脂、三聚氰胺树脂、环氧树脂、邻苯二甲酸二烯丙基树脂、不饱和聚酯树脂、聚酰亚胺、聚氨酯、硅树脂、环状聚烯烃聚合物(Cyclic Olefin Polymer:COP)、环状聚烯烃共聚物(CyclicOlefinCopolymer:COC)、乙烯乙烯醇、聚甲基戊烯、聚偏二氟乙烯等。
或者,在本实施方式中,也可以在多个球状量子点20溶解于溶剂的状态下,用喷墨法进行涂覆。在该情况下,干燥后的量子点层9几乎由球状量子点20构成,但也可以在量子点层9中多少残留有溶剂成分。
量子点20具有约800nm~1600nm的发光波长。作为具有这种发光波长的量子点20,优选含有PbS、PbSe、CdHgTe、Ag2S、Ag2Se、Ag2Te、AgInSe2、AgInTe2、CuInSe2、CuInTe2、InAs之中至少任意1种。其中,Ag2S不属于RoHS指令。另外,关于PbS,已在2003WILEY-VCH VerlagGmbH&Co.KGaA.Weinheim.ADVANCED MATERIALS 2003,15.NO.21November 4.发表论文。此外,关于Ag2S,已在ACS NANO VOL.6NO.5 P3695-3702(2012)发表论文。
本实施方式中,量子点20中适合使用PbS或者Ag2S。此外,通过在量子点20中使用Ag2S、Ag2Se、Ag2Te、AgInSe2、或者AgInTe2,从而能够缩窄近红外区域中的荧光半峰宽,并显示出高亮度的近红外荧光。
本实施方式中,多个量子点20既可以采用1种,也可以采用2种以上。即、作为多个量子点20,既可以使用全部相同种类的量子点,也可以使用不同种类的量子点。
本实施方式中的量子点20例如为具有几nm~几十nm左右的粒径的纳米粒子。
如图4A所示,优选为,在量子点20的表面配位有多个有机配体21。由此,能够抑制量子点20彼此的凝聚,从而发现目标光学特性。可用于反应的配体并未特别地限制,例如,列举以下的配体作为代表性的示例。
(1)脂肪族伯胺系
油胺:C18H35NH2、硬脂基(十八烷基)胺:C18H37NH2、十二烷基(月桂基)胺:C12H25NH2、癸胺:C10H21NH2、辛胺:C8H17NH2
(2)脂肪酸系
油酸:C17H33COOH、硬脂酸:C17H35COOH、棕榈酸:C15H31COOH、肉豆蔻酸:C13H27COOH、月桂酸:C11H23COOH、癸酸:C9H19COOH、辛酸:C7H15COOH
(3)硫醇系
十八烷基硫醇:C18H37SH、十六烷基硫醇:C16H33SH、十四烷基硫醇:C14H29SH、十二烷基硫醇:C12H25SH、癸基硫醇:C10H21SH、辛基硫醇:C8H17SH
(4)膦系
三辛基膦:(C8H17)3P、三苯基膦:(C6H5)3P、三丁基膦:(C4H9)3P
(5)氧化膦系
三辛基氧化膦:(C8H17)3P=O、三苯基氧化膦:(C6H5)3P=O、三丁基氧化膦:(C4H9)3P=O
此外,本实施方式中,优选为,有机配体21使用较短的配体(ligand)。尽管并不进行限定,但有机配体21可使用3-巯基丙酸(MPA)。
量子点层9中所含有的量子点20的配体优选为短于通过液相合成法形成量子点20时的配体。
如此,量子点层9中所含有的量子点20的配体使用较短的配体,从而能够缩小量子点层9的粗糙度,进而能够提高电子、空穴的取出效率。另一方面,通过液相合成法形成量子点20时的配体使用较长的配体,从而能够提高分散成膜性。
或者,也可以在由配体较长的量子点20通过液相合成法进行合成之后,在涂覆含有量子点20的组合物之前或之后,置换成较短的配体(例如3-巯基丙酸)。
此外,如图4B所示,量子点20也可以是具有核20a、和覆盖在核20a的表面上的壳20b的核壳结构。如图4B所示,优选为,在量子点20的表面配位有多个有机配体21。关于有机配体21,如上述所说明那样。图4B所示的量子点20的核20a为图3A所示的纳米粒子。因此,核20a例如由上述列举的量子点20的材质形成。
另外,壳20b也可以处于固溶化在核20a的表面上的状态。在图4B中,由虚线表示核20a与壳20b的边界,这意味着核20a与壳20b的边界既可通过分析来确认境界也可以不通过分析来确认,二者均可。
采用将图2所示的红外线传感器1反转并将半绝缘基板2侧朝上的红外线传感器(QDIP列)101,该红外线传感器101经由图1所示的凸块104电连接在电路基板102上。
图5是与图2部分不同的、本实施方式的红外线传感器的部分剖视图。图5所示的红外线传感器为从下按顺序具有半绝缘基板2、第一电极形成层3、光吸收层15、第二电极形成层7的层压结构。
图5中,光吸收层15由中间层18/障壁层30/量子点层19/障壁层30/中间层18的层压结构形成。
在此,障壁层30相对于载流子的电势高于中间层18相对于载流子的电势。此外,量子点层19中所含有的量子点20相对于载流子的电势低于中间层18相对于载流子的电势。此外,量子点20相对于载流子的电势低于障壁层30相对于载流子的电势。此外,障壁层30的带隙大于中间层18的带隙。此外,量子点20的带隙小于中间层18以及障壁层30的各带隙。
与图2同样地,图5所示的红外线传感器的光吸收层15中所含有的量子点20为球状。此外,量子点20优选含有PbS、PbSe、CdHgTe、Ag2S、Ag2Se、Ag2Te、AgInSe2、AgInTe2、CuInSe2、CuInTe2、InAs之中至少任意1种。
与图2同样地,采用将图5所示的红外线传感器反转并将半绝缘基板2侧朝上的红外线传感器(QDIP列)101,该红外线传感器101经由图1所示的凸块104电连接在电路基板102上。
图2及图5所示的层压结构也可以以每个像素进行分割的方式形成。
如图2及图5所示,配置多个量子点层9、19的构成中,能够分割出例如检测远红外线的远红外区域、检测中红外线的中红外区域、以及检测近红外线的近红外区域之中2以上的领域。此时,将长波长域配置在作为受光面侧的半绝缘基板2侧。例如,在中红外区域的量子点层,形成包含具有中红外区域的发光波长的量子点的量子点层,在近红外区域的量子点层,形成包含具有近红外区域的发光波长的量子点的量子点层。
图6为具备本实施方式的红外线传感器的红外线摄像装置的部分放大剖视图。
图6中,红外线传感器101具有检测红外线的红外线检测层120、和检测可见光的可见光检测层121。
图6所示的红外线检测层120的结构为图2及图5所示的层压结构,所使用的量子点为球状,此外,优选含有PbS、PbSe、CdHgTe、Ag2S、Ag2Se、Ag2Te、AgInSe2、AgInTe2、CuInSe2、CuInTe2、InAs之中至少任意1种。
另一方面,用于可见光检测层121的量子点应用具有可见光域的发光波长的量子点。
并不对量子点的结构以及材质进行限定,例如,本实施方式中的量子点为,具有几nm~几十nm左右的粒径的纳米粒子。
应用于可见光域的量子点,例如,由CdS系、CdSe系、ZnS系、ZnSe系、ZnSeS系、ZnTe系、ZnTeS系、InP系、黄铜矿系(CuInS系、AgInS系)等形成。
另外,可见光检测层121所使用的量子点的结构既可以是图4A中所示的核单体结构,也可以是图4B中所示的核壳结构。
通过使用图6的红外线传感器101,从而不仅能够检测红外线而且还能够检测可见光。
通过冷却量子点,能够降低热噪声,进而能够提高灵敏度。因此,优选为,如图6所示,设置冷却装置130。另外,只要是能够适当地冷却量子点层的位置,则并不限定冷却装置130的设置位置。
具有本实施方式的量子点的红外线传感器能够牢固地封闭载流子,而且对于垂直入射光具有优异的灵敏度,因而期待作为高灵敏度且低暗电流的红外线检测器。
另,以往将量子点层微细加工成岛状。因此,需要微细加工的调节,进而造成制造工序容易繁琐化。而且制造成本也容易上升。
与此相对,本实施方式为涂覆球状量子点的结构,无需以往那样微细加工,也就不会产生一直以来的问题。此外,例如,使用通过液相合成法而形成的量子点(尤其是球状量子点),因此具有全方位优异的灵敏度,与以往的微细加工出量子点相比,能够减少灵敏度的不规则。
此外,本实施方式中,作为量子点,优选含有PbS、PbSe、CdHgTe、Ag2S、Ag2Se、Ag2Te、AgInSe2、AgInTe2、CuInSe2、CuInTe2、InAs之中至少任意1种。这些具有800nm~1600nm的发光波长,可优选应用于红外线传感器。
此外,本实施方式的红外线传感器可应用于例如下述所说明的光电元件、热电元件。
图7及图8为表示本实施方式的光电转换元件的一个示例的部分剖视图。图7所示的光电转换元件40具备作为阴极的第一导电层41以及作为阳极的第二导电层42,在第一导电层41与第二导电层42之间具备电子输送层43、光吸收层44、以及空穴输送层45。例如,第一导电层41被形成在玻璃基板46上。
电子输送层43优选使用容易成为n-ch的ZnO。光吸收层44为,吸收入射到光电转换元件40的光而产生电子及空穴的层,并含有上述的球状量子点。
图8所示的光电转换元件(PN型光电二极管)50在第一电极51与第二电极52之间具有P型半导体层53和N型半导体层54。这样的结构是在PN接合的半导体上配置电极51、52而成的结构,与太阳电池相同。n型半导体中易动的电子较多,一部分移向p型半导体与空穴结合以消除电荷,从而形成被称作耗尽层的区域。此外,耗尽层的n型半导体中,电子消失并带正电,而在p型半导体中空穴消失而带负电,从而产生内部电场。而且,当光照射到耗尽层时会产生电子和空穴,通过内部电场而使电子移向n型半导体侧的电极,而空穴移向p型半导体侧的电极,从而电流流动。尽管并不进行限定,但可以设置成P型半导体层53使用由容易成为p-ch的InAs形成的球状量子点,N型半导体层54使用由容易成为n-ch的Ag2Te形成的球状量子点,来进行PN接合的设备。
本实施方式中,也可将红外线传感器应用于摄像装置、医疗领域、通信领域、太阳电池等。
可应用于本实施方式的量子点为核壳结构的情况下,成为图9A~图9D中的任意能级图。其中,发光元件的情况下,核壳结构的壳在提高量子封闭效果的意义上较为重要。尤其优选为图9A所示的typeI结构(与核的LUMO相比壳的LUMO一方能量较高,而与核的HOMO相比壳的HOMO一方能量较低)。
另一方面,在用于光电转换元件的情况下,为了容易取出载流子(电子、空穴),优选为typeII结构,通常,与电子移动度相比,空穴移动度一方较低,因此优选选择typeII(1)或(3)。另外,在用于光电转换元件的情况下,也可以使用非核壳结构而是具有配体的核结构的量子点。作为typeII(1),与核的LUMO相比壳的LUMO一方能量较低,与核的HOMO相比壳的HOMO一方能量较高。作为typeII(3),与核的LUMO相比,壳的LUMO一方能量较高,与核的HOMO相比壳的HOMO一方能量较高。
本实施方式的红外线传感器的制造方法包括:通过液相合成法来形成球状量子点的工序;涂覆含有多个量子点的树脂组合物而形成光吸收层的工序。
本实施方式中,作为液相合成法,使构成量子点的各元素源溶解于溶剂中,使用例如微反应器来使具有各元素的前体溶液进行反应,从而能够合成具备预定的元素的量子点粒子。由此能够获得球状量子点。
为了提高量子点的分散性,优选使用长链的配体。因此,在涂覆时,优选为具有长链的配体的量子点,但在设备制作中,为了提高载流子(电子、空穴)的取出效率而优选为短链的配体。尽管并不进行限定,但短链的配体的碳数为2~5(优选为2~3),作为短链的配体,例如,可使用3-巯基丙酸。
本实施方式可在通过液相合成法合成量子点之后将量子点的配体置换成短的配体。作为一个示例,例如,使用旋涂机来涂覆含有量子点的组合物(含有量子点和溶剂)。长链的配体的一方分散性良好,因此可形成粗糙度良好的膜,但长链的配体不利于载流子的取出,因此,例如,在涂覆后,短链的配体从涂膜之上滴下。由此,长链的配体自然地置换成短链的配体,之后,进行清洗,冲洗长链的配体。或者,也可以通过液相合成法合成量子点之后,在涂覆前,将长链的配体置换成短链的配体,之后涂覆含有量子点的组合物(可以是树脂组合物)。
【产业上的可利用性】
根据本发明,可检测红外线。本发明的红外线传感器可应用于夜视装置、热源探知装置、安全装置、医疗器械等。
本申请基于2018年9月12日提出专利申请的日本特愿2018-170491号。其内容被全部包含于此。

Claims (9)

1.一种红外线传感器,其特征在于,具备吸收红外线的光吸收层,
所述光吸收层含有多个量子点,
所述量子点为球状。
2.一种红外线传感器,其特征在于,具备吸收红外线的光吸收层,
所述光吸收层含有多个量子点,
所述量子点含有PbS、PbSe、CdHgTe、Ag2S、Ag2Se、Ag2Te、AgInSe2、AgInTe2、CuInSe2、CuInTe2、InAs之中至少任意1种。
3.一种红外线传感器,其特征在于,具备吸收红外线的光吸收层,
所述光吸收层含有多个量子点,
所述量子点是通过液相合成而形成的。
4.根据权利要求2或3所述的红外线传感器,其特征在于,
所述量子点为球状。
5.根据权利要求1至4中任意一项所述的红外线传感器,其特征在于,
以涂覆的方式形成了含有所述量子点的量子点层。
6.根据权利要求1至5中任意一项所述的红外线传感器,其特征在于,
所述光吸收层中所含有的所述量子点的配体短于通过所述液相合成而形成时的所述量子点的所述配体。
7.根据权利要求1至6中任意一项所述的红外线传感器,其特征在于,
所述红外线传感器含有光电元件或者热电元件。
8.一种红外线传感器的制造方法,其特征在于,所述红外线传感器具备吸收红外线的光吸收层,
所述红外线传感器的制造方法包括:
通过液相合成法来形成量子点的工序;以及
涂覆含有多个所述量子点的组合物来形成所述光吸收层的工序;。
9.根据权利要求8所述的红外线传感器的制造方法,其特征在于,
通过所述液相合成法来合成量子点之后,将所述量子点的配体置换成短的配体。
CN201980059015.6A 2018-09-12 2019-09-11 红外线传感器及其制造方法 Pending CN112703609A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018170491 2018-09-12
JP2018-170491 2018-09-12
PCT/JP2019/035713 WO2020054764A1 (ja) 2018-09-12 2019-09-11 赤外線センサ及びその製造方法

Publications (1)

Publication Number Publication Date
CN112703609A true CN112703609A (zh) 2021-04-23

Family

ID=69778412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980059015.6A Pending CN112703609A (zh) 2018-09-12 2019-09-11 红外线传感器及其制造方法

Country Status (7)

Country Link
US (1) US20210234056A1 (zh)
EP (1) EP3852151A4 (zh)
JP (1) JPWO2020054764A1 (zh)
KR (1) KR20210049113A (zh)
CN (1) CN112703609A (zh)
TW (2) TWI819092B (zh)
WO (1) WO2020054764A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807531B (zh) * 2021-01-06 2023-07-01 日商田中貴金屬工業股份有限公司 光電變換元件材料及光電變換元件材料之製造方法以及分散半導體奈米粒子之墨水
US20240188317A1 (en) * 2021-03-30 2024-06-06 Sharp Kabushiki Kaisha Light emitting element, display device, manufacturing method of light emitting element, and manufacturing method of display device
WO2023008353A1 (ja) * 2021-07-29 2023-02-02 富士フイルム株式会社 光検出素子およびイメージセンサ
US20230082643A1 (en) * 2021-09-13 2023-03-16 Lawrence Livermore National Security, Llc Surface treatment for colloidal stability of in-solution ligand exchanged quantum dots
JP7269591B1 (ja) 2022-02-03 2023-05-09 国立大学法人東海国立大学機構 AgAuS系多元化合物からなる半導体ナノ粒子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519696A (zh) * 2009-02-19 2009-09-02 中国人民解放军第三军医大学第一附属医院 基于量子点的核酸传感器及其制备方法和检测方法
JP2014093327A (ja) * 2012-10-31 2014-05-19 Fujifilm Corp 半導体膜、半導体膜の製造方法、太陽電池、発光ダイオード、薄膜トランジスタ、および、電子デバイス
CN103890134A (zh) * 2011-10-20 2014-06-25 皇家飞利浦有限公司 具有量子点的光源
JP2015189636A (ja) * 2014-03-28 2015-11-02 国立大学法人名古屋大学 テルル化合物ナノ粒子及びその製法
CN105493295A (zh) * 2013-08-29 2016-04-13 佛罗里达大学研究基金会有限公司 来自溶液处理的无机半导体的空气稳定红外光探测器
KR20180008099A (ko) * 2016-07-15 2018-01-24 주식회사 엘지화학 양자점을 이용한 광변환소자
JP6317535B1 (ja) * 2016-08-04 2018-04-25 花王株式会社 光吸収層、光電変換素子、及び太陽電池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452242B1 (en) * 2000-03-23 2002-09-17 Mp Technologies Llc Multi color detector
US7326908B2 (en) * 2004-04-19 2008-02-05 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
US7923801B2 (en) * 2007-04-18 2011-04-12 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
US8310022B2 (en) * 2009-06-03 2012-11-13 Sargent Edward H Photoconductive materials and devices with internal photoconductive gain
EP2488360A4 (en) * 2009-10-14 2013-06-05 Univ California NANOCOMPOSITE AND METHOD OF MANUFACTURING THEREOF
US9382474B2 (en) * 2010-04-06 2016-07-05 The Governing Council Of The University Of Toronto Photovoltaic devices with depleted heterojunctions and shell-passivated nanoparticles
US8975509B2 (en) * 2010-06-07 2015-03-10 The Governing Council Of The University Of Toronto Photovoltaic devices with multiple junctions separated by a graded recombination layer
WO2012018649A2 (en) * 2010-08-06 2012-02-09 Spectrawatt, Inc. Cooperative photovoltaic networks and photovoltaic cell adaptations for use therein
US9196760B2 (en) * 2011-04-08 2015-11-24 Ut-Battelle, Llc Methods for producing complex films, and films produced thereby
KR101874413B1 (ko) * 2011-10-18 2018-07-05 삼성전자주식회사 무기 리간드를 갖는 양자점 및 그의 제조방법
US8779413B1 (en) * 2012-10-09 2014-07-15 Sunpower Technologies Llc Optoelectronic devices with all-inorganic colloidal nanostructured films
WO2014130868A1 (en) * 2013-02-21 2014-08-28 The Governing Council Of The University Of Toronto Photovoltaic devices with plasmonic nanoparticles
JP6312450B2 (ja) * 2014-01-28 2018-04-18 シャープ株式会社 受光素子および受光素子を備えた太陽電池
JP5815772B2 (ja) 2014-02-26 2015-11-17 防衛省技術研究本部長 量子ドット型赤外線検知素子、量子ドット型赤外線検知器及び量子ドット型赤外線撮像装置
US9466745B2 (en) * 2014-12-11 2016-10-11 Vadient Optics, Llc Composite quantum-dot materials for photonics detectors
JPWO2017061174A1 (ja) * 2015-10-09 2018-08-23 ソニー株式会社 光電変換素子および撮像素子
JP6471120B2 (ja) * 2016-06-27 2019-02-13 シャープ株式会社 光電変換素子およびそれを備えた光電変換装置
CN116847702A (zh) * 2016-07-20 2023-10-03 索尼公司 半导体膜的制造方法
US10249786B2 (en) 2016-11-29 2019-04-02 Palo Alto Research Center Incorporated Thin film and substrate-removed group III-nitride based devices and method
EP3612805A1 (en) * 2017-04-20 2020-02-26 trinamiX GmbH Optical detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519696A (zh) * 2009-02-19 2009-09-02 中国人民解放军第三军医大学第一附属医院 基于量子点的核酸传感器及其制备方法和检测方法
CN103890134A (zh) * 2011-10-20 2014-06-25 皇家飞利浦有限公司 具有量子点的光源
JP2014093327A (ja) * 2012-10-31 2014-05-19 Fujifilm Corp 半導体膜、半導体膜の製造方法、太陽電池、発光ダイオード、薄膜トランジスタ、および、電子デバイス
CN105493295A (zh) * 2013-08-29 2016-04-13 佛罗里达大学研究基金会有限公司 来自溶液处理的无机半导体的空气稳定红外光探测器
JP2015189636A (ja) * 2014-03-28 2015-11-02 国立大学法人名古屋大学 テルル化合物ナノ粒子及びその製法
KR20180008099A (ko) * 2016-07-15 2018-01-24 주식회사 엘지화학 양자점을 이용한 광변환소자
JP6317535B1 (ja) * 2016-08-04 2018-04-25 花王株式会社 光吸収層、光電変換素子、及び太陽電池

Also Published As

Publication number Publication date
EP3852151A4 (en) 2022-06-15
KR20210049113A (ko) 2021-05-04
TWI819092B (zh) 2023-10-21
EP3852151A1 (en) 2021-07-21
TW202402657A (zh) 2024-01-16
TW202019810A (zh) 2020-06-01
WO2020054764A1 (ja) 2020-03-19
US20210234056A1 (en) 2021-07-29
JPWO2020054764A1 (ja) 2021-08-30

Similar Documents

Publication Publication Date Title
CN112703609A (zh) 红外线传感器及其制造方法
US10944065B2 (en) Mid and far-infrared nanocrystals based photodetectors with enhanced performances
US9024296B2 (en) Focal plane array with pixels defined by modulation of surface Fermi energy
EP2483925B1 (en) Quantum dot-fullerene junction based photodetectors
US8772729B1 (en) APDs using nano-plasmonic metamaterials
US7271405B2 (en) Intersubband detector with avalanche multiplier region
US20200318255A1 (en) FAR-INFRARED, THz NANOCRYSTALS, HETEROSTRUCTURED MATERIAL WITH INTRABAND ABSORPTION FEATURE AND USES THEREOF
US8829452B1 (en) VIS-NIR plasmonic APD detectors
US20060032530A1 (en) Solution processed pentacene-acceptor heterojunctions in diodes, photodiodes, and photovoltaic cells and method of making same
US9312410B2 (en) INAS/ALSB/GASB based type-II SL pin detector with P on N and N on P configurations
JP2011501419A (ja) タイプii量子ドット太陽電池
US20200067002A1 (en) Photodetectors Based on Two-Dimensional Quantum Dots
Miao et al. Toward green optoelectronics: environmental-friendly colloidal quantum dots photodetectors
Izadpour et al. Plasmonic enhancement of colloidal quantum dot infrared photodetector photosensitivity
Golovynskyi et al. Near-infrared lateral photoresponse in InGaAs/GaAs quantum dots
Golovynskyi et al. Defect influence on in-plane photocurrent of InAs/InGaAs quantum dot array: long-term electron trapping and Coulomb screening
Pooja et al. Surface state controlled superior photodetection properties of isotype n-TiO 2/In 2 O 3 heterostructure nanowire array with high specific detectivity
Tang et al. InAs/GaAs quantum dot infrared photodetector (QDIP) with double Al/sub 0.3/Ga/sub 0.7/As blocking barriers
Behaghel et al. A hot-carrier assisted InAs/AlGaAs quantum-dot intermediate-band solar cell
Uzgur et al. InGaAs nBn SWIR detector design with lattice-matched InAlGaAs barrier
Nasr Infrared radiation photodetectors
Klem et al. Multispectral UV-Vis-IR imaging using low-cost quantum dot technology
KR20220023548A (ko) 포토 다이오드
Motmaen et al. High-efficiency integrated MIR band to visible band upconversion optoelectronic system
Shao et al. Improving the operating temperature of quantum dots-in-a-well detectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240409

Address after: Tokyo, Japan

Applicant after: TOPPAN PRINTING Co.,Ltd.

Country or region after: Japan

Address before: 511-1 Ritsumeiji, Chizuno City, Fukuoka Prefecture, Japan

Applicant before: NS MATERIALS Inc.

Country or region before: Japan