CN112695297A - 一种半导体工艺中腔室压力的控制方法 - Google Patents

一种半导体工艺中腔室压力的控制方法 Download PDF

Info

Publication number
CN112695297A
CN112695297A CN202011333569.1A CN202011333569A CN112695297A CN 112695297 A CN112695297 A CN 112695297A CN 202011333569 A CN202011333569 A CN 202011333569A CN 112695297 A CN112695297 A CN 112695297A
Authority
CN
China
Prior art keywords
control valve
pressure
mode
gas
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011333569.1A
Other languages
English (en)
Other versions
CN112695297B (zh
Inventor
范洋洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Naura Microelectronics Equipment Co Ltd
Original Assignee
Beijing Naura Microelectronics Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Naura Microelectronics Equipment Co Ltd filed Critical Beijing Naura Microelectronics Equipment Co Ltd
Priority to CN202011333569.1A priority Critical patent/CN112695297B/zh
Publication of CN112695297A publication Critical patent/CN112695297A/zh
Application granted granted Critical
Publication of CN112695297B publication Critical patent/CN112695297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Fluid Pressure (AREA)

Abstract

本发明公开了半导体工艺中腔室压力的控制方法,其中腔室通过控制阀与抽真空设备连接,方法包括:步骤1:读取工艺菜单中当前工艺步骤中控制阀的工作模式,并控制控制阀进入所读取的工作模式;步骤2:若所读取的工作模式为压力模式,判断下一工艺步骤中控制阀的工作模式是否为设定模式,若是,执行步骤3;步骤3:获取数据,并根据数据计算出控制阀在设定模式下的开度,其中,数据包括控制阀工作在压力模式下时气体的总流量、控制阀的开度均值,以及控制阀在设定模式下气体的总流量;步骤4:执行下一工艺步骤,将控制阀的工作模式切换为设定模式,并将控制阀的开度调整至步骤3中计算的开度,且维持控制阀的开度不变,直至当前工艺步骤结束。

Description

一种半导体工艺中腔室压力的控制方法
技术领域
本发明涉及半导体工艺领域,更具体地,涉及一种半导体工艺中腔室压力的控制方法。
背景技术
在采用化学工艺气相沉积(CVD)方法沉积薄膜时,工艺压力是影响沉积速率的一个重要参数,所以需要对压力进行精确的控制。一个CVD沉积过程中会包括多个沉积阶段。每个阶段的沉积压力又都不相同,低压时包括了1-300Torr的范围,还有常压工艺,甚至包括高压工艺。即使单独针对低压工艺,其压力范围跨度也非常大,这也为控压的稳定性带来了挑战。
工艺时,气源进入腔室后,经蝶阀被干泵抽走。腔室上的规监控到腔室的压力后,将信号传递给蝶阀。蝶阀通过比较当前压力值与目标压力值差别,通过PID调节的方式,调节蝶阀开度的大小,从而将腔室压力控制到适度大小。以这种方式控制蝶阀具有以下问题:
a)控压精度相差
工艺菜单中往往含有多个工艺环节,且各工艺环节的沉积压力不尽相同,甚至具有较大的差别时,碟阀的精确控压如果倾向低压区域,则控高压时偏差量会相对较大,碟阀的精确控压如果倾向高压区域,则控低压时偏差量会相对较大。
b)控压稳定性差
蝶阀时时通过PID的调节方式,根据腔室压力规与设定值的比较,并对蝶阀的开度进行调整,而蝶阀的开度又会引起腔室压力变化。所以在整个控压过程中压力都是在波动的,如果波动较大时,会对工艺结果造成不良一影响。
c)控压重复性差
蝶阀的开度时时进行调整,很难保证在同一工艺阶段,不同批次的晶圆间压力完全一致,进而对工艺结果的重复性造成影响。
因此,如何解决以上问题,是目前急于解决的问题。
发明内容
本发明的目的是提出一种半导体工艺中腔室压力的控制方法,解决控制阀在控制腔室压力的过程中控压精度和控压稳定性差的问题,其中,腔室通过控制阀与抽真空设备连接,所述控制方法包括:
步骤1:读取工艺菜单中当前工艺步骤中所述控制阀的工作模式,并控制所述控制阀进入所读取的工作模式;
步骤2:若所读取的工作模式为压力模式,则判断所述工艺菜单中下一工艺步骤中所述控制阀的工作模式是否为设定模式,若是,执行步骤3;
步骤3:获取数据,并根据所述数据计算出所述控制阀在所述设定模式下的开度,其中,所述数据包括所述控制阀工作在所述压力模式下时气体的总流量、所述控制阀的开度均值,以及所述控制阀在所述设定模式下气体的总流量;
步骤4:执行所述下一工艺步骤,将所述控制阀的工作模式切换为所述设定模式,并将所述控制阀的开度调整至所述步骤3中计算的开度,且维持所述控制阀的开度不变,直至当前工艺步骤结束。
可选方案中,根据以下公式计算所述控制阀在所述设定模式下的开度:
I1=I0×F1/F0
其中,I0为所述控制阀在所述压力模式下的开度的均值,F1为所述控制阀在所述设定模式下气体的总流量,F0为所述控制阀在所述压力模式下的气体的总流量。
可选方案中,根据以下公式计算所述控制阀在所述设定模式下的开度:
I1=k×I0×F1/F0
其中,I0为所述控制阀在所述压力模式下的开度的均值,F1为所述控制阀在所述设定模式下气体的总流量,F0为所述控制阀在所述压力模式下的气体的总流量,k为所述压力模式下腔室的实际压力的均值与腔室的目标压力值的比值。
可选方案中,当所述步骤3和所述步骤4中通入的气体种类不同时,根据以下公式计算所述控制阀在所述设定模式下的开度:
I1=k0×I0×F1/F0
其中,I0为所述控制阀在所述压力模式下的开度的均值,F1为所述控制阀在所述设定模式下气体的总流量,F0为所述控制阀在所述压力模式下的气体的总流量,k0为与所述步骤3和所述步骤4中不同气体的理化性质相关的经验值。
可选方案中,当所述步骤3和所述步骤4中通入的气体种类不同时,根据以下公式计算所述控制阀在所述设定模式下的开度:
I1=k0×k1×I0×F1/F0
其中,I0为所述控制阀在所述压力模式下的开度的均值,F1为所述控制阀在所述设定模式下气体的总流量,F0为所述控制阀在所述压力模式下的气体的总流量,k0为与所述步骤3和所述步骤4中不同气体的理化性质相关的经验值,k1为压力模式下腔室的实际压力的均值和腔室的目标压力值的比值。
可选方案中,所述理化性质包括气体的分子量和/或黏性。
可选方案中,所述数据还包括当前工艺步骤中气体的分子量和/或黏性以及下一工艺步骤中气体的分子量和/或黏性。
可选方案中,所述控制方法用于半导体的薄膜沉积工艺。
可选方案中,所述方法还包括:
接收输入的信息,生成所述工艺菜单,其中,所述信息包括:与薄膜沉积工艺步骤对应的工作模式为所述设定模式。
可选方案中,所述控制阀包括蝶阀;和/或,所述抽真空设备包括干泵。
本发明的有益效果在于:
a)控压精度相高
设定模式下在不同的控压环节,控制阀开度固定,且通过软件计算出来的控制阀的开度精度较高。
b)控压稳定性强
通过算法自动将控制阀的开度调整为固定大小,所以在该模式下的控压过程中几乎没有压力波动,压力的稳定性很强,从而保证了工艺稳定性。
c)控压重复性好
不同批次的晶圆在同一工艺环节具有相同的控制阀开度,进而保证压力基本保持一致。
本发明的方法具有其它的特性和优点,这些特性和优点从并入本文中的附图和随后的具体实施方式中将是显而易见的,或者将在并入本文中的附图和随后的具体实施方式中进行详细陈述,这些附图和具体实施方式共同用于解释本发明的特定原理。
附图说明
通过结合附图对本发明示例性实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。
图1示出了根据本发明一实施例的半导体工艺中腔室压力的控制方法的步骤流程图。
图2为控制阀工作在压力模式和设定模式中腔室压力控制在5托和50托的对比图。
具体实施方式
下面将更详细地描述本发明。虽然本发明提供了优选的实施例,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
本发明一实施例提供了一种半导体工艺中腔室压力的控制方法,图1示出了根据本实施例的半导体工艺中腔室压力的控制方法的步骤流程图。其中腔室通过控制阀与抽真空设备连接,请参考图1,腔室压力的控制方法包括:
步骤1:读取工艺菜单中当前工艺步骤中控制阀的工作模式,并控制控制阀进入所读取的工作模式;
步骤2:若所读取的工作模式为压力模式,则判断工艺菜单中下一工艺步骤中控制阀的工作模式是否为设定模式,若是,执行步骤3;
步骤3:获取数据,并根据数据计算出控制阀在设定模式下的开度,其中,数据包括控制阀工作在压力模式下时气体的总流量、控制阀的开度均值,以及控制阀在设定模式下气体的总流量;
步骤4:执行下一工艺步骤,将控制阀的工作模式切换为设定模式,并将控制阀的开度调整至步骤3中计算的开度,且维持控制阀的开度不变,直至当前工艺步骤结束。
为了便于理解本方案,首先介绍腔室压力控制的软件和硬件系统。腔室为密封的腔室,设有进气口和出气口,其中进气口连接于气源,用于向腔室通入所需的气体,出气口通过控制阀与抽真空设备连接,用于排出腔室中的气体,可以通过调整控制阀的开度,来控制排出气体的速度。本实施例中,控制阀为蝶阀,抽真空设备为干泵。在进行工艺时,要求保持腔室压力处于稳定的平衡状态。Recipe(工艺菜单)系统为一种应用于半导体设备的管理系统,Recipe即工业自动化制造中的配方,其内容可包含工艺加工过程中的多个步骤以及各个步骤的各种工艺参数值和该步骤的持续时间等。在工艺过程中,设备可依据Recipe的内容完成对物料的加工处理。半导体工艺系统包括工厂主机、通过工厂接口与工厂主机通信连接的上位机和与上位机通信连接的下位机。Recipe的管理可由系统中的下位机来实现。上位机程序会根据客户程序的请求从下位机程序获取指定Recipe的信息,上位机可提供形象的操作界面,以供用户直观的进行Recipe管理工作。下位机程序是存储和管理Recipe的实体。
压力模式和设定模式的解释:
压力模式和设定模式是控制阀工作模式的两种情形,其中压力模式在前,设定模式在后,并且两者的腔室压力设定值相同。
在压力模式下,控压过程中会采用PID逻辑控制的方法,实时对控制阀开度进行调整,控压过程中存在压力波动,波动的范围与控制阀自身的控压能力,控制阀PID参数的设计,所控压力的大小等多个因素相关。在该实施例中,采用压力模式进行控压,当腔室压力达到稳态时,可认为腔室达到动态平衡状态。
设定模式承接于压力模式,此前腔室压力已达到动态平衡,在特定气量下,控制阀开度的大小也达到相对的固定的状态,所以流进腔室的气体和流出腔室的气体量相等,则可认为腔室内保留的气体的量是不变的,所以腔室压力维持在相对稳定状态。设定模式下,控制阀的开度调整为固定大小,控制阀的开度不再变化,所以在该模式下的控压过程中几乎没有压力波动,压力的稳定性很强,从而保证了工艺稳定性。
压力模式相当于设定模式的预演阶段,设定模式中控制阀的开度是通过对压力模式下数据处理得出来的。由于在压力模式下,控制阀的开度、腔室的压力是动态变化的,通过软件记录多组数据,并计算出控制阀开度的均值,腔室实际压力的均值,并统计出在压力模式下气体的总流量。根据以上数据结合设定模式下气体的总流量,计算出设定模式下控制阀的开度。
具体地,软件实现控压流程如下:
读取工艺菜单中当前工艺步骤中控制阀的工作模式,控制阀的工作模式包括压力模式、设定模式、角度模式和全开模式等。判断当前控制阀工作模式是否为压力模式,若是,操作控制阀,使控制阀进入压力模式,并判断工艺菜单中控制阀的下一工作模式是否为设定模式。若控制阀的下一工作模式为设定模式,则通过软件记录当前压力模式下多组腔室的压力、控制阀的开度的数据,并统计在当前压力模式下气体的总流量,并根据当前压力模式下气体的总流量,控制阀的开度以及下一步控制阀在设定模式下气体的总流量计算出设定模式下控制阀的开度。控制阀进入设定模式后,操作控制阀,将控制阀的开度调整至上步计算得出的开度,并维持控制阀的开度不变,直至当前工艺步骤结束。
在一个实施例中,根据以下公式计算控制阀在设定模式下的开度:
I1=I0×F1/F0
其中,I0为控制阀在压力模式下的开度的均值(算术平均值或均方根),F1为控制阀在设定模式下气体的总流量,F0为控制阀在压力模式下的气体的总流量。
如压力模式下,F0的值为10升,I0的值为20度。设定模式下,F1的值为15升,则I1=20×15/10=30度。
在一个实施例中,根据以下公式计算控制阀工作在设定模式下的开度:
I1=k×I0×F1/F0
其中,k为压力模式下腔室的实际压力的均值和腔室的目标压力值的比值。
如压力模式下,F0的值为10升,I0的值为20度,腔室的目标压力值为50托,腔室的实际压力的均值为49托。设定模式下,F1的值为15升,则I1=50/49×20×15/10=30.612度。
当压力模式和设定模式通入的气体种类不同时,根据以下公式计算控制阀在设定模式下的开度:
I1=k0×I0×F1/F0
其中,I0为控制阀在压力模式下的开度的均值(算术平均值或均方根),F1为控制阀在设定模式下气体的总流量,F0为控制阀在压力模式下的气体的总流量,k0为与压力模式和设定模式下不同气体的理化性质相关的经验值。气体的理化性质包括气体的分子量和/或黏性。可以理解,当压力模式和设定模式下气体不同时,获取的数据还包括当前工艺步骤中气体的分子量和/或黏性以及下一工艺步骤中气体的分子量和/或黏性。
如在压力模式下,F0的值为10升,I0的值为20度,设定模式下,F1的值为15升,k0为0.99,则I1=0.99×20×15/10=29.7度。
当压力模式和设定模式通入的气体种类不同时,还可以根据以下公式计算控制阀在设定模式下的开度:
I1=k0×k1×I0×F1/F0
其中,I0为控制阀在压力模式下的开度的均值(算术平均值或均方根),F1为控制阀在设定模式下气体的总流量,F0为控制阀在压力模式下的气体的总流量,k0为与压力模式和设定模式下不同气体的理化性质相关的经验值。气体的理化性质包括气体的分子量或黏性。k1为压力模式下腔室的实际压力的均值和腔室的目标压力值的比值。
如在压力模式下,F0的值为10升,I0的值为20度,腔室的目标压力值为50托,腔室的实际压力的均值为49托。设定模式下,F1的值为15升,k0为0.99,则I1=50/49×0.99×20×15/10=30.306度。
参考图2,图2为控制阀工作在压力模式和设定模式中腔室压力控制在5托和50托的对比图,纵坐标为压力,横坐标为时间,实线为控制阀工作在压力模式下,虚线为控制阀工作在设定模式下。由图可知,无论腔室压力是5托还是50托,设定模式均能实现高精度、稳定的控制。
以上的腔室压力控制方法可用于半导体的薄膜沉积工艺。其中设定模式对应的工艺为薄膜沉积阶段。当接收输入的信息,生成工艺菜单时,输入的信息包括:与薄膜沉积工艺步骤对应的工作模式为设定模式。
本发明的控制阀工作在设定模式与现有技术控制阀工作在压力模式对比,采用本发明的设定模式能够带来以下有益效果:
1、控压精度相高
一个CVD工艺往往会含有多个压力区间。使用压力模式,在不同压力区间控制阀开度波动给控压带来扰动的程度也不尽相同。如在控高压时,控制阀工作时开度较小,此时很小的开度变化会引起数托的压力变化,从而造成实际控压值与目标值相差较远。设定模式下在不同的控压环节,控制阀开度固定,且通过软件计算出来的控制阀的开度精度较高,例如均在三位有效数字以上。无论在低压区域,中压区域还是高压区域均能使最终所控制的压力与设定目标压力的差值在1%以内。
2、控压稳定性强
原有的压力模式在控压过程中会采用PID逻辑控制的方法,实时对控制阀开度进行调整,所以这个控压过程内都存在压力波动。而角度模式需要人为指定控制阀开度,软件无法自动计算控压的开度。如果采用设定模式,能承接上一步骤中压力模式的控制阀开度,通过算法自动将控制阀的开度调整为固定大小,所以在该模式下的控压过程中几乎没有压力波动,压力的稳定性很强,从而保证了工艺稳定性。
3、控压重复性好
现有的压力模式在控压时控制阀开度在时时波动,该波动会使不同批次的晶圆同一工艺环节控压的波动范围有差异,控压重复性略差。设定模式数据处理的方式并非采集压力模式下某一时刻的数据,而是对整个压力模式中的多种数据,包括控制阀开度,气量,气体种类等多项数据进行统计学上的综合处理,这样能保证不同批次的晶圆在同一工艺环节具有相同的控制阀开度,进而保证压力基本保持一致。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (10)

1.一种半导体工艺中腔室压力的控制方法,所述腔室通过控制阀与抽真空设备连接,其特征在于,所述方法包括:
步骤1:读取工艺菜单中当前工艺步骤中所述控制阀的工作模式,并控制所述控制阀进入所读取的工作模式;
步骤2:若所读取的工作模式为压力模式,则判断所述工艺菜单中下一工艺步骤中所述控制阀的工作模式是否为设定模式,若是,执行步骤3;
步骤3:获取数据,并根据所述数据计算出所述控制阀在所述设定模式下的开度,其中,所述数据包括所述控制阀工作在所述压力模式下时气体的总流量、所述控制阀的开度均值,以及所述控制阀在所述设定模式下气体的总流量;
步骤4:执行所述下一工艺步骤,将所述控制阀的工作模式切换为所述设定模式,并将所述控制阀的开度调整至所述步骤3中计算的开度,且维持所述控制阀的开度不变,直至当前工艺步骤结束。
2.根据权利要求1所述的半导体工艺中腔室压力的控制方法,其特征在于,根据以下公式计算所述控制阀在所述设定模式下的开度:
I1=I0×F1/F0
其中,I0为所述控制阀在所述压力模式下的开度的均值,F1为所述控制阀在所述设定模式下气体的总流量,F0为所述控制阀在所述压力模式下的气体的总流量。
3.根据权利要求1所述的半导体工艺中腔室压力的控制方法,其特征在于,根据以下公式计算所述控制阀在所述设定模式下的开度:
I1=k×I0×F1/F0
其中,I0为所述控制阀在所述压力模式下的开度的均值,F1为所述控制阀在所述设定模式下气体的总流量,F0为所述控制阀在所述压力模式下的气体的总流量,k为所述压力模式下腔室的实际压力的均值与腔室的目标压力值的比值。
4.根据权利要求1所述的半导体工艺中腔室压力的控制方法,其特征在于,当所述步骤3和所述步骤4中通入的气体种类不同时,根据以下公式计算所述控制阀在所述设定模式下的开度:
I1=k0×I0×F1/F0
其中,I0为所述控制阀在所述压力模式下的开度的均值,F1为所述控制阀在所述设定模式下气体的总流量,F0为所述控制阀在所述压力模式下的气体的总流量,k0为与所述步骤3和所述步骤4中不同气体的理化性质相关的经验值。
5.根据权利要求1所述的半导体工艺中腔室压力的控制方法,其特征在于,当所述步骤3和所述步骤4中通入的气体种类不同时,根据以下公式计算所述控制阀在所述设定模式下的开度:
I1=k0×k1×I0×F1/F0
其中,I0为所述控制阀在所述压力模式下的开度的均值,F1为所述控制阀在所述设定模式下气体的总流量,F0为所述控制阀在所述压力模式下的气体的总流量,k0为与所述步骤3和所述步骤4中不同气体的理化性质相关的经验值,k1为压力模式下腔室的实际压力的均值和腔室的目标压力值的比值。
6.根据权利要求4或5所述的半导体工艺中腔室压力的控制方法,其特征在于,所述理化性质包括气体的分子量和/或黏性。
7.根据权利要求6所述的半导体工艺中腔室压力的控制方法,所述数据还包括当前工艺步骤中气体的分子量和/或黏性以及下一工艺步骤中气体的分子量和/或黏性。
8.根据权利要求1所述的半导体工艺中腔室压力的控制方法,其特征在于,所述控制方法用于半导体的薄膜沉积工艺。
9.根据权利要求8所述的半导体工艺中腔室压力的控制方法,所述方法还包括:
接收输入的信息,生成所述工艺菜单,其中,所述信息包括:与薄膜沉积工艺步骤对应的工作模式为所述设定模式。
10.根据权利要求1所述的半导体工艺中腔室压力的控制方法,所述控制阀包括蝶阀;和/或,所述抽真空设备包括干泵。
CN202011333569.1A 2020-11-24 2020-11-24 一种半导体工艺中腔室压力的控制方法 Active CN112695297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011333569.1A CN112695297B (zh) 2020-11-24 2020-11-24 一种半导体工艺中腔室压力的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011333569.1A CN112695297B (zh) 2020-11-24 2020-11-24 一种半导体工艺中腔室压力的控制方法

Publications (2)

Publication Number Publication Date
CN112695297A true CN112695297A (zh) 2021-04-23
CN112695297B CN112695297B (zh) 2022-12-09

Family

ID=75506046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011333569.1A Active CN112695297B (zh) 2020-11-24 2020-11-24 一种半导体工艺中腔室压力的控制方法

Country Status (1)

Country Link
CN (1) CN112695297B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416944A (zh) * 2021-06-22 2021-09-21 江苏微导纳米科技股份有限公司 镀膜设备及其工作方法
CN115506011A (zh) * 2022-09-30 2022-12-23 中国电子科技集团公司第四十八研究所 一种改善立式lpcvd设备镀膜效果的方法
CN115826636A (zh) * 2023-02-16 2023-03-21 广州志橙半导体有限公司 一种cvd设备的压力控制方法及系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002297244A (ja) * 2001-04-03 2002-10-11 Matsushita Electric Ind Co Ltd 反応室の圧力制御方法および装置
US20080069669A1 (en) * 2006-09-19 2008-03-20 Tokyo Electon Limited Substrate processing device, method of adjusting pressure in substrate processing device, and method of executing charge neutralization processing on mounting table of substrate processing device
CN101436069A (zh) * 2008-11-25 2009-05-20 北京北方微电子基地设备工艺研究中心有限责任公司 质量流量控制器的在线校验方法
US20100093111A1 (en) * 2006-10-13 2010-04-15 Omron Corporation Method for manufacturing electronic device using plasma reactor processing system
CN102646619A (zh) * 2012-04-28 2012-08-22 中微半导体设备(上海)有限公司 腔室的压力控制方法
US20120305188A1 (en) * 2011-05-31 2012-12-06 Tokyo Electron Limited Plasma processing apparatus and gas supply method therefor
JP2015099881A (ja) * 2013-11-20 2015-05-28 東京エレクトロン株式会社 ガス供給装置、成膜装置、ガス供給方法及び記憶媒体
CN106086810A (zh) * 2016-06-29 2016-11-09 苏州新纳晶光电有限公司 调节mocvd反应室压力克服led外延结构雾边的方法及系统
CN107152551A (zh) * 2017-05-11 2017-09-12 广东卓信环境科技股份有限公司 一种调压控制方法及调压控制装置
CN108630568A (zh) * 2017-03-24 2018-10-09 株式会社斯库林集团 基板处理装置及基板处理方法
CN110016657A (zh) * 2018-01-08 2019-07-16 北京北方华创微电子装备有限公司 流量控制方法及装置、反应腔室
CN110894599A (zh) * 2018-09-13 2020-03-20 中国建筑材料科学研究总院有限公司 等离子体化学气相沉积系统及方法
CN111831022A (zh) * 2019-04-18 2020-10-27 北京七星华创流量计有限公司 腔室压力控制方法及装置、半导体设备

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002297244A (ja) * 2001-04-03 2002-10-11 Matsushita Electric Ind Co Ltd 反応室の圧力制御方法および装置
US20080069669A1 (en) * 2006-09-19 2008-03-20 Tokyo Electon Limited Substrate processing device, method of adjusting pressure in substrate processing device, and method of executing charge neutralization processing on mounting table of substrate processing device
US20100093111A1 (en) * 2006-10-13 2010-04-15 Omron Corporation Method for manufacturing electronic device using plasma reactor processing system
CN101436069A (zh) * 2008-11-25 2009-05-20 北京北方微电子基地设备工艺研究中心有限责任公司 质量流量控制器的在线校验方法
US20120305188A1 (en) * 2011-05-31 2012-12-06 Tokyo Electron Limited Plasma processing apparatus and gas supply method therefor
CN102646619A (zh) * 2012-04-28 2012-08-22 中微半导体设备(上海)有限公司 腔室的压力控制方法
JP2015099881A (ja) * 2013-11-20 2015-05-28 東京エレクトロン株式会社 ガス供給装置、成膜装置、ガス供給方法及び記憶媒体
CN106086810A (zh) * 2016-06-29 2016-11-09 苏州新纳晶光电有限公司 调节mocvd反应室压力克服led外延结构雾边的方法及系统
CN108630568A (zh) * 2017-03-24 2018-10-09 株式会社斯库林集团 基板处理装置及基板处理方法
CN107152551A (zh) * 2017-05-11 2017-09-12 广东卓信环境科技股份有限公司 一种调压控制方法及调压控制装置
CN110016657A (zh) * 2018-01-08 2019-07-16 北京北方华创微电子装备有限公司 流量控制方法及装置、反应腔室
CN110894599A (zh) * 2018-09-13 2020-03-20 中国建筑材料科学研究总院有限公司 等离子体化学气相沉积系统及方法
CN111831022A (zh) * 2019-04-18 2020-10-27 北京七星华创流量计有限公司 腔室压力控制方法及装置、半导体设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416944A (zh) * 2021-06-22 2021-09-21 江苏微导纳米科技股份有限公司 镀膜设备及其工作方法
CN113416944B (zh) * 2021-06-22 2022-04-19 江苏微导纳米科技股份有限公司 镀膜设备及其工作方法
CN115506011A (zh) * 2022-09-30 2022-12-23 中国电子科技集团公司第四十八研究所 一种改善立式lpcvd设备镀膜效果的方法
CN115506011B (zh) * 2022-09-30 2024-04-26 中国电子科技集团公司第四十八研究所 一种改善立式lpcvd设备镀膜效果的方法
CN115826636A (zh) * 2023-02-16 2023-03-21 广州志橙半导体有限公司 一种cvd设备的压力控制方法及系统

Also Published As

Publication number Publication date
CN112695297B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN112695297B (zh) 一种半导体工艺中腔室压力的控制方法
JP5455371B2 (ja) ターボポンプを使用する広範囲圧力制御
US6328803B2 (en) Method and apparatus for controlling rate of pressure change in a vacuum process chamber
US6916397B2 (en) Methods and apparatus for maintaining a pressure within an environmentally controlled chamber
JP4382984B2 (ja) 真空処理装置内の圧力制御方法及び装置
US6022483A (en) System and method for controlling pressure
US7793685B2 (en) Controlling gas partial pressures for process optimization
US7253107B2 (en) Pressure control system
EP2536953B1 (en) Apparatus and method for tuning pump speed
US8616043B2 (en) Methods and apparatus for calibrating pressure gauges in a substrate processing system
US7399710B2 (en) Method of controlling the pressure in a process chamber
CN116607129A (zh) 一种lpcvd沉积压力的精确跟随控制方法与装置
CN107004620B (zh) 排气装载锁室的方法、装载锁系统及计算机可读存储媒体
CN114415747B (zh) 一种真空调节阀的压力调节方法
CN111579172B (zh) 反应腔室泄漏监测方法以及装置、半导体设备系统
CN111996510B (zh) 一种用于金刚石生长的plc真空压力控制方法及装置
JPH08134649A (ja) 半導体製造装置の圧力制御方法及び圧力制御装置
CN109183003B (zh) 压力控制方法
JPS62238381A (ja) 真空容器の圧力制御装置
US20210263540A1 (en) Method and apparatus for measuring gas flow
WO2023223481A1 (ja) プラズマ処理装置およびガスの排気方法
Jang et al. Pressure control in a high vacuum multichamber system
CN117431527A (zh) 应用于沉积设备的沉积方法
장원익 et al. Analysis of fast pressure control by the Ziegler-Nichols method for a transport module of a high vacuum cluster tool
JPH0511438U (ja) 半導体製造装置用圧力制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant