CN112649538A - 多肽混合物高效液相色谱分析方法 - Google Patents

多肽混合物高效液相色谱分析方法 Download PDF

Info

Publication number
CN112649538A
CN112649538A CN202011643350.1A CN202011643350A CN112649538A CN 112649538 A CN112649538 A CN 112649538A CN 202011643350 A CN202011643350 A CN 202011643350A CN 112649538 A CN112649538 A CN 112649538A
Authority
CN
China
Prior art keywords
mobile phase
sample
chromatographic column
percent
liquid chromatography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011643350.1A
Other languages
English (en)
Other versions
CN112649538B (zh
Inventor
唐洋明
何刚
李国弢
陶安进
袁建成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hybio Pharmaceutical Co Ltd
Original Assignee
Hybio Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hybio Pharmaceutical Co Ltd filed Critical Hybio Pharmaceutical Co Ltd
Priority to CN202011643350.1A priority Critical patent/CN112649538B/zh
Publication of CN112649538A publication Critical patent/CN112649538A/zh
Application granted granted Critical
Publication of CN112649538B publication Critical patent/CN112649538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/16Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the fluid carrier
    • B01D15/166Fluid composition conditioning, e.g. gradient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/03Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/32Bonded phase chromatography
    • B01D15/325Reversed phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Psychiatry (AREA)

Abstract

本发明涉及一种多肽混合物高效液相色谱分析方法,具体而言,该方法包括如下步骤,步骤(1)配置待测醋酸格拉替雷溶液;步骤(2)以阳离子交换液相色谱法,对待测样本进行梯度洗脱,步骤(3)检测分析共聚物各组分对应峰面积,通过与对照品比对,确定待测样本各组分含量范围是否合格。

Description

多肽混合物高效液相色谱分析方法
本申请是申请号201580079194.1,申请日为2015年4月28日,发明名称为“多肽混合物高效液相色谱分析方法”的中国专利申请的分案申请。
技术领域
本发明属于生物医药领域,具体而言,涉及一种多肽混合物高效液相色谱分析方法。
背景技术
醋酸格拉替雷(Glatiramer acetate,缩写为GA)是一种人工合成多肽类混合物(相对分子量:4700-11000道尔顿),由L-丙氨酸、L-谷氨酸、L-酪氨酸和L-赖氨酸四个氨基酸所组成的随机聚合物,长为45-100个氨基酸。各氨基酸摩尔比大约为0.392-0.462,0.129-0.153,0.086-0.100,0.300-0.374。该药物由以色列药厂梯瓦制药(TEVA)所研发制造,商品名为
Figure BDA0002876074970000011
于1996年获美国FDA核准用于治疗多发性硬化症,目前
Figure BDA0002876074970000012
有注射用水针和注射用冻干粉针两种产品,均用于皮下注射。
醋酸格拉替雷是一个连续性很强的共聚物,其结构如下式所示:
(Glu,Ala,Lys,Tyr)x.xCH3COOH
(C5H9NO4.C3H7NO2.C6H14N2O2.C9H11NO3)x.
xC2H4O2
CAS-147245-92-9
对于仿制该药厂商,只能基于该药的一些固有性质来考察仿制醋酸格拉替雷与对照制剂醋酸格拉替雷的组分差异。
本发明基于本品在不同缓冲溶液中所带电荷、极性、非极情况,采用阴离子交换色谱、阳离子交换色谱、反相色谱,进行阶梯式梯度洗脱的方式对比分析试制样品与市售商品制剂(对照品)的差异。
基于醋酸格拉替雷是一个连续性很强的共聚物,很难用一种分离方法弄清各个组分。现有的分析方法基于组分间分子量差异用体积排阻法进行简单分离分析(将单一峰分为若干组分收集后对其组分再进行分析),可见文献方法较为繁琐。开发能有效分离醋酸格拉替雷各组分的分析方法是非常有必要的。
发明内容
本发明首先涉及一种采用高效液相色谱法对醋酸格拉替雷进行线性或阶梯式梯度洗脱,并分析该共聚物各组分含量是否合格的方法。
该方法包括如下步骤,
步骤(1)配置待测醋酸格拉替雷溶液;
步骤(2)以阴离子交换液相色谱法、阳离子交换液相色谱法或反相液色谱法,对待测样本进行梯度洗脱,
步骤(3)检测分析共聚物各组分对应峰面积,通过与对照品比对,确定待测样本各组分含量范围是否合格。
步骤(2)所述的洗脱梯度为
步骤(2)所述采用阴离子交换液相色谱法的色谱条件为:
采用羧基键合聚苯乙烯-二乙烯苯颗粒为填料的色谱柱,所述的色谱柱填料颗粒粒径为1.7-10μm;
以含10-50mM的三羟基氨基甲烷盐酸盐溶液为流动相A,所述流动相A用NaOH溶液调节pH值至10-12;
以含10-50mM三羟基氨基甲烷盐酸盐、0.5-1.5M氯化钠溶液为流动相B,所述流动相B用盐酸溶液调节pH值至8-10;
进样量5-50uL,样品浓度1-20mg/ml,
流速0.5-1.5mL/min,洗脱时间50-250min;
洗脱梯度为:
采用不同形式的洗脱梯度进行洗脱,
柱温25-50℃;
所述的洗脱梯度为:
总洗脱时间等分为N(2≤N≤20)步依次进行梯度洗脱,前N-1步梯度中流动相A的比例由100%渐次降至50%,流动相B的比例由0渐次升至50%,第N步时流动相A比例为100%,流动相B为0;
优选的5≤N≤15,更优选的8≤N≤12,最优选的,N=10。
步骤(2)所述采用阳离子交换液相色谱法的色谱条件为:
采用叔铵基键合聚苯乙烯-二乙烯苯颗粒为填料的色谱柱,所述的色谱柱填料颗粒粒径为1.7-10μm;
以含10-50mM的2-(N-吗啉代)乙磺酸、0.5-5mM的EDTA溶液为流动相A,用NaOH溶液调pH值至4-6;
以含10-50mM的2-(N-吗啉代)乙磺酸、0.5-5mM的EDTA、1-2.5M的NaCl的溶液为流动相B,用NaOH溶液调pH值至5-7;
进样量5-50uL,样品浓度1-20mg/ml,
流速0.5-1.5mL/min,洗脱时间50-250min;
洗脱梯度为:
采用不同形式的洗脱梯度进行洗脱,
柱温25-50℃;
所述的洗脱梯度为:
总洗脱时间等分为N(2≤N≤20)步依次进行梯度洗脱,前N-1步梯度中流动相A的比例由100%渐次降至0%,流动相B的比例由0渐次升至100%,第N步时流动相A比例为90%,流动相B为10%;
优选的5≤N≤15,更优选的8≤N≤12,最优选的,N=10。
步骤(2)所述采用反相液色谱法的色谱条件为:
采用C18、C12、C8、C4键合硅胶颗粒为填料的色谱柱,所述的色谱柱填料颗粒粒径为1.7-10μm;
以乙腈为流动相A;
以含30-80mM的硫酸铵的溶液为流动相B,用磷酸溶液调pH值至2-3;
或以0.1%三氟乙酸溶液作为流动相B;
进样量5-50uL,样品浓度1-20mg/ml,
流速0.5-1.5mL/min,洗脱时间50-250min;
洗脱梯度为:
采用不同形式的洗脱梯度进行洗脱,
柱温25-50℃;
所述的洗脱梯度为:
总洗脱时间等分为N(2≤N≤20)步依次进行梯度洗脱,前N-1步梯度中流动相A的比例由5%渐次升至40%,流动相B的比例由95%渐次降至60%,第N步时流动相A比例为5%,流动相B为95%;
优选的5≤N≤15,更优选的8≤N≤12,最优选的,N=10。
步骤(3)所述的检测分析采用紫外检测器检测波长260-280nm;
采用荧光检测器时,其激发波长为230nm,发射波长为300nm。
附图说明
图1-1,实施例1检测样本色谱分析图。
图1-2,实施例2检测样本色谱分析图。
图1-3,实施例3检测样本色谱分析图。
图1-4,实施例4检测样本色谱分析图。
图1-5,实施例5检测样本色谱分析图。
图2-1,实施例7检测样本色谱分析图。
图2-2,实施例8检测样本色谱分析图。
图2-3,实施例9检测样本色谱分析图。
图2-4,实施例10检测样本色谱分析图。
图3-1,实施例12检测样本色谱分析图。
图3-2,实施例13检测样本色谱分析图。
图3-3,实施例14检测样本色谱分析图。
图3-4,实施例15检测样本色谱分析图。
图3-5,实施例16检测样本色谱分析图。
具体实施方式
实施例1
使用沃特世2695高效液相色谱仪2475荧光多波长检测器,激发波长(Ex)为230nm,发射波长(Em)为300nm,色谱柱尺寸150mm长,4.6mm直径,色谱柱填料为聚苯乙烯-二乙烯苯颗粒,3μm粒径。流动相A是20mM的三羟基氨基甲烷盐酸盐,用NaOH溶液调pH值至11.2;流动相B是20mM的三羟基氨基甲烷盐酸盐,含1M的NaCl,用盐酸溶液调pH值至9.8,流动相A和B的比例依据下表1进行设置。分别取市售醋酸格拉替雷(下称对照品)、试制样品醋酸格拉替雷(下称试制样品),加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量25μL,流速设为0.8mL/min,柱温采用30℃。其各组分比例见表2,某一样品色谱分析图见附图1-1。
表1是实施例1流动相A与B的比例
Figure BDA0002876074970000041
Figure BDA0002876074970000051
表2是3批对照品与3批试制样品阴离子交换各组成分析比对结果
Figure BDA0002876074970000052
实施例2
使用沃特世2695高效液相色谱仪2475荧光多波长检测器,激发波长(Ex)为230nm,发射波长(Em)为300nm,色谱柱尺寸150mm长,4.6mm直径,色谱柱填料为聚苯乙烯-二乙烯苯颗粒,5μm粒径。流动相A是10mM的三羟基氨基甲烷盐酸盐,用NaOH溶液调pH值至10;流动相B是10mM的三羟基氨基甲烷盐酸盐,含1.5M的NaCl,用盐酸溶液调pH值至8,流动相A和B的比例依据表1进行设置。分别取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量15μL,流速设为0.5mL/min,柱温采用25℃。某一样品色谱分析图见附图1-2。
实施例3
使用沃特世2695高效液相色谱仪2489紫外多波长检测器,波长为275nm,色谱柱尺寸150mm长,4.6mm直径,色谱柱填料为聚苯乙烯-二乙烯苯颗粒,10μm粒径。流动相A是50mM的三羟基氨基甲烷盐酸盐,用NaOH溶液调pH值至12;流动相B是50mM的三羟基氨基甲烷盐酸盐,含0.5M的NaCl,用盐酸溶液调pH值至10,流动相A和B的比例依据表1进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约10mg的溶液,供测试。进样量50μL,流速设为1.5mL/min,柱温采用50℃。某一样品色谱分析图见附图1-3
实施例4
使用沃特世2695高效液相色谱仪2489紫外多波长检测器,波长为275nm,色谱柱尺寸150mm长,4.6mm直径,色谱柱填料为聚苯乙烯-二乙烯苯颗粒,3μm粒径。流动相A是30mM的三羟基氨基甲烷盐酸盐,用NaOH溶液调pH值至10;流动相B是30mM的三羟基氨基甲烷盐酸盐,含1M的NaCl,用盐酸溶液调pH值至8,流动相A和B的比例依据下表3进行设置。分别取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量25μL,流速设为0.8mL/min,柱温采用40℃。某一样品色谱分析图见附图1-4。
表3实施例4流动相A与B的比例
时间(min) 流动相A(%) 流动相B(%)
0 100 0
15 95 5
30 92.5 7.5
45 90 10
60 87.5 12.5
75 85 15
90 80 20
105 70 30
120 50 50
135 100 0
150 100 0
实施例5
使用沃特世2695高效液相色谱仪2475荧光多波长检测器,激发波长(Ex)为230nm,发射波长(Em)为300nm,色谱柱尺寸150mm长,4.6mm直径,色谱柱填料为聚苯乙烯-二乙烯苯颗粒,3μm粒径。流动相A是20mM的三羟基氨基甲烷盐酸盐,用NaOH溶液调pH值至11.2;流动相B是20mM的三羟基氨基甲烷盐酸盐,含1M的NaCl,用盐酸溶液调pH值至9.8,流动相A和B的比例依据下表4进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量25μL,流速设为1mL/min,柱温采用30℃。某一样品色谱分析图见附图1-5,可见,在该洗脱条件下,不能对样品的组分进行有效分离。
表4.实施例5流动相A与B的比例
时间(min) 流动相A(%) 流动相B(%)
0 100 0
10 100 0
30 0 100
40 0 100
41 100 0
55 100 0
实施例6
使用沃特世2695高效液相色谱仪2489紫外多波长检测器,波长为275nm,色谱柱尺寸150mm长,4.6mm直径,色谱柱填料为聚苯乙烯-二乙烯苯颗粒,3μm粒径。流动相A是20mM的三羟基氨基甲烷盐酸盐,用NaOH溶液调pH值至11.2;流动相B是20mM的三羟基氨基甲烷盐酸盐,含1M的NaCl,用盐酸溶液调pH值至9.8,流动相A和B的比例依据下表4进行设置。分别取对照品、试制样品,加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量25μL,流速设为0.8mL/min,柱温采用30℃。其各组分比例见表6。
表5是实施例6流动相A与B的比例
Figure BDA0002876074970000071
Figure BDA0002876074970000081
表6是3批对照品与3批试制样品阴离子交换各组成分析比对结果
Figure BDA0002876074970000082
阳离子交换液相色谱(实施例7-11)
实施例7
使用沃特世2695高效液相色谱仪2475荧光多波长检测器,激发波长(Ex)为230nm,发射波长(Em)为300nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为叔铵基基键合聚苯乙烯-二乙烯苯颗粒,5μm粒径。流动相A是20mM的2-(N-吗啉代)乙磺酸,含1mM EDTA,用NaOH溶液调pH值至5.2;流动相B是20mM的2-(N-吗啉代)乙磺酸,含2mM EDTA,含2M的NaCl,用NaOH溶液调pH值至5.8,流动相A和B的比例依据下表7进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量25μL,流速设为1mL/min,柱温采用30℃。某一样品色谱分析图见附图2-1。
表7是实施例7流动相A与B的比例
时间(min) 流动相A(%) 流动相B(%)
0 90 10
15 90 10
15.1 80 20
30 80 20
30.1 70 30
45 70 30
45.1 60 40
60 60 40
60.1 50 50
75 50 50
75.1 40 60
90 40 60
90.1 30 70
105 30 70
105.1 20 80
120 20 80
120.1 0 100
135 0 100
135.1 90 10
150 90 10
表8是3批对照品与3批试制样品阳离子交换各组成分析比对结果
Figure BDA0002876074970000091
Figure BDA0002876074970000101
实施例8
使用沃特世2695高效液相色谱仪2489紫外多波长检测器,波长为275nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为叔铵基基键合聚苯乙烯-二乙烯苯颗粒,10μm粒径。流动相A是10mM的2-(N-吗啉代)乙磺酸,含0.5mM EDTA,用NaOH溶液调pH值至4;流动相B是10mM的2-(N-吗啉代)乙磺酸,含5mM EDTA,含2M的NaCl,用NaOH溶液调pH值至7,流动相A和B的比例依据表7进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量15μL,流速设为1mL/min,柱温采用25℃。某一样品色谱分析图见附图2-2
实施例9
使用沃特世2695高效液相色谱仪2475荧光多波长检测器,激发波长(Ex)为230nm,发射波长(Em)为300nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为叔铵基基键合聚苯乙烯-二乙烯苯颗粒,5μm粒径。流动相A是50mM的2-(N-吗啉代)乙磺酸,含1mM EDTA,用NaOH溶液调pH值至6;流动相B是50mM的2-(N-吗啉代)乙磺酸,含2mM EDTA,2M的NaCl,用NaOH溶液调pH值至5,流动相A和B的比例依据下表7进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约10mg的溶液,供测试。进样量50μL,流速设为1mL/min,柱温采用30℃。某一样品色谱分析图见附图2-3。
实施例10
使用沃特世2695高效液相色谱仪2475荧光多波长检测器,激发波长(Ex)为230nm,发射波长(Em)为300nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为叔铵基基键合聚苯乙烯-二乙烯苯颗粒,5μm粒径。流动相A是20mM的2-(N-吗啉代)乙磺酸,含1mM EDTA,用NaOH溶液调pH值至5.2;流动相B是20mM的2-(N-吗啉代)乙磺酸,含2mM EDTA,2M的NaCl,用NaOH溶液调pH值至5.8,流动相A和B的比例依据下表9进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量25μL,流速设为1mL/min,柱温采用30℃。某一样品色谱分析图见附图2-4,可见,在该洗脱条件下,不能对样品的组分进行有效分离。
表9实施例10流动相A与B的比例
Figure BDA0002876074970000102
Figure BDA0002876074970000111
实施例11
使用沃特世2695高效液相色谱仪2489紫外多波长检测器,波长为275nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为叔铵基基键合聚苯乙烯-二乙烯苯颗粒,5μm粒径。流动相A是30mM的2-(N-吗啉代)乙磺酸,含3mM EDTA,用NaOH溶液调pH值至5;流动相B是10mM的2-(N-吗啉代)乙磺酸,含2mM EDTA,含2M的NaCl,用NaOH溶液调pH值至6,流动相A和B的比例依据下表10进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量25μL,流速设为1mL/min,柱温采用35℃。其各组分比例见表11。
表10是实施例11流动相A与B的比例
Figure BDA0002876074970000112
Figure BDA0002876074970000121
表11是3批对照品与3批试制样品阳离子交换各组成分析比对结果
Figure BDA0002876074970000122
反相液相色谱案例(实施例12-17)
实施例12
使用安捷伦1260高效液相色谱仪紫外多波长检测器,检测波长设为275nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为硅胶基体键合C18配基颗粒,3μm粒径。流动相A是乙腈;流动相B是50mM硫酸铵溶液,用磷酸溶液调pH值至2.5,流动相A与B的比例按下表12进行设置。分别取对照品和试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量25μL,流速设为1mL/min,柱温采用30℃。其对照品与试制样品个组分比对分析见下表13,某一样品色谱分析图见附图3-1。
表12是实施例12流动相A与B的比例:
Figure BDA0002876074970000123
Figure BDA0002876074970000131
表13是3批对照品与3批试制样品反相各组分分析比对结果
Figure BDA0002876074970000132
实施例13
使用安捷伦1260高效液相色谱仪紫外多波长检测器,检测波长设为275nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为硅胶基体键合C8配基颗粒,10μm粒径。流动相A是乙腈;流动相B是0.1%三氟乙酸溶液,动相A与B的比例按表12进行设置。分别取对照品和试制样品加流动相溶解并制成每1mL含约10mg的溶液,供测试。进样量50μL,流速设为1mL/min,柱温采用50℃。其某一样品色谱分析图见附图3-2。
实施例14
使用安捷伦1260高效液相色谱仪紫外多波长检测器,检测波长设为275nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为硅胶基体键合C4配基颗粒,3μm粒径。流动相A是乙腈;流动相B是30mM硫酸铵溶液,用磷酸溶液调pH值至2,流动相A与B的比例按表12进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量15μL,流速设为0.5mL/min,柱温采用25℃。某一样品色谱分析图见附图3-3。
实施例15
使用安捷伦1260高效液相色谱仪紫外多波长检测器,检测波长设为275nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为硅胶基体键合C4配基颗粒,3μm粒径。流动相A是乙腈;流动相B是80mM硫酸铵溶液,用磷酸溶液调pH值至3,流动相A与B的比例按表12进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量25μL,流速设为0.5mL/min,柱温采用50℃。某一样品色谱分析图见附图3-4。
实施案16
使用沃特世2695高效液相色谱仪2475荧光多波长检测器,激发波长(Ex)为230nm,发射波长(Em)为300nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为硅胶基体键合C18配基颗粒,3μm粒径。流动相A是乙腈;流动相B是0.1%三氟乙酸溶液,动相A与B的比例按下表14进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量50μL,流速设为1mL/min,柱温采用30℃。某一样品色谱分析图见附图3-5,可见,常规方法完全无法分离试制样本中的各个成分。
表14实施例16流动相A与B的比例
Figure BDA0002876074970000141
Figure BDA0002876074970000151
实施案17
使用沃特世2695高效液相色谱仪2475荧光多波长检测器,激发波长(Ex)为230nm,发射波长(Em)为300nm,色谱柱尺寸250mm长,4.6mm直径,色谱柱填料为硅胶基体键合C18配基颗粒,3μm粒径。流动相A是乙腈;流动相B是0.1%三氟乙酸溶液,动相A与B的比例按下表15进行设置。取对照品或试制样品加流动相溶解并制成每1mL含约20mg的溶液,供测试。进样量50μL,流速设为1.5mL/min,柱温采用30℃。其各组分比例见表16。
表15是实施例17流动相A与B的比例
时间(min) 流动相A(%) 流动相B(%)
0 100 0
15 100 0
15.1 90 10
30 90 10
30.1 80 20
45 80 20
45.1 70 30
60 70 30
60.1 60 40
75 60 40
75.1 55 45
85 55 45
85.1 50 50
100 50 50
100.1 100 0
120 100 0
表16是3批对照品与3批试制样品反相各组分分析比对结果
Figure BDA0002876074970000152
Figure BDA0002876074970000161
由以上实施例可知,本发明用于分析醋酸格拉替雷样本中各个组分的含量的方法是有效的,可行的,可以用于醋酸格拉替雷的对比分析与质量一致性研究。
最后需要说明的是,以上实施例仅用于帮助本领域技术人员理解本发明的实质,而不用做对本发明保护范围的限制。

Claims (3)

1.一种采用高效液相色谱法对醋酸格拉替雷进行线性或阶梯式梯度洗脱,并分析该共聚物各组分含量是否合格的方法,其特征在于,该方法包括如下步骤,
步骤(1)配置待测醋酸格拉替雷溶液;
步骤(2)以阳离子交换液相色谱法,对待测样本进行梯度洗脱,
步骤(3)检测分析共聚物各组分对应峰面积,通过与对照品比对,确定待测样本各组分含量范围是否合格。
2.根据权利要求1所述的方法,其特征在于,
步骤(2)所述采用阳离子交换液相色谱法的色谱条件为:
采用叔铵基键合聚苯乙烯-二乙烯苯颗粒为填料的色谱柱,所述的色谱柱填料颗粒粒径为1.7-10μm;
以含10-50mM的2-(N-吗啉代)乙磺酸、0.5-5mM的EDTA溶液为流动相A,用NaOH溶液调pH值至4-6;
以含10-50mM的2-(N-吗啉代)乙磺酸、0.5-5mM的EDTA、1-2.5M的NaCl的溶液为流动相B,用NaOH溶液调pH至5-7;
进样量5-50uL,样品浓度1-20mg/ml,
流速0.5-1.5mL/min,洗脱时间50-250min;
洗脱梯度为:
总洗脱时间等分为N(2≤N≤20)步依次进行梯度洗脱,前N-1步梯度中流动相A的比例由100%渐次降至0%,流动相B的比例由0渐次升至100%,第N步时流动相A比例为90%,流动相B为10%;
优选的,5≤N≤15,更优选的,8≤N≤12,最优选的,N=10;
柱温25-50℃。
3.根据权利要求1-2任一所述的方法,其特征在于,
步骤(3)所述的检测分析采用紫外检测器检测波长260-280nm;
采用荧光检测器时,其激发波长为230nm,发射波长为300nm。
CN202011643350.1A 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法 Active CN112649538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011643350.1A CN112649538B (zh) 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011643350.1A CN112649538B (zh) 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法
CN201580079194.1A CN107531750B (zh) 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法
PCT/CN2015/077690 WO2016172855A1 (zh) 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201580079194.1A Division CN107531750B (zh) 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法

Publications (2)

Publication Number Publication Date
CN112649538A true CN112649538A (zh) 2021-04-13
CN112649538B CN112649538B (zh) 2024-03-29

Family

ID=57198918

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202011638347.0A Active CN112649537B (zh) 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法
CN202011643350.1A Active CN112649538B (zh) 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法
CN201580079194.1A Active CN107531750B (zh) 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202011638347.0A Active CN112649537B (zh) 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201580079194.1A Active CN107531750B (zh) 2015-04-28 2015-04-28 多肽混合物高效液相色谱分析方法

Country Status (5)

Country Link
US (1) US10330650B2 (zh)
EP (3) EP3290432B1 (zh)
JP (1) JP6676072B2 (zh)
CN (3) CN112649537B (zh)
WO (1) WO2016172855A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060635A (zh) * 2019-11-27 2020-04-24 吉尔生化(上海)有限公司 一种卡贝缩宫素的分析检测方法
CN111138516B (zh) * 2020-01-10 2023-04-25 大理大学 一种大胡蜂肽及其制备方法和应用
CN112858522B (zh) * 2021-02-20 2022-09-20 重庆工贸职业技术学院 一种高效液相色谱分离测定高纯缬氨酸中杂氨基酸的方法
CN113009014B (zh) * 2021-02-24 2023-04-07 上海旭东海普药业有限公司 一种2-甲氧基-5-氟尿嘧啶杂质的高效液相检测方法
CN113720941B (zh) * 2021-09-18 2023-03-24 广东丸美生物技术股份有限公司 护肤品原料或者护肤品中多肽的检测方法及多肽的高效液相色谱检测方法
CN114280179B (zh) * 2021-12-22 2024-03-15 北京美福润医药科技股份有限公司 艾塞那肽的前处理及其得到的His氨基酸洗脱液中异构体的检测方法
CN114384194B (zh) * 2021-12-28 2023-09-22 湖南中晟全肽生化有限公司 一种高通量检测多肽的方法
CN114609286A (zh) * 2022-03-18 2022-06-10 浙江理工大学 一种检测涤纶织物中间苯二甲酸含量的方法
CN115078592B (zh) * 2022-07-15 2024-01-23 广东广纳安疗科技有限公司 丙烯酰胺类单体的检测方法及其应用
CN115656391B (zh) * 2022-12-12 2023-04-07 哈尔滨吉象隆生物技术有限公司 一种特立帕肽含有的杂质的检测方法
CN116429950B (zh) * 2023-06-07 2023-08-11 成都佩德生物医药有限公司 多肽pd-dp-005的有关物质分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018794A1 (en) * 1998-09-25 2000-04-06 Yeda Research And Development Co., Ltd. Copolymer 1 related polypeptides for use as molecular weight markers and for therapeutic use
CN1591005A (zh) * 2003-09-02 2005-03-09 浙江大学 键合型阳离子色谱柱及其制备方法
US20090237078A1 (en) * 2006-04-28 2009-09-24 Zachary Shriver Methods of evaluating peptide mixtures
WO2012123959A2 (en) * 2011-02-14 2012-09-20 Usv Limited Copolymer-1, process for preparation and analytical methods thereof
CN104098655A (zh) * 2013-04-09 2014-10-15 深圳翰宇药业股份有限公司 用于合成醋酸格拉替雷的质谱内标的多肽
CN104297404A (zh) * 2014-09-26 2015-01-21 深圳翰宇药业股份有限公司 一种用于测定醋酸格拉替雷样品中哌啶杂质含量的方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL119989A0 (en) * 1997-01-10 1997-04-15 Yeda Res & Dev Pharmaceutical compositions for oral treatment of multiple sclerosis
JPH11271294A (ja) * 1998-03-23 1999-10-05 Mitsubishi Chemical Corp 球状多孔質架橋重合体粒子およびその製造方法
ES2228052T3 (es) * 1998-06-01 2005-04-01 Genentech, Inc. Separacion demonomeros de anticuerpos de sus multimeros utilizando cromatografia de intercambio de iones.
IL141021A0 (en) * 1998-07-23 2002-02-10 Yeda Res & Dev Treatment of autoimmune conditions with copolymer 1 and related copolymers
EP3388452A3 (en) * 2002-09-11 2019-02-20 Genentech, Inc. Protein purification
WO2005078125A2 (en) * 2004-02-18 2005-08-25 Guy's And St. Thomas' Nhs Foundation Trust Itpase gene polymorphisms associated with adverse drug reactions to azathioprine therapy
WO2007142578A1 (en) * 2006-06-09 2007-12-13 Ge Healthcare Bio-Sciences Ab Method of separating monomeric protein (s)
EP2277050B2 (en) 2008-04-16 2022-09-28 Momenta Pharmaceuticals, Inc. Analysis of amino acid copolymer compositions
BRPI1011434A2 (pt) * 2009-05-08 2016-03-15 Scinopharm Taiwan Ltd metodos de analisar misturas de peptideo
CA2766571A1 (en) * 2009-07-09 2011-02-24 Biocon Limited A preparative non-linear gradient based chromatographic method and purified products thereof
JPWO2011090188A1 (ja) * 2010-01-25 2013-05-23 株式会社日立ハイテクノロジーズ 液体クロマトグラフ、および液体クロマトグラフ用送液装置
JP5826194B2 (ja) * 2010-03-03 2015-12-02 アブリンクス ナームローゼ フェンノートシャップ 二パラトープ性a−ベータ結合ポリペプチド
US9109006B2 (en) * 2010-07-29 2015-08-18 Santhanakrishnan Srinivasan Glatiramer acetate molecular weight markers
KR102057356B1 (ko) * 2012-02-27 2019-12-18 아뮤닉스 파마슈티컬스, 인크. Xten 콘주게이트 조성물 및 그의 제조 방법
CN103265624B (zh) * 2013-05-27 2015-04-22 成都圣诺生物制药有限公司 格拉替雷的制备方法
CN103335873B (zh) * 2013-06-04 2017-04-19 深圳翰宇药业股份有限公司 测量氨基酸‑n‑甲酸酐中氯离子含量的方法
WO2015008845A1 (ja) * 2013-07-17 2015-01-22 積水メディカル株式会社 試料分析装置におけるグラジエント送液装置
CN104371012A (zh) * 2013-08-12 2015-02-25 深圳翰宇药业股份有限公司 一种合成醋酸格拉替雷的方法
US20180164275A1 (en) * 2015-04-30 2018-06-14 Teva Pharmaceutical Industries Ltd. Method of determining the molecular weight distribution of glatiramer acetate using multi-angle laser light scattering (malls)
EP3170836B1 (en) * 2015-11-23 2018-10-24 Chemi SPA Rp-hplc analysis of complex polypeptide mixtures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018794A1 (en) * 1998-09-25 2000-04-06 Yeda Research And Development Co., Ltd. Copolymer 1 related polypeptides for use as molecular weight markers and for therapeutic use
CN1591005A (zh) * 2003-09-02 2005-03-09 浙江大学 键合型阳离子色谱柱及其制备方法
US20090237078A1 (en) * 2006-04-28 2009-09-24 Zachary Shriver Methods of evaluating peptide mixtures
WO2012123959A2 (en) * 2011-02-14 2012-09-20 Usv Limited Copolymer-1, process for preparation and analytical methods thereof
US20130323771A1 (en) * 2011-02-14 2013-12-05 Usv Limited Copolymer-1, process for preparation and analytical methods thereof
CN104098655A (zh) * 2013-04-09 2014-10-15 深圳翰宇药业股份有限公司 用于合成醋酸格拉替雷的质谱内标的多肽
CN104297404A (zh) * 2014-09-26 2015-01-21 深圳翰宇药业股份有限公司 一种用于测定醋酸格拉替雷样品中哌啶杂质含量的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARLOS E. ESPINOSA-DE LA GARZA等: "Analysis of therapeutic proteins and peptides using multiangle light scattering coupled to ultra high performance liquid chromatography", 《J.SEP.SCI.》 *
JINGJING LAI等: "Fibril Aggregates Formed by a Glatiramer-Mimicking Random Copolymer of Amino Acids", 《LANGMUIR》 *

Also Published As

Publication number Publication date
CN112649537A (zh) 2021-04-13
EP3613756B1 (en) 2024-02-21
CN107531750B (zh) 2021-03-16
US20180080909A1 (en) 2018-03-22
CN112649538B (zh) 2024-03-29
EP3290432B1 (en) 2022-03-30
CN107531750A (zh) 2018-01-02
US10330650B2 (en) 2019-06-25
EP3290432A4 (en) 2019-03-27
JP6676072B2 (ja) 2020-04-08
EP3603764B1 (en) 2022-03-30
EP3290432A1 (en) 2018-03-07
EP3613756A1 (en) 2020-02-26
EP3603764A1 (en) 2020-02-05
JP2018515766A (ja) 2018-06-14
WO2016172855A1 (zh) 2016-11-03
CN112649537B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
CN107531750B (zh) 多肽混合物高效液相色谱分析方法
Murphy et al. Endogenous pyrogens made by rabbit peritoneal exudate cells are identical with lymphocyte-activating factors made by rabbit alveolar macrophages.
CN102243218B (zh) 体内终端氨基酸标记的定量蛋白质组学方法
MX2012014838A (es) Comparacion de las muestras de proteina.
CN102406749A (zh) 一种同时测定驴胶补血制剂中六种氨基酸含量的hplc测定方法
Maidment et al. Measurement of extracellular neuropeptides in the brain: microdialysis linked to solid-phase radioimmunoassays with sub-femtomole limits of detection
CA2806997A1 (en) Glatiramer acetate molecular weight markers
CN104897832B (zh) 转移因子溶液及其制剂中游离氨基酸含量的高效液相色谱检测方法
Oppermann et al. Quantification of amino acids and peptides in an ionic liquid based aqueous two-phase system by LC–MS analysis
US10539568B2 (en) RP-HPLC analysis of complex polypeptide mixtures
Yaron et al. Lysine oligopeptides. Preparation by ion‐exchange chromatography
Jaworska et al. Analysis of biologically active peptides using two-dimensional HPLC-CE
CN102841169A (zh) 一种高效液相色谱梯度法测定左亚叶酸钙有关物质的方法
Hamidi et al. A reversed‐phase high‐performance liquid chromatography method for bovine serum albumin assay in pharmaceutical dosage forms and protein/antigen delivery systems
Cervantes et al. Development and validation of an LC/MS method of glatiramer and its sequential amino acids, at pharmaceutical product
Souto et al. Stability-indicating capillary zone electrophoresis method for the assessment of recombinant human interleukin-11 and its correlation with reversed-phase liquid chromatography and biossay
CN111220720A (zh) 胰蛋白酶及其酶原的纯度检测方法
CN105218646B (zh) 一种用于检测醋酸格拉替雷样本的uplc方法
Demond et al. Orthogonal HPLC methods for quantitating related substances and degradation products of pramlintide
CN109655540B (zh) 一种鲑鱼降钙素喷鼻剂有关物质的分析方法
CN105223281A (zh) 一种用于检测卡帕松制剂中醋酸格拉替雷浓度的色谱方法
Jadaun et al. Comparison of two pharmacopoeia methods for determining higher molecular weight proteins in insulin glargine
Lemieux et al. Separation of a casein hydrolyzate by HPSEC with a new mobile phase and characterization of peptides by FABMS
CN105388239B (zh) 一种多肽固相合成的监测方法
Tempst et al. Practical high performance liquid chromatography of proteins and peptides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant