CN112701722B - 一种抑制能量路由器并网电流死区谐波的有源阻尼方法 - Google Patents

一种抑制能量路由器并网电流死区谐波的有源阻尼方法 Download PDF

Info

Publication number
CN112701722B
CN112701722B CN202011519471.5A CN202011519471A CN112701722B CN 112701722 B CN112701722 B CN 112701722B CN 202011519471 A CN202011519471 A CN 202011519471A CN 112701722 B CN112701722 B CN 112701722B
Authority
CN
China
Prior art keywords
active damping
dead zone
sampling period
grid
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011519471.5A
Other languages
English (en)
Other versions
CN112701722A (zh
Inventor
范建华
徐鹏飞
李健勋
曹乾磊
李广琛
李鸿儒
赵新举
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Topscomm Communication Co Ltd
Original Assignee
Qingdao Topscomm Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Topscomm Communication Co Ltd filed Critical Qingdao Topscomm Communication Co Ltd
Priority to CN202011519471.5A priority Critical patent/CN112701722B/zh
Publication of CN112701722A publication Critical patent/CN112701722A/zh
Application granted granted Critical
Publication of CN112701722B publication Critical patent/CN112701722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种抑制能量路由器并网电流死区谐波的有源阻尼方法,其技术方案包括以下步骤:步骤1,引入有源电阻值RAD;步骤2,实现有源阻尼技术的电流比例前馈;步骤3,采样周期延时补偿;步骤4,半采样周期延时补偿;步骤5,校正电流控制,实现对死区的精确补偿。本发明所述方法通过运用全延时补偿的有源阻尼技术来提高单L滤波器的低频阻抗,实现有源阻尼回路的全延时精确补偿,从而抑制电力电子变压器高压侧基于单L滤波器的三相级联H桥(CHB)中由死区所引入的低频谐波分量。

Description

一种抑制能量路由器并网电流死区谐波的有源阻尼方法
技术领域
本发明涉及电力电子变压器技术领域,尤其涉及一种抑制能量路由器并网电流死区谐波的有源阻尼方法。
背景技术
电力电子变压器(PET)又称为能量路由器,相比传统电力变压器,PET不仅能实现电压等级变换、电气隔离和能量传递等功能,还能实现潮流控制、电能质量控制等额外功能,是未来电力系统发展的趋势。PET高压侧的三相级联H桥(CHB)在输出基波(工频50Hz)分量电压的同时,其开关工作模式会在其输出电压中引入开关次高频谐波,单L滤波器的大的高频阻抗可滤除高频谐波;为防止H桥直通所加入的死区会产生大量的低频谐波分量,而单L滤波器的低频阻抗小,对其抑制能力有限。
传统的死区谐波抑制方法主要分为两类,死区补偿与优化控制。其中,死区补偿的方法从开关的调制过程入手,分析由死区所造成的谐波电压的大小并以此为依据调整调制波的大小,从而实现死区谐波的抑制。但死区所造成的谐波电压与电流的方向、开关器件的非线性以及直流母线电压的波动等因素都有关系,精确的死区补偿的实施难度较大。优化控制的方法从电流控制器的设计与优化入手,如采用并设计合理的谐振控制器、重复控制器等,其本质是提高逆变器的等效阻抗,从而在相同的死区谐波电压下产生较小的谐波电流。这些优化控制方法可以取得较好的效果,但原理复杂实现麻烦,研发周期较长。
发明内容
本发明针对现有技术存在的不足和缺陷,提供了一种抑制能量路由器并网电流死区谐波的有源阻尼方法,运用有源阻尼技术来提高单L滤波器的低频阻抗,原理简单,实现有源阻尼回路的全延时精确补偿,从而抑制电力电子变压器高压侧基于单L滤波器的三相CHB中由死区所引入的低频谐波分量。
为实现上述目的,本发明提供了一种抑制能量路由器并网电流死区谐波的有源阻尼方法,包括以下步骤:
步骤1:电力电子变压器高压侧三相级联H桥(CHB)带有单L滤波器,三相CHB输出电压V到并网电流Ig的传递函数为:
Figure GDA0003683458300000011
其中,L为滤波电感L的电感值,s为拉氏变换中的复变量。单L滤波器高频阻抗大,但其低频阻抗小。引入有源电阻RAD提高其低频阻抗,传递函数为:
Figure GDA0003683458300000012
其中,RAD的取值大小显著影响谐波抑制的频率范围,RAD的取值为:
RAD≥2πnf1_maxL
其中,f1_max为考虑电网电压频率波动时所取的最大值;n为需抑制低频谐波的最高次数,n可根据需求取值,考虑电能质量相关标准中对50次基波频率的要求,n的取值满足n≥50。
步骤2:实现有源阻尼技术的电流比例前馈,检测并网电流Ig,并在三相CHB输出电压的给定值Vref中减去Ig与RAD的乘积。
步骤3:采样周期延时补偿,采用有源阻尼技术之后,传递函数近似等效为:
Figure GDA0003683458300000021
其中,
Figure GDA0003683458300000022
为数字控制系统的延时环节,Ts为控制系统的采样周期。Gd(s)包含两部分,由模数转换时间、计算时间以及占空比更新延时导致的采样周期延时与脉冲宽度调制(PWM)零阶保持特性引起的半采样周期延时。
有源阻尼技术的电流比例前馈实现具有极少的计算量,在采样Ig并在Vref中减去Ig与RAD的乘积之后立即更新占空比,仅产生可忽略的延时,实现了有源阻尼回路中的采样周期延时补偿。
步骤4:半采样周期延时补偿,通过有源阻尼回路中的补偿环节Ghc(s)实现,Ghc(s)为:
Figure GDA0003683458300000023
其中m为系数,一般取0.7;一阶零移相低通滤波器Gzf(z)=d1z+d0+d1z-1,取d1=0.25,d0=1-2d1
步骤5:校正电流控制,采用全延时补偿的有源阻尼技术之后,传递函数近似等效为GAD(s)。对比GAD(s)与G(s),可知采用有源阻尼方法之后,被控对象的传递函数与之前相比发生了变化。为实现相同的电流控制效果,在控制器后串联校正环节Gcom(s),同时完成电力电子变压器高压侧死区谐波的抑制,其校正环节过程为:
Figure GDA0003683458300000024
进一步地,所述步骤2运用有源阻尼技术实现实际电路中电阻的作用效果,通过显著提高单L滤波器的低频阻抗,从而抑制电力电子变压器高压侧基于单L滤波器的三相CHB中由死区所引入的低频谐波分量。
进一步地,所述步骤3与步骤4分别实现了有源阻尼回路中的采样周期延时补偿与半采样周期延时补偿,称为全延时补偿的有源阻尼。
本发明的有益技术效果:
1.在单L滤波器中串联电阻可以显著增大其低频阻抗,可以显著提高单L滤波器对死区谐波的抑制能力。
2.在有源阻尼回路中使用延时补偿技术,实现了采样周期延时补偿与半采样周期延时补偿,得到全延时补偿的有源阻尼技术。
3.在控制中使用全延时补偿的有源阻尼技术所实现的控制效果,与在实际电路中串联电阻是等效的,而且不会引入额外的功率损耗。
4.引入全延时补偿的有源阻尼技术并选取合适的有源电阻值RAD,可以显著提高单L滤波器的低频阻抗,从而抑制电力电子变压器高压侧基于单L滤波器的三相CHB中由死区所引入的低频谐波分量。
附图说明
图1是本发明抑制能量路由器并网电流死区谐波的有源阻尼方法的电力电子变压器拓扑图。
图2是本发明抑制能量路由器并网电流死区谐波的有源阻尼方法的电力电子变压器中A相CHB拓扑图。
图3是本发明抑制能量路由器并网电流死区谐波的有源阻尼方法的电力电子变压器高压侧基于单L滤波器的三相CHB示意图
图4是本发明抑制能量路由器并网电流死区谐波的有源阻尼方法的实施步骤流程图。
图5是本发明抑制能量路由器并网电流死区谐波的有源阻尼方法的单L滤波器传递函数G(s)的伯德图。
图6是本发明抑制能量路由器并网电流死区谐波的有源阻尼方法的增加有源电阻RAD后单L滤波器的传递函数GAD(s)的伯德图。
图7是不采用有源电阻技术的并网电流控制拓扑图。
图8是本发明抑制能量路由器并网电流死区谐波的有源阻尼方法的采用全延时补偿的有源电阻技术的并网电流控制拓扑图。
图9是不采用有源电阻技术的并网电流控制的并网电流仿真结果。
图10是本发明抑制能量路由器并网电流死区谐波的有源阻尼方法的采用全延时补偿的有源电阻技术的并网电流控制的并网电流仿真结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不限定本发明。
本发明应用的电力电子变压器的拓扑图如图1所示,电力电子变压器具有中、高压交流端口与低压交流端口。中、高压交流端口侧为模块化结构,A、B、C三相模块分别由N个模组构成,每相的N个模组的H桥串联构成级联H桥(CHB)结构的输入级,实现了AC/DC变换。图2展示了电力电子变压器A相CHB的拓扑图。每个H桥的直流母线经过一个串联谐振型双有源H桥隔离变换器与低压直流母线相连,并实现DC/DC变换与隔离。低压交流端口侧,AC/DC变换器连接着低压直流母线与低压交流电网,实现DC/AC变换。
图3展示了电力电子变压器高压侧的基于单L滤波器的三相CHB示意图,三相CHB在输出基波(工频50Hz)分量电压的同时,其开关工作模式会在三相CHB输出电压中引入开关次高频谐波,单L滤波器可滤除大部分高频谐波。除此之外,为防止H桥直通所加入的死区会产生大量的低频谐波分量,而单L滤波器的低频阻抗小,对其抑制能力有限。
图4展示了本发明的实施步骤流程,引入全延时补偿的有源阻尼技术并选取合适的有源电阻值RAD,显著提高了单L滤波器的低频阻抗,从而抑制电力电子变压器高压侧基于单L滤波器的三相CHB中由死区所引入的低频谐波分量。
本发明的一种抑制能量路由器并网电流死区谐波的有源阻尼方法,包括以下步骤:
步骤1:选取有源电阻值RAD。电力电子变压器高压侧三相级联H桥(CHB)带有单L滤波器,三相CHB输出电压V到并网电流Ig的传递函数为:
Figure GDA0003683458300000041
其中,L为滤波电感L的电感值,s为拉氏变换中的复变量。
单L滤波器是最简单的并网滤波器,其传递函数G(s)的伯德图在图5中展示。由图5可知单L滤波器的高频阻抗大,所以其具有良好的高频滤波效果;但其低频阻抗小,所以对低频谐波分量的抑制能力有限。三相CHB中由死区所引入的谐波分量主要为低频,单L滤波器对其抑制能力有限。
在单L滤波器中串联电阻可以显著增大其低频阻抗,可以显著提高单L滤波器对死区谐波的抑制能力。引入有源电阻RAD提高其低频阻抗,传递函数为:
Figure GDA0003683458300000042
增加有源电阻RAD后单L滤波器的传递函数GAD(s)的伯德图在图6中展示,可知,GAD(s)的伯德图包含两条渐近线,称其交点为转折点,其角频率为:
Figure GDA0003683458300000043
在转折点左侧(频率降低的方向),GAD(s)的伯德图主要受有源电阻RAD的影响,表明RAD可显著增大单L滤波器的低频阻抗;在转折点右侧,RAD的影响较小。这表明RAD的取值大小显著影响谐波抑制的频率范围,应选取合适的有源电阻值RAD
RAD的取值为:
RAD≥2πnf1_max(L1+L2)
其中f1_max为考虑电网电压频率波动时所取的最大值;n为需抑制低频谐波的最高次数。n可根据需求取值,考虑电能质量相关标准中对50次基波频率的要求,所选取的有源电阻值RAD至少应对50次基波频率有抑制作用,建议n的取值满足n≥50。
步骤2:实现有源阻尼技术的电流比例前馈。实际电路中的电流流经电阻之后会在电阻两端产生压降,为实现相同的效果,在控制系统中检测并网电流Ig,并在三相CHB输出电压给定Vref中减去Ig与RAD的乘积。
不采用有源电阻技术的并网电流控制拓扑图与采用有源电阻技术的并网电流控制拓扑图分别在图7和图8中展示,其中图8展示了有源阻尼技术的电流比例前馈实现的细节。在控制中使用有源阻尼技术所实现的控制效果,与在实际电路中串联电阻是等效的,而且不会引入额外的功率损耗。
步骤3:采样周期延时补偿。采用有源阻尼技术之后,传递函数近似等效为:
Figure GDA0003683458300000044
其中,
Figure GDA0003683458300000045
为数字控制系统的延时环节,Ts为控制系统的采样周期。Gd(s)包含两部分,由模数转换时间、计算时间以及占空比更新延时导致的采样周期延时(记为GTs(s))与脉冲宽度调制(PWM)零阶保持特性引起的半采样周期延时(记为G0.5Ts(s))。
有源阻尼技术的电流比例前馈实现具有极少的计算量,在采样Ig并在Vref中减去Ig与RAD的乘积之后立即更新占空比,仅产生可忽略的延时,实现了有源阻尼回路中的采样周期延时补偿。
图8展示了有源阻尼回路中采样周期延时补偿的等效框图,传统有源阻尼的前馈点为节点①,有源阻尼回路中包含GTs(s)环节;采样周期延时补偿后的前馈点为节点②,有源阻尼回路中不包含GTs(s)环节,即采样周期延时补偿避免了GTs(s)环节的不利影响。
步骤4:半采样周期延时补偿。通过有源阻尼回路中的补偿环节Ghc(s)实现,Ghc(s)为:
Figure GDA0003683458300000051
其中m取0.7;一阶零移相低通滤波器Gzf(z)=d1z+d0+d1z-1,取d1=0.25,d0=1-2d1
步骤3与步骤4分别实现了有源阻尼回路中的采样周期延时补偿与半采样周期延时补偿,称为全延时补偿的有源阻尼。
步骤5:校正电流控制。采用全延时补偿的有源阻尼技术之后,传递函数近似等效为GAD(s)。对比GAD(s)与G(s),可知采用有源阻尼方法之后,被控对象的传递函数与之前相比发生了变化。为实现相同的电流控制效果,在控制器后串联校正环节Gcom(s),同时完成电力电子变压器高压侧死区谐波的抑制,其校正环节过程为:
Figure GDA0003683458300000052
不采用有源电阻技术的并网电流控制的并网电流仿真结果与采用全延时补偿的有源阻尼技术的并网电流控制的并网电流仿真结果分别在图9与图10中展示。图9的电流波形中包含较多的低频谐波,而采用本发明方法的图10的电流波形更接近于正弦,低频谐波分量显著减少,表明本发明的有效性。
上述实施例是对本发明的具体实施方式的说明,而非对本发明的限制,有关技术领域的技术人员在不脱离本发明的精神和范围的情况下,还可做出各种变换和变化以得到相对应的等同的技术方案,因此所有等同的技术方案均应归入本发明的专利保护范围。

Claims (1)

1.一种抑制能量路由器并网电流死区谐波的有源阻尼方法,其特征在于,包括以下步骤:
步骤1:电力电子变压器高压侧三相级联H桥(CHB)带有单L滤波器,三相CHB输出电压V到并网电流Ig的传递函数为:
Figure FDA0003700338960000011
其中,L为滤波电感L的电感值,s为拉氏变换中的复变量,单L滤波器高频阻抗大,但其低频阻抗小,引入有源电阻RAD提高其低频阻抗,传递函数为:
Figure FDA0003700338960000012
其中,RAD的取值大小显著影响谐波抑制的频率范围,RAD的取值为:
RAD≥2πnf1_maxL
其中,f1_max为考虑电网电压频率波动时所取的最大值;n为需抑制低频谐波的最高次数,n≥50;
步骤2:实现有源阻尼技术的电流比例前馈,检测并网电流Ig,并在三相CHB输出电压的给定值Vref中减去Ig与RAD的乘积;
步骤3:采样周期延时补偿,采用有源阻尼技术之后,传递函数近似等效为:
Figure FDA0003700338960000013
其中,
Figure FDA0003700338960000014
为数字控制系统的延时环节,Ts为控制系统的采样周期; Gd(s)包含两部分,由模数转换时间、计算时间以及占空比更新延时导致的采样周期延时与脉冲宽度调制(PWM)零阶保持特性引起的半采样周期延时,
有源阻尼技术的电流比例前馈实现具有极少的计算量,在采样Ig并在Vref中减去Ig与RAD的乘积之后立即更新占空比,仅产生可忽略的延时,实现了有源阻尼回路中的采样周期延时补偿;
步骤4:半采样周期延时补偿,通过有源阻尼回路中的补偿环节Ghc(s)实现,Ghc(s)为:
Figure FDA0003700338960000015
其中m取0.7;一阶零移相低通滤波器Gzf(z)=d1z+d0+d1z-1
取d1=0.25,d0=1-2d1
步骤5:校正电流控制,采用全延时补偿的有源阻尼技术之后,传递函数近似等效为GAD(s),对比GAD(s)与G(s),可知采用有源阻尼方法之后,被控对象的传递函数与之前相比发生了变化;为实现相同的电流控制效果,在控制器后串联校正环节Gcom(s),同时完成电力电子变压器低压侧死区谐波的抑制,其校正环节过程为:
Figure FDA0003700338960000016
CN202011519471.5A 2020-12-21 2020-12-21 一种抑制能量路由器并网电流死区谐波的有源阻尼方法 Active CN112701722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011519471.5A CN112701722B (zh) 2020-12-21 2020-12-21 一种抑制能量路由器并网电流死区谐波的有源阻尼方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011519471.5A CN112701722B (zh) 2020-12-21 2020-12-21 一种抑制能量路由器并网电流死区谐波的有源阻尼方法

Publications (2)

Publication Number Publication Date
CN112701722A CN112701722A (zh) 2021-04-23
CN112701722B true CN112701722B (zh) 2022-07-26

Family

ID=75509718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011519471.5A Active CN112701722B (zh) 2020-12-21 2020-12-21 一种抑制能量路由器并网电流死区谐波的有源阻尼方法

Country Status (1)

Country Link
CN (1) CN112701722B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111084A (zh) * 2011-02-24 2011-06-29 江苏斯达工业科技有限公司 单相dc-ac逆变器的电流波形控制方法及其应用
CN108321842A (zh) * 2018-02-28 2018-07-24 西安理工大学 L型并网逆变器并网电流控制的有源阻尼优化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI236792B (en) * 2004-08-30 2005-07-21 Uis Abler Electronics Co Ltd Active equipment for harmonic suppression
US10331094B2 (en) * 2014-01-30 2019-06-25 Meidensha Corporation Periodic external disturbance suppression control device
CN109167361A (zh) * 2018-10-17 2019-01-08 东北大学 一种lcl型三相并联有源电力滤波器的新型控制方法
CN110380416A (zh) * 2019-08-02 2019-10-25 国电南瑞科技股份有限公司 一种储能变流器有源阻尼谐振控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111084A (zh) * 2011-02-24 2011-06-29 江苏斯达工业科技有限公司 单相dc-ac逆变器的电流波形控制方法及其应用
CN108321842A (zh) * 2018-02-28 2018-07-24 西安理工大学 L型并网逆变器并网电流控制的有源阻尼优化方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A Novel Impedance Converter for Harmonic Damping in Loop Power Distribution Systems;X. Sun 等;《IEEE Journal of Emerging and Selected Topics in Power Electronics》;20150701;全文 *
LCL有源电力滤波器单电流反馈有源阻尼方法;张国荣等;《电力电子技术》;20180920(第09期);全文 *
一种提高LCL型并网逆变器电流控制性能的延时补偿方法;王林等;《中国电机工程学报》;20201005(第19期);全文 *
一种新颖的并联有源电力滤波器死区补偿方法;刘威葳等;《可再生能源》;20160920(第09期);全文 *
提高LCL型并网逆变器阻抗重塑控制鲁棒性的延时补偿方法;谢文浩等;《电工技术学报》;20170730;全文 *
适用于电气化铁路的级联H桥型有源电力滤波器;吴丽然等;《铁道学报》;20170515(第05期);全文 *

Also Published As

Publication number Publication date
CN112701722A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
US10581333B2 (en) Control method of constant-voltage-gain isolation type bidirectional full-bridge DC/DC converter
CN108321842B (zh) L型并网逆变器并网电流控制的有源阻尼优化方法
EP3745575B1 (en) Power factor correction circuit, control method and controller
US9948108B2 (en) DC-bus controller for an inverter
Darwish et al. Current-source single-phase module integrated inverters for PV grid-connected applications
CN112737388B (zh) 逆变器并联系统的共模有源阻尼谐振环流抑制系统及方法
WO2022262065A1 (zh) 一种基于级联式重复控制器的逆变器控制方法及相关设备
CN109119984B (zh) 一种开关电容型直流变压器的建模、设计方法、装置及系统
CN111740635A (zh) 一种单相lc型逆变器的双环控制方法
CN112701722B (zh) 一种抑制能量路由器并网电流死区谐波的有源阻尼方法
CN210167979U (zh) 抑制共模电流的非隔离单相光伏并网逆变器
Cheng et al. Improvement of the grid-connect current quality using novel proportional-integral controller for photovoltaic inverters
CN108123477A (zh) 一种神经网络准pr光伏并网逆变器控制方法
CN112271912B (zh) 一种抑制电力电子变压器低压侧死区谐波的有源阻尼方法
CN110995044B (zh) 一种功率开关器件非线性修正装置
Lee et al. DC link voltage controller for three phase vienna rectifier with compensated load current and duty
Kim et al. Model-Based Dynamic Control of Two Degrees-Of-Freedom Modulation for Dual Active Half-Bridge Converter
Oliveira Filho et al. Dynamic analysis of a ZVS bidirectional isolated three-phase dc-dc converter using phase-shift control
JP2021145457A (ja) 制御装置及び電力変換装置
Tu et al. Control of Grid-Tied Inverter with L Filter in Weak Grid Considering Grid Impedance and Harmonics
Ivaldi et al. Flexible pfc control featuring adaptive gain, mode estimation, and dual feedforward compensation
CN114047707B (zh) 一种通用的插入式多谐振控制器设计方法及控制器
Rawat et al. Comparison of Two Current Harmonic Elimination Methods for Improving Supply Side Current Waveforms
KR20110072838A (ko) 인버터의 모델전류추종 적응제어방법
Nazemi et al. Design of a three-level Hysteresis controller for a four-leg voltage source inverter in αβo frame

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant