CN112651072A - 基于索网模型的悬索桥双吊索参数识别方法 - Google Patents

基于索网模型的悬索桥双吊索参数识别方法 Download PDF

Info

Publication number
CN112651072A
CN112651072A CN202110012122.2A CN202110012122A CN112651072A CN 112651072 A CN112651072 A CN 112651072A CN 202110012122 A CN202110012122 A CN 202110012122A CN 112651072 A CN112651072 A CN 112651072A
Authority
CN
China
Prior art keywords
frequency
sling
equation
cable
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110012122.2A
Other languages
English (en)
Other versions
CN112651072B (zh
Inventor
甄晓霞
陈炜
张卓杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202110012122.2A priority Critical patent/CN112651072B/zh
Publication of CN112651072A publication Critical patent/CN112651072A/zh
Application granted granted Critical
Publication of CN112651072B publication Critical patent/CN112651072B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • E01D11/02Suspension bridges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于索网模型的悬索桥双吊索参数识别方法,包括以下步骤:采集索网结构中已知的基本参数;计算索网结构的频率方程;对索网结构进行振动频率测试并采集各阶实测频率;定义目标函数;迭代求解索网结构实际参数。本发明目标函数明确,识别方法简单直观,识别精度高,能够完全考虑此类吊索的振动参数,包括吊索的索力、抗弯刚度、计算长度、单位索长质量、减振器所处的位置以及减振器的刚度等,适用于任意条件下的双吊索索网。

Description

基于索网模型的悬索桥双吊索参数识别方法
技术领域
本发明属于桥梁安全评估技术领域,具体涉及一种基于索网模型的悬索桥双吊索参数识别方法。
背景技术
吊索是悬索桥的重要受力构件,在施工或运营过程中,吊索的索力、抗弯刚度、长度、单位质量、减振器刚度等参数的实际状态跟设计状态不完全一致,识别出吊索真实的参数对准确评估桥梁的安全可靠性尤为重要。而悬索桥吊索由于减振器的作用形成索网结构,导致其与单根拉索的振动特性并不一样,在吊索同相整体振动振型之间会出现单根吊索单独振动振型(减振器位于吊索中点时成对出现)及反相振动振型,同相整体振动模态的自振频率值不受减振器影响,反相振动模态的频率值、振型均受减振器位置及刚度影响。以往的单根拉索参数识别方法无法全部利用索网结构的各阶频率,以致不能准确的识别吊索的全部参数。因此,需要一种准确的悬索桥吊索参数识别方法,对桥梁的施工及安全状态评估具有重要的意义。
发明内容
本发明的主要目的在于克服现有技术的缺点与不足,提出一种基于索网模型的悬索桥双吊索参数识别方法,方法基于索网模型,能够识别双吊索索网的所有参数。
为了达到上述目的,本发明采用以下技术方案:
基于索网模型的悬索桥双吊索参数识别方法,包括以下步骤:
采集索网结构中已知的基本参数;
计算索网结构的频率方程;
对索网结构进行振动频率测试并采集各阶实测频率;
定义目标函数;
迭代求解索网结构实际参数。
进一步的,所述基本参数包括吊索的索力、材料的弹性模量、材料的截面积、吊索结构的计算长度、单位索长的质量、减振器所处的位置以及减振器的刚度。
进一步的,所述计算索网结构的频率方程具体为:
假设两根等长吊索L,吊索索力T、抗弯刚度EI以及单位索长质量m均相等,通过一个刚度为K的减振器进行连接,减振器在吊索1/2处,则其频率方程为:
Figure BDA0002885420380000021
若减振器刚度K为无限大,减振器在吊索1/2处,则频率方程为:
Figure BDA0002885420380000022
其中,
Figure BDA0002885420380000023
频率方程(1)和(2)均在边界为固结的条件下计算得出。
进一步的,所述基于索网模型的悬索桥双吊索参数识别方法亦适用于减振器不位于吊索1/2处或索网两吊索参数不相同的情况。
进一步的,所述目标函数具体为:
Figure BDA0002885420380000031
其中,
Figure BDA0002885420380000032
分别为计算所得和实测所得的吊索第j阶频率值,wj是对应各阶频率误差的权重,n是实测中所得的频率最高阶次;
当计算频率等于实际频率时,即目标函数J=0时,计算的吊索参数即为实际吊索参数,但是,实际工程中存在误差,因此,使目标函数J达到极小值,把目标函数导数的模控制在一个预设的范围内,即认为求解的吊索参数为实际吊索参数。
进一步的,所述迭代求解索网结构实际参数具体为:
通过公式(3)对吊索索网实际参数进行优化,采用优化迭代求解方法进行求解,包括单参数识别以及多参数识别。
进一步的,所述单参数识别具体为:
由公式(3)得,当吊索索网只有一个未知参数时,测量频率最高阶数n包括1和大于1两种情况;当n=1时为单频率识别吊索索网单参数,当n>1时为多频率识别吊索索网单参数;
当n=1时,具体为:
Figure BDA0002885420380000033
Figure BDA0002885420380000034
j为任意频率阶次;
当通过吊索振动测试得到实测频率
Figure BDA0002885420380000035
后,则得到
Figure BDA0002885420380000036
由于未知参数x为T、EI、L、m以及K中的一个,频率方程(1)或(2)中只有一个未知参数,通过迭代法求出未知参数,具体为:
Figure BDA0002885420380000041
代入频率方程(1)或(2),定义频率方程左边为f(x);
确定x的范围为a≤x≤b,并令迭代轮次k=0,给定所求未知参数初始值为x(0)=a,求解f(x(0));迭代步长为t,迭代次数N=(b-a)/t;
令k=k+1,x(k)=x(0)+kt;
若f(x(k-1))×f(x(k))<0成立,输出x(k),判断x(k)≥x(N),若x(k)≥x(N)成立,则结束迭代,否则返回令k=k+1,x(k)=x(0)+kt步骤,继续迭代;若f(x(k-1))×f(x(k))<0不成立,判断x(k)≥x(N),若x(k)≥x(N)成立,结束迭代,否则返回令k=k+1,x(k)=x(0)+kt步骤,继续迭代。
进一步的,当n>1时,具体为:
确定x的范围为a≤x≤b,并令迭代轮次k=0,给定所求未知参数初始值为x(0)=a,迭代步长为t,迭代次数N=(b-a)/t;ε表示目标函数的模的允许误差;
目标函数设为:
Figure BDA0002885420380000042
其中,j为任意频率阶次,wj为各频率阶次下的权重系数,
Figure BDA0002885420380000043
为第j阶计算频率,
Figure BDA0002885420380000044
为第j阶实测频率;
设计算频率的目标方程为g(fCAL,x)=0;
计算|F'(x)|的解析式,对目标方程求导得
Figure BDA0002885420380000045
Figure BDA0002885420380000046
其中,gx为频率方程左端对x求导,gf为频率方程左端对f求导;
将x(k)代入方程g(fCAL,x)=0中,通过二分法计算出
Figure BDA0002885420380000051
将x(k)
Figure BDA0002885420380000052
代入F'(x),计算出|F'(x)|;
设定目标函数极小值判定条件为|F'(x(k))|<ε;若条件|F'(x(k))|<ε成立,输出x(k),判断x(k)≥x(N),若x(k)≥x(N)成立,则结束迭代,否则令k=k+1,x(k)=x(0)+kt,返回将x(k)代入方程g(fCAL,x)=0步骤;若条件|F'(x(k))|<ε不成立,判断x(k)≥x(N),若x(k)≥x(N)成立,则结束迭代,否则令k=k+1,x(k)=x(0)+kt,返回将x(k)代入方程g(fCAL,x)=0步骤。
进一步的,所述多参数识别具体为:
假设未知参数为x=x1,x2,...,pn,其中ai≤pi≤bi,i=1,2,...,n,其中ai,bi为实常数;
设目标函数为
Figure BDA0002885420380000053
其中,j为任意频率阶次,wj为各频率阶次下的权重系数,
Figure BDA0002885420380000059
为第j阶计算频率,
Figure BDA00028854203800000510
为第j阶实测频率;方程g(fCAL,x1,x2...xn)=0表示计算频率的目标方程;ε表示目标函数的允许误差;k为迭代轮次,初始值为0;
计算
Figure BDA0002885420380000054
的解析式,
Figure BDA0002885420380000055
代表梯度算子,
Figure BDA0002885420380000056
为方程F(x1,x2...xn)的梯度的模,对目标方程求偏导得
Figure BDA0002885420380000057
Figure BDA0002885420380000058
其中,gxi为频率方程左端对xi求导,gf为频率方程左端对f求导;
将x1 (k1),x2 (k2)…xn (kn)代入方程g(fCAL,x1,x2...xn)=0,通过二分法计算出
Figure BDA0002885420380000061
将x1 (k1),x2 (k2)…xn (kn)
Figure BDA0002885420380000062
代入
Figure BDA0002885420380000063
计算出
Figure BDA0002885420380000064
设定目标函数极小值判定条件为
Figure BDA0002885420380000065
输出x1 (k1),x2 (k2)…xn (kn),若
Figure BDA0002885420380000066
则结束迭代,否则,令kn=kn+1,xn (kn)=xn (0)+kntn,继续将x1 (k1),x2 (k2)…xn (kn)代入方程g(fCAL,x1,x2...xn)=0步骤,继续迭代。
进一步的,所述振动频率测试采用适用于振动频率法的动态应变系统。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明针对现有技术尚无带减振器的吊索索网的参数识别方法的问题,设计了基于索网模型的悬索桥双吊索参数识别方法,方法能利用通过振动频率测试得到的各阶频率来识别出带减振器的吊索索网的全部未知参数。本发明目标函数明确,识别方法简单直观,识别精度高,能够完全考虑此类吊索的振动参数,包括吊索的索力、抗弯刚度、计算长度、单位索长的质量、减振器所处的位置以及减振器的刚度等,适用于任意条件下的双吊索索网。
附图说明
图1是本发明方法的流程图;
图2是双吊索索网模型分析图;
图3是单频率识别吊索索网单参数流程图;
图4是多频率识别吊索索网单参数流程图;
图5是多参数识别流程图;
图6是矮寨特大桥立面图;
图7是单参数识别时不同吊索索力下F'(T)值图;
图8是单参数识别时不同吊索索力下F(T)值图;
图9是多参数识别时不同吊索索力下
Figure BDA0002885420380000072
值图;
图10是多参数识别时不同吊索索力下F(T,m)值图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图1所示,本发明,基于索网模型的悬索桥双吊索参数识别方法,包括以下步骤:
S1、采集索网结构中已知的基本参数,具体为吊索的索力、材料的弹性模量、材料的截面积、吊索结构的计算长度、单位索长质量、减振器所处的位置、减振器的刚度等;
S2、计算索网结构的频率方程,具体为:
如图2所示,两根等长吊索L,吊索索力T、抗弯刚度EI以及单位索长质量m均相同,通过一个刚度为K的减振器进行连接,减振器在吊索1/2处,则其频率方程为:
Figure BDA0002885420380000071
若减振器刚度K为无限大,减振器在吊索1/2处,则频率方程为:
Figure BDA0002885420380000081
其中,
Figure BDA0002885420380000082
本发明方法亦适用于减振器不位于吊索1/2处或索网两吊索参数不相同的情况,但频率方程表达式更为复杂。
S3、对索网结构进行振动频率测试并采集各阶实测频率;所述振动频率测试采用适用于振动频率法的动态应变系统;对索网结构进行振动频率测试,是在结构温度场局部温差较小时测量,选择最高阶主要频率的5~10倍的采样频率进行采样,得到实测频率。
S4、定义目标函数,具体为:
Figure BDA0002885420380000083
其中,
Figure BDA0002885420380000084
分别为计算所得和实测所得的吊索第j阶频率值,wj是对应各阶频率误差的权重,n是实测中所得的频率最高阶次;
当计算频率等于实际频率时,即目标函数J=0时,计算的吊索参数即为实际吊索参数,但是,实际工程中存在误差,因此,使目标函数J达到极小值,把目标函数导数的模控制在一个预设的足够小的范围内,即认为求解的吊索参数为实际吊索参数。
S5、迭代求解索网结构实际参数,具体为:
通过公式(3)对吊索索网实际参数进行优化,采用优化迭代求解方法进行求解,包括单参数识别以及多参数识别。
所述单参数识别具体为:
由公式(3)得,当吊索索网只有一个未知参数时,测量频率最高阶数n包括1和大于1两种情况;当n=1时为单频率识别吊索索网单参数,当n>1时为多频率识别吊索索网单参数;
当n=1时,如图3所示,具体为:
Figure BDA0002885420380000091
Figure BDA0002885420380000092
j为任意频率阶次;
当通过吊索振动测试得到实测频率
Figure BDA0002885420380000093
后,则得到
Figure BDA0002885420380000094
由于未知参数x为T、EI、L、m以及K中的一个,频率方程(1)或(2)中只有一个未知参数,通过迭代法求出未知参数,具体为:
Figure BDA0002885420380000095
代入频率方程(1)或(2),定义频率方程左边为f(x);
确定x的范围为a≤x≤b,并令迭代轮次k=0,给定所求未知参数初始值为x(0)=a,求解f(x(0));迭代步长为t,迭代次数N=(b-a)/t;
令k=k+1,x(k)=x(0)+kt;
若f(x(k-1))×f(x(k))<0成立,输出x(k),判断x(k)≥x(N),若x(k)≥x(N)成立,则结束迭代,否则返回令k=k+1,x(k)=x(0)+kt步骤,继续迭代;若f(x(k-1))×f(x(k))<0不成立,判断x(k)≥x(N),若x(k)≥x(N)成立,结束迭代,否则返回令k=k+1,x(k)=x(0)+kt步骤,继续迭代。
当n>1时,如图4所示,具体为:
确定x的范围为a≤x≤b,并令迭代轮次k=0,给定所求未知参数初始值为x(0)=a,迭代步长为t,迭代次数N=(b-a)/t;ε表示目标函数的模的允许误差,是接近0的极小实数;
目标函数设为:
Figure BDA0002885420380000101
其中,j为任意频率阶次,wj为各频率阶次下的权重系数,
Figure BDA0002885420380000102
为第j阶计算频率,
Figure BDA0002885420380000103
为第j阶实测频率;
设计算频率的目标方程为g(fCAL,x)=0;
计算|F'(x)|的解析式,对目标方程求导得
Figure BDA0002885420380000104
Figure BDA0002885420380000105
其中,gx为频率方程左端对x求导,gf为频率方程左端对f求导;
将x(k)代入方程g(fCAL,x)=0中,通过二分法计算出
Figure BDA0002885420380000106
将x(k)
Figure BDA0002885420380000107
代入F'(x),计算出|F'(x)|;
设定目标函数极小值判定条件为|F'(x(k))|<ε;若条件|F'(x(k))|<ε成立,输出x(k),判断x(k)≥x(N),若x(k)≥x(N)成立,则结束迭代,否则令k=k+1,x(k)=x(0)+kt,返回将x(k)代入方程g(fCAL,x)=0步骤;若条件|F'(x(k))|<ε不成立,判断x(k)≥x(N),若x(k)≥x(N)成立,则结束迭代,否则令k=k+1,x(k)=x(0)+kt,返回将x(k)代入方程g(fCAL,x)=0步骤。
如图5所示,所述多参数识别具体为:
假设未知参数为x=x1,x2,...,pn,其中ai≤pi≤bi,i=1,2,...,n;ai,bi为实常数;
设目标函数为
Figure BDA0002885420380000111
其中,j为任意频率阶次,wj为各频率阶次下的权重系数,
Figure BDA0002885420380000112
为第j阶计算频率,
Figure BDA0002885420380000113
为第j阶实测频率;方程g(fCAL,x1,x2...xn)=0表示计算频率的目标方程;ε表示目标函数的允许误差;k为迭代轮次,初始值为0;
计算
Figure BDA0002885420380000114
的解析式,
Figure BDA0002885420380000115
代表梯度算子,
Figure BDA0002885420380000116
为方程F(x1,x2...xn)的梯度的模,对目标方程求偏导得
Figure BDA0002885420380000117
Figure BDA0002885420380000118
其中,gxi为频率方程左端对xi求导,gf为频率方程左端对f求导;
将x1 (k1),x2 (k2)…xn (kn)代入方程g(fCAL,x1,x2...xn)=0,通过二分法计算出
Figure BDA0002885420380000119
将x1 (k1),x2 (k2)…xn (kn)
Figure BDA00028854203800001110
代入
Figure BDA00028854203800001111
计算出
Figure BDA00028854203800001112
设定目标函数极小值判定条件为
Figure BDA00028854203800001113
输出x1 (k1),x2 (k2)…xn (kn),若
Figure BDA00028854203800001114
则结束迭代,否则,令kn=kn+1,xn (kn)=xn (0)+kntn,继续将x1 (k1),x2 (k2)…xn (kn)代入方程g(fCAL,x1,x2...xn)=0步骤,继续迭代。
下面以矮寨特大悬索桥为例进一步描述本发明。
实施例1,以矮寨特大悬索桥的C21L号双层吊索为例,如图6所示,为矮寨特大桥的立面图;本实施例通过单频率来识别吊索索网的单个未知参数抗弯刚度EI,假设吊索索网两根吊索的抗弯刚度、吊索索力、计算长度、单位索长质量均相同,减振器位于吊索1/2处,其中:
吊索索力为T1=T2=T=1000kN;
计算长度为L1=L2=L=17.7m;
单位索长质量为m1=m2=m=32.46kg/m;
减振器刚度为K=107N/m;
实测首阶频率为
Figure BDA0002885420380000121
Figure BDA0002885420380000122
Figure BDA0002885420380000123
Figure BDA0002885420380000124
Figure BDA0002885420380000125
Figure BDA0002885420380000126
将公式(4)至公式(7)代入频率方程(1),则频率方程中只有一个未知数EI,由于该吊索的设计抗弯刚度为138836N·m2,可根据实际情况令EI的范围为100000~200000N·m2,并令EI的初始值为100000N·m2,步长为10N·m2,进行迭代。
当EI≤136050N·m2时,f(x)<0;当EI≥136060N·m2时,f(x)>0;因此实际的抗弯刚度为136055N·m2
实施例2,以矮寨特大悬索桥的C12L号双层吊索为例,本实施例通过多频率来识别吊索索网的单个未知参数吊索索力T,假设吊索索网两根吊索的抗弯刚度、吊索索力、计算长度、单位索长质量均相同,减振器位于吊索1/2处,其中:
计算长度为L1=L2=L=42.048m;
抗弯刚度为EI1=EI2=EI=138836N·m2
单位索长质量为m1=m2=m=32.46kg/m;
减振器刚度为K=105N/m;
实测前六阶频率
Figure BDA0002885420380000131
Figure BDA0002885420380000132
目标函数为
Figure BDA0002885420380000133
其中,测量频率最高阶数n取6,wj取1/6,ε取10-7
Figure BDA0002885420380000134
Figure BDA0002885420380000135
其中gT为频率方程(1)左端对T求导,gf为频率方程(1)左端对f求导。
将T(k)代入方程g(fCAL(T))=0中,通过二分法计算出
Figure BDA0002885420380000136
然后将T(k)
Figure BDA0002885420380000137
代入F'(T),计算出F'(T(k))。
由于设计索力为1000kN,可根据实际情况令T的范围为500~1500kN,并令T的初始值为500kN,步长为5kN,开始迭代。得到F'(T)和F(T)如图7和图8所示。
当T≤985kN时,F'(T)<0;当T≥990kN时,F'(T)>0;且当980kN≤T≤995kN时,|F'(T)|<10-7,因此实际的索力为987kN。
实施例3,以矮寨特大悬索桥的C03L号双层索网为例,通过多频率来识别吊索索网的两个未知参数吊索索力T和单位索长质量m,假设吊索索网两根吊索的抗弯刚度、吊索索力、计算长度、单位索长质量均相同,减振器位于吊索1/2处,其中:
计算长度为L1=L2=L=79.176m;
抗弯刚度为EI1=EI2=EI=138836N·m2
减振器刚度为K=104N/m;
实测前六阶频率
Figure BDA0002885420380000141
Figure BDA0002885420380000142
目标函数为
Figure BDA0002885420380000143
其中,测量频率最高阶数n取6,wj均取1/6,ε取6×10-4
Figure BDA0002885420380000144
Figure BDA0002885420380000145
其中gT为频率方程(1)左端对T求导,gm为频率方程(1)左端对m求导,gf为频率方程(1)左端对f求导。
将T(k1),m(k2)代入方程g(fCAL(T,m))=0中,通过二分法计算出
Figure BDA0002885420380000146
然后将T(k1)、m(k2)
Figure BDA0002885420380000147
代入
Figure BDA0002885420380000148
计算出
Figure BDA0002885420380000149
由于设计索力T为1000kN,设计单位索长质量m为32.46kg/m,因此设定T的范围为750kN~1250kN,m的范围为25kg/m~40kg/m,并令T的初始值为750kN,步长为5kN,令m的初始值为25kg/m,步长为0.15kg/m,开始迭代。得到
Figure BDA0002885420380000151
和F(T,m)如图9和图10所示。
在26.20kg/m≤m≤32.05kg/m范围内,当m=(25+i×0.15)kg/m,
T=(770+i×5)kN时,
Figure BDA0002885420380000152
小于6×10-4;在32.20kg/m≤m≤35.05kg/m范围内,当m=(25+i×0.15)kg/m,T=(765+i×5)kN时,
Figure BDA0002885420380000153
小于5×10-4,如表1所示。因此综合考虑T和m的设计值,得到实际索力T为1005kN,实际单位索长质量m为32.20kg/m,使T和m的误差控制在1%以内。
如下表1所示,为当
Figure BDA0002885420380000154
小于6×10-4时对应的T和m;
Figure BDA0002885420380000155
表1
还需要说明的是,在本说明书中,诸如术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.基于索网模型的悬索桥双吊索参数识别方法,其特征在于,包括以下步骤:
采集索网结构中已知的基本参数;
计算索网结构的频率方程;
对索网结构进行振动频率测试并采集各阶实测频率;
定义目标函数;
迭代求解索网结构实际参数。
2.根据权利要求1所述的基于索网模型的悬索桥双吊索参数识别方法,其特征在于,所述基本参数包括吊索的索力、材料的弹性模量、材料的截面积、吊索结构的计算长度、单位索长的质量、减振器所处的位置以及减振器的刚度。
3.根据权利要求1所述的基于索网模型的悬索桥双吊索参数识别方法,其特征在于,所述计算索网结构的频率方程具体为:
假设两根等长吊索L,吊索索力T、抗弯刚度EI以及单位索长质量m均相等,通过一个刚度为K的减振器进行连接,减振器在吊索1/2处,则其频率方程为:
Figure FDA0002885420370000011
若减振器刚度K为无限大,减振器在吊索1/2处,则频率方程为:
Figure FDA0002885420370000012
其中,
Figure FDA0002885420370000021
频率方程(1)和(2)均在边界为固结的条件下计算得出。
4.根据权利要求3所述的基于索网模型的悬索桥双吊索参数识别方法,其特征在于,所述基于索网模型的悬索桥双吊索参数识别方法亦适用于减振器不位于吊索1/2处或索网两吊索参数不相同的情况。
5.根据权利要求1所述的基于索网模型的悬索桥双吊索参数识别方法,其特征在于,所述目标函数具体为:
Figure FDA0002885420370000022
其中,
Figure FDA0002885420370000023
分别为计算所得和实测所得的吊索第j阶频率值,wj是对应各阶频率误差的权重,n是实测中所得的频率最高阶次;
当计算频率等于实际频率时,即目标函数J=0时,计算的吊索参数即为实际吊索参数,但是,实际工程中存在误差,因此,使目标函数J达到极小值,把目标函数导数的模控制在一个预设的范围内,即认为求解的吊索参数为实际吊索参数。
6.根据权利要求5所述的基于索网模型的悬索桥双吊索参数识别方法,其特征在于,所述迭代求解索网结构实际参数具体为:
通过公式(3)对吊索索网实际参数进行优化,采用优化迭代求解方法进行求解,包括单参数识别以及多参数识别。
7.根据权利要求6所述的基于索网模型的悬索桥双吊索参数识别方法,其特征在于,所述单参数识别具体为:
由公式(3)得,当吊索索网只有一个未知参数时,测量频率最高阶数n包括1和大于1两种情况;当n=1时为单频率识别吊索索网单参数,当n>1时为多频率识别吊索索网单参数;
当n=1时,具体为:
Figure FDA0002885420370000031
Figure FDA0002885420370000032
j为任意频率阶次;
当通过吊索振动测试得到实测频率
Figure FDA0002885420370000033
后,则得到
Figure FDA0002885420370000034
由于未知参数x为T、EI、L、m以及K中的一个,频率方程(1)或(2)中只有一个未知参数,通过迭代法求出未知参数,具体为:
Figure FDA0002885420370000035
代入频率方程(1)或(2),定义频率方程左边为f(x);
确定x的范围为a≤x≤b,并令迭代轮次k=0,给定所求未知参数初始值为x(0)=a,求解f(x(0));迭代步长为t,迭代次数N=(b-a)/t;
令k=k+1,x(k)=x(0)+kt;
若f(x(k-1))×f(x(k))<0成立,输出x(k),判断x(k)≥x(N),若x(k)≥x(N)成立,则结束迭代,否则返回令k=k+1,x(k)=x(0)+kt步骤,继续迭代;若f(x(k-1))×f(x(k))<0不成立,判断x(k)≥x(N),若x(k)≥x(N)成立,结束迭代,否则返回令k=k+1,x(k)=x(0)+kt步骤,继续迭代。
8.根据权利要求7所述的基于索网模型的悬索桥双吊索参数识别方法,其特征在于,当n>1时,具体为:
确定x的范围为a≤x≤b,并令迭代轮次k=0,给定所求未知参数初始值为x(0)=a,迭代步长为t,迭代次数N=(b-a)/t;ε表示目标函数的模的允许误差;
目标函数设为:
Figure FDA0002885420370000036
其中,j为任意频率阶次,wj为各频率阶次下的权重系数,
Figure FDA0002885420370000037
为第j阶计算频率,
Figure FDA0002885420370000038
为第j阶实测频率;
设计算频率的目标方程为g(fCAL,x)=0;
计算|F'(x)|的解析式,对目标方程求导得
Figure FDA0002885420370000041
Figure FDA0002885420370000042
其中,gx为频率方程左端对x求导,gf为频率方程左端对f求导;
将x(k)代入方程g(fCAL,x)=0中,通过二分法计算出
Figure FDA0002885420370000043
将x(k)
Figure FDA0002885420370000044
代入F'(x),计算出|F'(x)|;
设定目标函数极小值判定条件为|F'(x(k))|<ε;若条件|F'(x(k))|<ε成立,输出x(k),判断x(k)≥x(N),若x(k)≥x(N)成立,则结束迭代,否则令k=k+1,x(k)=x(0)+kt,返回将x(k)代入方程g(fCAL,x)=0步骤;若条件|F'(x(k))|<ε不成立,判断x(k)≥x(N),若x(k)≥x(N)成立,则结束迭代,否则令k=k+1,x(k)=x(0)+kt,返回将x(k)代入方程g(fCAL,x)=0步骤。
9.根据权利要求6所述的基于索网模型的悬索桥双吊索参数识别方法,其特征在于,所述多参数识别具体为:
假设未知参数为x=x1,x2,...,pn,其中ai≤pi≤bi,i=1,2,...,n,其中ai,bi为实常数;
设目标函数为
Figure FDA0002885420370000045
其中,j为任意频率阶次,wj为各频率阶次下的权重系数,
Figure FDA0002885420370000046
为第j阶计算频率,
Figure FDA0002885420370000047
为第j阶实测频率;方程g(fCAL,x1,x2...xn)=0表示计算频率的目标方程;ε表示目标函数的允许误差;k为迭代轮次,初始值为0;
计算
Figure FDA0002885420370000051
的解析式,
Figure FDA0002885420370000052
代表梯度算子,
Figure FDA0002885420370000053
为方程F(x1,x2...xn)的梯度的模,对目标方程求偏导得
Figure FDA0002885420370000054
Figure FDA0002885420370000055
其中,gxi为频率方程左端对xi求导,gf为频率方程左端对f求导;
将x1 (k1),x2 (k2)…xn (kn)代入方程g(fCAL,x1,x2...xn)=0,通过二分法计算出
Figure FDA0002885420370000056
将x1 (k1),x2 (k2)…xn (kn)
Figure FDA0002885420370000057
代入
Figure FDA0002885420370000058
计算出
Figure FDA0002885420370000059
设定目标函数极小值判定条件为
Figure FDA00028854203700000510
输出x1 (k1),x2 (k2)…xn (kn),若
Figure FDA00028854203700000511
则结束迭代,否则,令kn=kn+1,xn (kn)=xn (0)+kntn,继续将x1 (k1),x2 (k2)…xn (kn)代入方程g(fCAL,x1,x2...xn)=0步骤,继续迭代。
10.根据权利要求1所述的基于索网模型的悬索桥双吊索参数识别方法,其特征在于,所述振动频率测试采用适用于振动频率法的动态应变系统。
CN202110012122.2A 2021-01-06 2021-01-06 基于索网模型的悬索桥双吊索参数识别方法 Active CN112651072B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110012122.2A CN112651072B (zh) 2021-01-06 2021-01-06 基于索网模型的悬索桥双吊索参数识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110012122.2A CN112651072B (zh) 2021-01-06 2021-01-06 基于索网模型的悬索桥双吊索参数识别方法

Publications (2)

Publication Number Publication Date
CN112651072A true CN112651072A (zh) 2021-04-13
CN112651072B CN112651072B (zh) 2023-08-22

Family

ID=75367484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110012122.2A Active CN112651072B (zh) 2021-01-06 2021-01-06 基于索网模型的悬索桥双吊索参数识别方法

Country Status (1)

Country Link
CN (1) CN112651072B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114444366A (zh) * 2022-04-08 2022-05-06 深圳市城市交通规划设计研究中心股份有限公司 基于有限元仿真的桥梁数字孪生模型更新方法及装置
CN117171957A (zh) * 2023-07-31 2023-12-05 昆明理工大学 一种基于蜣螂搜索算法的不同边界下的吊杆索力识别方法
CN117574519A (zh) * 2024-01-15 2024-02-20 江西省交通设计研究院有限责任公司 一种桥墩计算长度系数的自动化精确计算方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240008A (ja) * 1999-02-23 2000-09-05 Kobe Steel Ltd 動吸振器を備えた橋梁
CN101302740A (zh) * 2008-06-24 2008-11-12 东南大学 独塔自锚式悬索桥减震控制的阻尼器最优布置方法
CN102789547A (zh) * 2012-07-14 2012-11-21 福州大学 考虑减振阻尼器作用的斜拉索索力计算方法
CN102829898A (zh) * 2012-08-08 2012-12-19 广西交通科学研究院 一种带减震器短吊杆的内力测定方法
CN108875120A (zh) * 2018-04-23 2018-11-23 武汉理工大学 一种桥梁短吊杆内力识别的数值迭代方法
CN109799011A (zh) * 2019-03-27 2019-05-24 东南大学 一种悬索桥吊杆力测定装置
CN111695188A (zh) * 2020-06-21 2020-09-22 西北工业大学 一种地锚式悬索桥动力特性的快速精细分析方法
CN111783198A (zh) * 2020-06-21 2020-10-16 西北工业大学 一种基于双梁模型的悬索桥精细化动力分析方法
CN111783199A (zh) * 2020-06-21 2020-10-16 西北工业大学 一种多段式索缆结构动力特性的精细化快速求解方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240008A (ja) * 1999-02-23 2000-09-05 Kobe Steel Ltd 動吸振器を備えた橋梁
CN101302740A (zh) * 2008-06-24 2008-11-12 东南大学 独塔自锚式悬索桥减震控制的阻尼器最优布置方法
CN102789547A (zh) * 2012-07-14 2012-11-21 福州大学 考虑减振阻尼器作用的斜拉索索力计算方法
CN102829898A (zh) * 2012-08-08 2012-12-19 广西交通科学研究院 一种带减震器短吊杆的内力测定方法
CN108875120A (zh) * 2018-04-23 2018-11-23 武汉理工大学 一种桥梁短吊杆内力识别的数值迭代方法
CN109799011A (zh) * 2019-03-27 2019-05-24 东南大学 一种悬索桥吊杆力测定装置
CN111695188A (zh) * 2020-06-21 2020-09-22 西北工业大学 一种地锚式悬索桥动力特性的快速精细分析方法
CN111783198A (zh) * 2020-06-21 2020-10-16 西北工业大学 一种基于双梁模型的悬索桥精细化动力分析方法
CN111783199A (zh) * 2020-06-21 2020-10-16 西北工业大学 一种多段式索缆结构动力特性的精细化快速求解方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHUNGUANG DONG ET AL.: "Free vibration of summation resonance of suspended-cable-stayed beam", 《MATHEMATICAL BIOSCIENCES AND ENGINEERING》 *
唐盛华等: "考虑边界条件的频率法测索力实用公式", 《湖南大学学报(自然科学版)》 *
李平杰: "多支承索杆振动参数识别研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》 *
李平杰等: "带中间弹性支承拉索的横向振动频率解析算法李平杰等", 《华南理工大学学报(自然科学版)》 *
潘飞等: "固结拉索近似频率方程求解条件的对比研究", 《公路交通技术》 *
门强: "考虑减振器影响的斜拉桥索力计算研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *
陈炜等: "考虑抗弯刚度的耦合吊索自振特性研究", 《华南理工大学学报(自然科学版)》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114444366A (zh) * 2022-04-08 2022-05-06 深圳市城市交通规划设计研究中心股份有限公司 基于有限元仿真的桥梁数字孪生模型更新方法及装置
CN117171957A (zh) * 2023-07-31 2023-12-05 昆明理工大学 一种基于蜣螂搜索算法的不同边界下的吊杆索力识别方法
CN117574519A (zh) * 2024-01-15 2024-02-20 江西省交通设计研究院有限责任公司 一种桥墩计算长度系数的自动化精确计算方法
CN117574519B (zh) * 2024-01-15 2024-04-05 江西省交通设计研究院有限责任公司 一种桥墩计算长度系数的自动化精确计算方法

Also Published As

Publication number Publication date
CN112651072B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN112651072A (zh) 基于索网模型的悬索桥双吊索参数识别方法
CN111783243B (zh) 一种基于滤波算法的金属结构疲劳裂纹扩展寿命预测方法
JP5721227B2 (ja) 多軸疲労寿命評価方法
Nesládek et al. Fretting fatigue–experimental and numerical approaches
KR100948035B1 (ko) 인장시험과 유한요소법을 이용한 고 변형률에 대한 진변형률-진응력 곡선의 획득 방법 및 이를 이용한 인장 시험기
Lagomarsino et al. The dynamical identification of the tensile force in ancient tie-rods
KR20110124574A (ko) 재료의 잔류응력 평가 방법
Liao et al. Finite element model updating based on field quasi-static generalized influence line and its bridge engineering application
Wertz et al. An energy-based torsional-shear fatigue lifing method
EP0832429A4 (en) METHOD AND APPARATUS FOR PREDICTING STRUCTURAL INTEGRITY BY ESTIMATING THE MODAL DAMPING FACTOR
Gillich et al. Identifying mechanical characteristics of materials with non-linear behavior using statistical methods
US9081922B2 (en) Method of fabricating a mechanical part, including a method of predicting the risks of crack initiation in the part in a “fretting-fatigue” situation
CN108763164B (zh) 煤与瓦斯突出反演相似度的评价方法
KR101655058B1 (ko) 모드 기여도를 고려한 건축 구조 부재의 휨강성 추정방법 및 이를 이용한 안전성 평가방법
CN113639941A (zh) 一种测试桥梁应变柔度矩阵的方法
Yang et al. Thermally induced optical effects in optical fibers by inverse methodology
Ahmed et al. Optimal design for maximum fundamental frequency and minimum intermediate support stiffness for uniform and stepped beams composed of different materials
Lipski Determination of Fatigue Limit by Locati Methodusing SN Curve Determined by Means of Thermographic Method
Vuppala et al. A new inverse explicit flow curve determination method for compression tests
Roebuck et al. Data acquisition and analysis of tensile properties for metal matrix composites
CN114969958A (zh) 一种飞机载荷预测的数据降维处理方法
Johnson et al. A stochastic fatigue damage model for composite single lap shear joints based on Markov chains and thermoelastic stress analysis
JPH05209805A (ja) ばね・質点系のパラメータ同定装置およびその方法
Butrym et al. Fatigue life estimation of structural components using macrofibre composite sensors
JP3550296B2 (ja) 構造物の張力および曲げ剛性の測定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant