CN112642427B - 一种金属m掺杂二氧化钛光催化剂及其在光催化固氮中的应用 - Google Patents

一种金属m掺杂二氧化钛光催化剂及其在光催化固氮中的应用 Download PDF

Info

Publication number
CN112642427B
CN112642427B CN202011377448.7A CN202011377448A CN112642427B CN 112642427 B CN112642427 B CN 112642427B CN 202011377448 A CN202011377448 A CN 202011377448A CN 112642427 B CN112642427 B CN 112642427B
Authority
CN
China
Prior art keywords
tio
metal
photocatalyst
reaction
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011377448.7A
Other languages
English (en)
Other versions
CN112642427A (zh
Inventor
陈爱民
周煜
魏金晶
赵韵
倪梯铜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202011377448.7A priority Critical patent/CN112642427B/zh
Publication of CN112642427A publication Critical patent/CN112642427A/zh
Application granted granted Critical
Publication of CN112642427B publication Critical patent/CN112642427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/026Preparation of ammonia from inorganic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种金属M掺杂TiO2光催化剂及其在光催化固氮中的应用,所述应用将钛酸四丁酯滴入无水乙醇中,加入氢氟酸,再加入金属盐,搅拌混匀,在160‑200℃反应2‑12h,将反应液冷却至室温,离心,沉淀用去离子水洗涤后,干燥,获得所述金属掺杂M‑TiO2光催化剂。在氙灯模拟的太阳光照射下使用M‑TiO2作为催化剂,以氮气和水为原料可以高效催化合成氨,替代高能耗、高污染、高成本的哈伯法合成氨。该发明首次使用M‑TiO2光催化剂应用于光催化固氮,对金属掺杂TiO2在光催化固氮领域具有重要的意义。本发明工艺简单,制备周期短,绿色环保,能耗低,安全性能高、稳定性高,可重复使用,具有较大的应用潜力。

Description

一种金属M掺杂二氧化钛光催化剂及其在光催化固氮中的 应用
(一)技术领域
本发明属于光催化材料制备及技术领域,具体涉及一种不同金属M掺杂M-TiO2光催化剂及其制备方法和在光催化固氮中的应用。
(二)背景技术
固氮反应是自然界最重要的化学过程之一,因为它对人类社会的发展是必不可少的。氨是固氮的主要产品,应用广泛(肥料、制药、储氢等),年产量超过2亿吨。哈伯法(N2+3H2→2NH3)利用铁基催化剂催化反应实现了工业上大规模生产氨,这是合成氨历史上的一次巨大的飞跃。但是由于需要高温高压的反应条件,这一工业过程每年需要消耗全球2%的能量,造成全球3%的碳排放。因此,如何通过温和且可持续低能耗的方式将空气中含量接近80%的氮气转换为氨,一直都是研究者们迫切想要解决的难题。然而由于氮气中的氮氮三键键能高达972kJ mol-1,如何在温和的反应条件下,绿色低能高效的合成氨,是一个极具挑战性的问题。
1977年,文献(J.Am.Chem.Soc.1977,99,7189-7193.)就表明TiO2光催化剂在水和氮气下表现出一定光氮还原催化活性。但是,TiO2作为宽带隙(3.0-3.2eV)的光催化剂只对紫外光有响应,几乎不吸收可见光和近红外光,使其太阳光利用率低。并且TiO2经光激发生成的电子-空穴容易复合,从而限制了TiO2的光催化能力。掺杂金属离子是改性TiO2弥补上述缺陷的一种方式。金属离子的掺杂可以改变催化剂半导体的能带结构,从而扩大了光吸收范围。此外,掺杂也可以促进电子-空穴的转移。文献(Chem.Mater.2020,32,1488-1494.)报道Fe掺杂后,BiOBr的可见光吸收边缘扩展到600nm,Fe-BiOBr导带边缘变为-0.90eV比BiOBr(-0.58eV)更负,更容易还原N2。文献(Front.Mater.Sci.,2019,14:43-51.)利用稀土元素所具备的上转换性能,制备了Pr3+掺杂的LaOF,Pr3+的掺杂不仅缩小了LaOF的带隙,扩大其光响应范围,还可以将可见光上转换为紫外光,从而提高太阳光的利用率。
因此,我们将利用不同金属M掺杂的TiO2光催化剂应用于光催化固氮,它们具有较好的光催化性能。这为合成氨开辟了一个清洁、环保、经济、安全方便的新方向。
(三)发明内容
本发明目的在于替代高能耗、高成本、高污染的工业合成氨,设计不同金属掺杂的M-TiO2光催化剂应用于光催化固氮。本发明通过在TiO2上掺杂过渡金属离子以及稀土元素,提高了光催化合成氨产率。过渡金属以及HF刻蚀出的氧空位作为N2的活性位点,促进光催化合成氨反应;稀土元素由于其具有上转换性能,可提高TiO2对光的利用率,同样能促进光催化合成氨反应。同时掺杂金属离子可改变TiO2禁带宽度,提高光生载流子分离能力。此外,本发明用简单的溶剂法制备出有氧空位的TiO2,并通过掺杂金属离子控制氧空位浓度,相比于一般的H2气氛下煅烧还原TiO2,此法更简单易行,且催化剂稳定、高效,环保具有广阔的应用前景。
本发明采用如下技术方案:
本发明提供一种金属掺杂M-TiO2光催化剂,所述光催化剂按如下方法制备:将钛酸四丁酯滴入无水乙醇中,加入氢氟酸,再加入金属盐,搅拌混匀,在160-200℃反应2-12h,将反应液冷却至室温,离心,沉淀用去离子水洗涤(优选3次)后,干燥(优选80℃干燥12h),获得所述金属掺杂M-TiO2光催化剂;所述钛酸四丁酯与无水乙醇体积比为1:2.5-25(优选1:4);所述钛酸四丁酯与氢氟酸体积比为1:0.05-0.3(优选1:0.167);所述钛酸四丁酯与金属盐物质的量之比为1:0.01-0.1(优选1:0.06)。
进一步,所述金属盐中金属离子包括Fe3+、Co3+、Ni3+、Ce3+、La3+或Eu3+,所述金属盐包括硝酸盐(NO3 -)、氯化盐(Cl-)、硫酸盐(SO4 2-);更优选金属盐为Fe(NO3)3·9H2O。
进一步,优选反应条件为180℃反应1h。
本发明还提供一种所述金属掺杂M-TiO2光催化剂在光催化合成氨中的应用,所述的应用为:采用金属掺杂M-TiO2光催化剂,以氮气和水为原料,在氙灯模拟太阳光照射下进行光催化反应1-3h合成氨,获得含铵离子溶液;所述水的体积用量以催化剂重量计为4ml/mg;所述氮气体积用量以催化剂重量计为1.0-5.0L/mg,优选1.2-3.6L/mg。
进一步,所述应用为:将金属掺杂M-TiO2光催化剂加入超纯水,40KHz超声10min;然后,将此反应液转移至密封的光催化反应釜,在黑暗避光的条件下,通入高纯氮气保持30min,以排除反应釜内的空气并且使整个反应体系达到吸附平衡;最后,将光催化反应釜转移至300W氙灯下,打开氙灯照射1h,并保持氮气的通入进行光催化反应,反应结束后,将反应液转移至离心管,取上清液,分离纯化,获得含铵离子的溶液。
与现有技术相比,本发明的有益效果主要体现在:
1.本发明不同金属离子掺杂的M-TiO2制备方法实验操作步骤简单、方便有利于大规模推广使用。
2.本发明中制备的不同金属离子掺杂的M-TiO2造价低廉、无毒且性质稳定。
3.本发明将不同金属离子掺杂的M-TiO2应用于光催化合成氨,较传统的工业合成氨,具有条件温和,低能耗、安全、经济以及环保的优势。
4.本发明通过金属离子掺杂与氧空位的协同作用,增强了TiO2在光照下对光的吸收能力和光生载流子分离能力。
5.在光催化合成氨反应中,金属离子掺杂与氧空位的协同作用还能够促进TiO2化学吸附惰性氮分子。
6.本发明制得的不同金属离子掺杂的M-TiO2光催化剂合成氨催化活性较高,光照1h的氨产量最高可达到94.28μmol·g-1,具有广阔的应用前景。
(四)附图说明
图1为实施例1制得的Fe掺杂的TiO2的X射线衍射(XRD)图。
图2为实施例1制得的Fe掺杂的TiO2透射电子显微镜(TEM)图。
图3为实施例1制得的Fe掺杂的TiO2电子顺磁共振(EPR)谱。
图4为实施例5制得的Fe、Ni、Co、Ce、La、Eu掺杂的TiO2,TiO2作为催化剂在常温常压氙灯模拟太阳光照射下固氮合成氨的性能测试图。
(五)具体实施方式
下面通过具体实施例对本发明作进一步的说明,但本发明的保护范围并不仅限于此。
本发明所述室温是指25-30℃。所述超纯水,又称UP水,是指电阻率达到18MΩ*cm(25℃)的水。
实施例1
1、M-TiO2光催化剂的制备:
量取6mL(0.017mol)钛酸四丁酯在搅拌下逐滴加入至25mL无水乙醇中,移取加入1mL氢氟酸后,加入0.001mol(即掺杂比6%)的Fe(NO3)3·9H2O,室温搅拌30min后,转移至50mL高压反应釜,180℃反应2h,冷却至室温,离心,用去离子水洗涤三次,沉淀在80℃下干燥12h,研磨,得到具有氧空位的Fe-TiO2粉末1.0g,X射线衍射(XRD)图见图1所示,透射电子显微镜(TEM)图见图2所示,电子顺磁共振(EPR)谱见图3。图1各衍射峰分别对应于锐钛矿TiO2各晶面,并且没有检测到其他杂质的衍射峰,证明Fe成功掺杂至TiO2晶格。图2可以看出本发明所制备的Fe-TiO2为明显的大晶体颗粒。图3可以看出本发明所制备的Fe-TiO2具有氧空位。
2、光催化合成氨实验:
称取10mg步骤1制备的Fe-TiO2光催化剂加入40mL超纯水,40KHz超声10min。然后,将此反应液转移至密封的光催化反应釜(CEL-HPR100;中教金源),在黑暗避光的条件下,通入高纯氮气(200mL/min)保持30min,以排除反应釜内的空气并且使整个反应体系达到吸附平衡。最后,将光催化反应釜转移至300W氙灯(CEL-HXF300-T3;中教金源)下,打开氙灯照射1h,并保持氮气的通入(200mL/min)。反应结束后,将反应液转移至离心管,5000rpm离心10min,用注射器移取离心后的上清液,用0.22μm滤头过滤至比色管中,利用纳氏试剂显色法(中华人民共和国国家环境保护标准HJ535-2009)检测。经检测,在350-780nm波长的光照下反应,得到反应液中的氨含量为94.28μmol·g-1;在400-780nm波长的光照下反应,得到反应液中的氨含量为45.45μmol·g-1
同样条件下,采用表1中不同的催化剂替换步骤1制备的Fe-TiO2光催化剂,结果见表1。
表1、不同催化剂氨含量情况
Figure BDA0002807507240000041
[1]Hirakawa H.,Hashimoto M.,Shiraishi Y.,Hirai T.,J.Am.Chem.Soc.,2017,139(31):10929-10936
[2]Zhao Y.,Zhao Y.,Shi R.,Wang B.,Waterhouse G.I.N.,Wu L.Z.,TungC.H.,Zhang T.,Adv.Mater.,2019,31(16),1806482
[3]一种二价镍离子掺杂改性二氧化钛(镍-二氧化钛)可见光催化剂的制备方法CN 110694630 A
实施例2
将实施例1中无水乙醇的量改为20、25、30、35、40mL,其他操作同实施例1,氨含量见表2所示。
表2无水乙醇量对光催化氨产量的影响
Figure BDA0002807507240000042
Figure BDA0002807507240000051
从表2可看出,当无水乙醇加入量为25mL时掺杂Fe的TiO2光催化氨产量最高。
实施例3
将实施例1中钛酸四丁酯的量改为5、6、7、8、9、10mL,其它操作同实施例1,结果见表3。
表3钛酸四丁酯量对光催化氨产量的影响
Figure BDA0002807507240000052
从表3可看出,当钛酸四丁酯加入量为6mL时掺杂Fe的TiO2光催化氨产量最高。
实施例4
将实施例1中氢氟酸的量改为0.6、0.8、1、1.2mL,其它操作同实施例1,结果见表4所示。
表4氢氟酸量对光催化氨产量的影响
Figure BDA0002807507240000053
从表4可看出,当氢氟酸加入量为1mL时掺杂Fe的TiO2光催化氨产量最高。
实施例5
将实施例1中硝酸盐的金属阳离子改为Fe3+、Co3+、Ni3+、Ce3+、La3+或Eu3+,金属盐与钛酸四丁酯物质的量之比均为0.06:1,其他操作同实施例1,结果见表5。Fe、Ni、Co、Ce、La、Eu掺杂的TiO2与TiO2作为催化剂在常温常压氙灯模拟太阳光照射下固氮合成氨的性能测试图见图4。图4展示了将25mL无水乙醇、6mL钛酸四丁酯、1mL氢氟酸,在金属硝酸盐掺杂量为6%,180℃下溶剂热反应2h制备所得的样品用于光催化合成氨,在350-780nm波长氙灯光照1h下所得的氨产量。
表5不同金属阳离子的硝酸盐对光催化氨产量的影响
Figure BDA0002807507240000061
从表5可看出,掺杂Fe的TiO2光催化氨产量最高,掺杂Eu和Co的TiO2次之。
实施例6
将实施例1中铁盐的阴离子改为NO3 -、Cl-、SO4 2-,其他操作同实施例1,结果见表6。
表6不同阴离子的铁盐对光催化氨产率的影响
Figure BDA0002807507240000062
从表6可看出,以Fe(NO3)3·9H2O为Fe源制备得到的掺杂Fe的TiO2光催化氨产量最高,FeCl3·6H2O为Fe源制备得到的掺杂Fe的TiO2光催化氨产量次之。
实施例7
将实施例1中Fe掺杂量分别改为2%、4%、6%、8%、10%,其他操作同实施例1,结果见表7。
表7不同Fe掺杂量对光催化氨产率的影响
Figure BDA0002807507240000071
从表7可看出,Fe掺杂量6%时Fe-TiO2光催化氨产量最高,在2%-6%的范围内氨产量随Fe掺杂量的增加而增加,在6%-10%的范围氨产量随Fe掺杂量的增加而降低。
实施例8
将实施例1步骤1中180℃改为160℃、180℃、200℃,其他操作同实施例1,结果见表8。
表8不同溶剂热温度对光催化氨产率的影响
Figure BDA0002807507240000072
从表8可看出,溶剂热温度为180℃时Fe-TiO2光催化氨产量最高,升高温度后氨产量略有降低,降低温度氨产量下降明显。
实施例9
将实施例1步骤1中反应时间2h分别改为2h、6h、10h,其他操作同实施例1,结果见表9。
表9不同溶剂热时间对光催化氨产率的影响
Figure BDA0002807507240000073
从表9可看出,溶剂热时间为2h时Fe-TiO2光催化氨产量最高,增加时间或降低时间后氨产量都略有下降。
实施例10
将实施例1步骤2光催化反应时间1h分别改为1h、1.5h、2h、2.5h、3h,其他操作同实施例1,结果见表10。
表10不同光照时间对光催化氨产率的影响
Figure BDA0002807507240000081
从表10可看出,随着光照时间的增加Fe-TiO2光催化氨产量同时增加。
对比例1
量取6mL(0.017mol)钛酸四丁酯在搅拌下逐滴加入至26mL无水乙醇中,再移取加入1mL氢氟酸,室温搅拌30min。然后,将反应液转移至50mL高压反应釜,180℃反应2h。待反应结束冷却至室温,离心,用去离子水洗涤三次。将所得固体在80℃下干燥12h,研磨得到白色TiO2粉末1.0g,用于合成氨反应测得光照1h反应液中的氨含量为35.08μmol·g-1

Claims (6)

1.一种金属掺杂M-TiO2光催化剂在光催化合成氨中的应用,其特征在于所述光催化剂按如下方法制备:将钛酸四丁酯滴入无水乙醇中,加入氢氟酸,再加入金属盐,搅拌混匀,在160-200℃反应2-12h,将反应液冷却至室温,离心,沉淀用去离子水洗涤后,干燥,获得所述金属掺杂M-TiO2光催化剂;所述金属盐中金属离子包括Fe3+、Co3+或Eu3+;所述金属盐包括硝酸盐。
2.如权利要求1所述的应用,其特征在于所述钛酸四丁酯与无水乙醇体积比为1:2.5-25;所述钛酸四丁酯与氢氟酸体积比为1:0.05-0.3;所述钛酸四丁酯与金属盐物质的量之比为1:0.01-0.1。
3.如权利要求1所述的应用,其特征在于所述金属盐为Fe(NO3)3·9H2O。
4.如权利要求1所述的应用,其特征在于所述的应用为:采用金属掺杂M-TiO2光催化剂,以氮气和水为原料,在氙灯模拟太阳光照射下进行光催化反应1-3h合成氨。
5.如权利要求4所述的应用,其特征在于所述水的体积用量以催化剂重量计为4ml/mg;所述氮气体积用量以催化剂重量计为1.0-5.0L/mg。
6.如权利要求4所述的应用,其特征在于所述应用为:将金属掺杂M-TiO2光催化剂加入超纯水,40KHz超声10min;然后,将此反应液转移至密封的光催化反应釜,在黑暗避光的条件下,通入高纯氮气保持30min,以排除反应釜内的空气并且使整个反应体系达到吸附平衡;最后,将光催化反应釜转移至300W氙灯下,打开氙灯照射1h,并保持氮气的通入,反应结束后,将反应液转移至离心管,取上清液,分离纯化,获得含铵离子的溶液。
CN202011377448.7A 2020-11-30 2020-11-30 一种金属m掺杂二氧化钛光催化剂及其在光催化固氮中的应用 Active CN112642427B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011377448.7A CN112642427B (zh) 2020-11-30 2020-11-30 一种金属m掺杂二氧化钛光催化剂及其在光催化固氮中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011377448.7A CN112642427B (zh) 2020-11-30 2020-11-30 一种金属m掺杂二氧化钛光催化剂及其在光催化固氮中的应用

Publications (2)

Publication Number Publication Date
CN112642427A CN112642427A (zh) 2021-04-13
CN112642427B true CN112642427B (zh) 2023-05-23

Family

ID=75349823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011377448.7A Active CN112642427B (zh) 2020-11-30 2020-11-30 一种金属m掺杂二氧化钛光催化剂及其在光催化固氮中的应用

Country Status (1)

Country Link
CN (1) CN112642427B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332983B (zh) * 2021-04-29 2022-06-03 杭州师范大学 一种多孔棒状Fe21.34O32/C纳米棒复合材料的制备方法
CN114162834B (zh) * 2021-12-20 2022-12-30 湖南大学 Ni/LaOF催化剂的应用及应用方法与制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944726A (zh) * 2016-05-18 2016-09-21 昆明理工大学 一种二氧化钛光催化材料的制备方法
CN111604052A (zh) * 2020-06-23 2020-09-01 兰州理工大学 高暴露{001}晶面Fe-TiO2光催化材料及制备方法和用途

Also Published As

Publication number Publication date
CN112642427A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
Chen et al. Synthesis and characterization of Bi4Si3O12, Bi2SiO5, and Bi12SiO20 by controlled hydrothermal method and their photocatalytic activity
CN106492854B (zh) 利用两步法制备具有光催化性能的复合型纳米Ag3PO4/TiO2材料及方法和应用
CN104722302B (zh) 酸化混晶TiO2纳米线负载型光催化剂及其制备与应用
CN112642427B (zh) 一种金属m掺杂二氧化钛光催化剂及其在光催化固氮中的应用
CN102698785B (zh) 一种硅藻土负载氮掺杂纳米TiO2光催化材料的制备方法
Hou et al. Synthesis and characterization of La2Ti2O7 employed for photocatalytic degradation of reactive red 22 dyestuff in aqueous solution
CN111468131B (zh) 一种具有高催化氧化活性LaCoO3催化剂的合成方法
Chen et al. Bi12SiO20/g-C3N4 heterojunctions: Synthesis, characterization, photocatalytic activity for organic pollutant degradation, and mechanism
CN111450856B (zh) 以钒酸铋纳米片为前驱体制备超薄氯氧铋光催化剂的方法、超薄氯氧铋光催化剂及其应用
CN111036243A (zh) 含氧空缺的过渡金属掺杂的BiOBr纳米片光催化剂及其制备方法和应用
CN107185547A (zh) 一种C/Fe‑FeVO4复合光催化剂及其制备方法和应用
CN102631919B (zh) 铜-钛氧化物介晶材料的制备方法
CN112844420A (zh) 一种过渡金属掺杂富缺陷的二硫化钼及其制备方法和应用
CN102962049A (zh) 一种水热反应制备纳米光催化材料的方法
CN108298591B (zh) 一种六边形钛酸铁纳米片材料的合成方法及应用
CN111924865A (zh) 一种晶面选择性生长勃姆石及其制备方法
Yu et al. Ultrasound-assisted construction of a Z-scheme heterojunction with g-C3N4 nanosheets and flower-like Bi2WO6 microspheres and the photocatalytic activity in the coupling reaction between alcohols and amines under visible light irradiation
Yu et al. BixY1− xVO4 solid solution with porous surface synthesized by molten salt method for photocatalytic water splitting
CN112028119B (zh) 一种{101}、{100}和{111}-晶面共暴露的锐钛矿型TiO2纳米晶
CN110639616A (zh) 氨基修饰的MIL-68(Ga)新型光催化剂的制备及其用于还原Cr(VI)的方法
Xia et al. Synthesis of Bi4O5I2/Bi5O7I heterojunction at weak acidic solution with preferentially growing facets and high photocatalytic activity
Sang et al. Fabrication of the hydrogen-evolving photocatalyst with mesoporous structure
CN113600174A (zh) 一种铋-碳酸氧铋复合光催化剂及其制备方法和应用
CN111013565B (zh) 一种镱铒掺杂的钛白粉/凹凸棒石纳米复合材料及其制备方法和应用
CN109837590A (zh) 一种26面体钽酸钠晶体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant