CN112635334A - 锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器 - Google Patents

锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器 Download PDF

Info

Publication number
CN112635334A
CN112635334A CN202011422549.1A CN202011422549A CN112635334A CN 112635334 A CN112635334 A CN 112635334A CN 202011422549 A CN202011422549 A CN 202011422549A CN 112635334 A CN112635334 A CN 112635334A
Authority
CN
China
Prior art keywords
molybdenum oxide
oxide nano
tin
film
doped molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011422549.1A
Other languages
English (en)
Inventor
龙明珠
栾佳宏
周国富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202011422549.1A priority Critical patent/CN112635334A/zh
Publication of CN112635334A publication Critical patent/CN112635334A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器,该制备方法包括采用化学气相沉积法制备氧化钼纳米薄膜;将亚锡盐和还原剂加入盐酸溶液中混合制备插层溶液;再将插层溶液滴至氧化钼纳米薄膜上,在50~70℃环境下进行插层处理。以上制备方法操作简单,其中利用锡插层氧化钼,可减少氧化钼的禁带宽度,实现对近红外光子的高效吸收,所制得的锡掺杂氧化钼纳米薄膜体积大且厚度均匀,热稳定性好,可用于制备近红外光电探测器。

Description

锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器
技术领域
本发明涉及半导体光电材料技术领域,尤其是涉及一种锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器。
背景技术
近红外光电探测器是将肉眼不可见的红外光辐射信号转化成电信号并进行收集的器件。基于传统窄带隙无机半导体材料的红外光探测和红外成像器件,生产成本昂贵,工艺复杂,因而限制了它的广泛应用。
层状的α-氧化钼作为一种宽带隙半导体材料,在光电设备中占有重要的地位和应用。其本征宽带隙的结构将其光谱范围限定在紫外波段,但经研究发现可以通过离子掺杂拓宽其光谱响应范围,改善半导体材料的性能,同时保持薄膜表面的完整性。但目前离子掺杂氧化钼薄膜的制备方法程序复杂,且难以制备大面积均匀的掺杂氧化钼薄膜。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器。
本发明的第一方面,提供一种锡掺杂氧化钼纳米薄膜的制备方法,包括以下步骤:
S1、采用化学气相沉积法制备氧化钼纳米薄膜;
S2、将亚锡盐和还原剂加入盐酸溶液中,混合均匀,制得插层溶液;
S3、将所述插层溶液覆于所述氧化钼纳米薄膜上,在50~70℃环境下进行插层处理;
其中,步骤S1和步骤S2的顺序不限。
根据本发明实施例的锡掺杂氧化钼纳米薄膜的制备方法,至少具有如下有益效果:该制备方法操作简单,其中通过利用锡插层氧化钼,可减少氧化钼的禁带宽度,实现对近红外光子的吸收,所制得锡掺杂氧化钼纳米薄膜体积大且厚度均匀,可用于制备近红外光电探测器。
根据本发明的一些实施例,步骤S1包括:取氧化钼粉末和衬底放置于密闭环境中,所述氧化钼粉末与所述衬底间距放置,在真空条件下,将所述密闭环境内的温度升至680~780℃,保温2~4h,而后冷却至室温。具体可将氧化钼粉末置于敞口耐高温容器内,而后将敞口耐高温容器放置于CVD管式炉内;在CVD管式炉内敞口耐高温容器的放置处的上游和/或下游设置耐高温衬底,在真空条件下,将CVD管式炉内温度升至680~780℃,保温2~4h,而后冷却至室温。其中,耐高温衬底具体可设置在距敞口耐高温容器的放置处10~15cm的位置。敞口耐高温容器可采用石英盅、陶瓷舟、坩埚等;耐高温衬底可为二氧化硅衬底、硅衬底或者其他耐高温衬底。将耐高温衬底放入CVD管式炉前,一般先进行清洗,具体可依次用酒精、丙酮、去离子水清洁三次、而后用氮气枪吹干。
根据本发明的一些实施例,步骤S1中,将所述密闭环境内温度按照10~20℃/min的速度升至680~780℃。
根据本发明的一些实施例,步骤S2中,所述亚锡盐选自氯化亚锡。
根据本发明的一些实施例,步骤S2中,所述还原剂选自酒石酸。
在配制插层溶液时,由于若直接配制亚锡盐(如氯化亚锡)的去离子水溶液,亚锡盐直接溶于水会产生氢氧化亚锡沉淀,因而需要加入盐酸来抑制该反应,因此,需提前配制一定浓度的稀盐酸溶液,再将亚锡盐和还原剂与稀盐酸溶液混合。
根据本发明的一些实施例,步骤S2中,所述盐酸溶液的浓度为0.2~0.4mol/L。
根据本发明的一些实施例,步骤S3包括:将所述氧化钼纳米薄膜置在50~70℃加热,而后将所述插层溶液覆于所述氧化钼纳米薄膜上,进行插层处理。具体可将将氧化钼纳米薄膜放置到50~70℃加热台上,且在氧化钼纳米薄膜和加热台之间可垫一层载玻片。将插层溶液覆于氧化钼纳米薄膜上进行插层处理,观察氧化钼纳米薄膜的颜色变化,具体可以每三分钟在光学显微镜上观察一次,直至界面全部变为绿色,处理完成。
本发明的第二方面,提供一种锡掺杂氧化钼纳米薄膜,由本发明第一方面所提供的任一种锡掺杂氧化钼纳米薄膜的制备方法制得。
本发明的第三方面,提供一种近红外光电探测器,包括:
绝缘衬底;
金属电极,所述金属电极包括正极和负极,所述正极和所述负极间隔相对设于所述绝缘衬底上;
石墨烯层,所述石墨烯层搭接于所述正极和所述负极上;
锡掺杂氧化钼纳米薄膜,所述锡掺杂氧化钼纳米薄膜叠设于所述石墨烯层上,所述锡掺杂氧化钼纳米薄膜为本发明第二方面所提供的锡掺杂氧化钼纳米薄膜。
根据本发明的一些实施例,所述绝缘衬底的材质为单晶硅、石英玻璃、云母、SiO2、Al2O3、蓝宝石、PET中的至少一种。
电极具体可采用金电极,制备时可采用光刻技术定义电极区域,而后利用热蒸发制备电极;电极的厚度一般为80~100nm。石墨烯层可设置为单层或多层。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1中化学气相沉积法制备氧化钼纳米薄膜的示意图;
图2为本发明实施例1中所制得氧化钼纳米薄膜的扫描电镜图;
图3是本发明实施例1中所制得的氧化钼纳米薄膜的X-射线衍射图谱;
图4是本发明实施例1中所制得的氧化钼纳米薄膜的拉曼光谱图;
图5是本发明实施例1锡掺杂氧化钼纳米薄膜的X-射线衍射图谱;
图6是本发明近红外光电探测器一实施例的结构示意图;
图7是图6所示近红外光电探测器的制备流程图;
图8为图6所示近红外光电探测器的光电流图像。
附图标记:11-CVD管式炉,12-石英盅,13-氧化硅衬底,21-绝缘衬底,211-单晶硅衬底,212-二氧化硅层,22-电极,221-正极,222-负极,23-石墨烯层,24-锡掺杂氧化钼纳米薄膜。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种锡掺杂氧化钼纳米薄膜,其制备方法包括以下步骤:
S1、氧化钼纳米薄膜的制备:具体如图1所示,称取一定质量的氧化钼粉末放置在石英盅12内,然后将石英盅12放置在CVD管式炉11内;取一片氧化硅衬底,依次用酒精、丙酮、去离子水清洁三次后,用氮气枪吹干,然后将氧化硅衬底13放入CVD管式炉11内距盛放氧化钼粉末的石英盅12的放置处10cm的位置,而后向CVD管式炉11内通三次氮气排尽空气,进行抽真空处理。将CVD管式炉11内的温度按照10℃/min的速度升至680℃,温度达到之后保温4h,然后让炉体自然冷却到室温,在氧化硅衬底上生产出氧化钼纳米薄膜;而后将其从氧化硅衬底上剥离,得到氧化钼纳米薄膜。
S2、配制插层溶液,包括:先配制50mL浓度为0.23mol/L的盐酸溶液;而后将适量的氯化亚锡粉末和酒石酸粉末加入所配好的盐酸溶液中,用玻璃棒轻轻搅拌均匀,得到澄清透明的插层溶液。
S3、将氧化钼纳米薄膜进行锡插层处理,包括:将加热台加热到50~60℃,在加热台上放置一片载玻片,然后将步骤S1制得的氧化钼纳米薄膜放在载玻片上,用滴管取步骤S2制得的插层溶液滴至氧化钼纳米薄膜上,而后观察氧化钼纳米薄膜的颜色变化,每三分钟在光学显微镜下观察一次,直至界面全部变为绿色为止,停止加热,冷却至室温,制得锡掺杂氧化钼纳米薄膜。
分别采用扫描电子显微镜、X射线衍射仪和拉曼光谱仪对本实施例步骤S1所制得的氧化钼纳米薄膜进行观察检测,所得结果分别如图2、图3和图4所示。由图2扫描电镜图可以看出所制备氧化钼为大尺寸的片状晶体,由图3的X-射线衍射图谱可以看出在12.8°、25.76°和39.04°处显示出很强的衍射峰,分别对应于α-MoO3的(020),(040)和(060)平面(JCPDS:05-0508)。由图4拉曼光谱图可以看出两种指纹声子模式分别为285cm-1、820cm-1,分别对应于MoO3的B3g和Ag模式。采用X射线衍射仪对本实施例所制得的锡掺杂氧化钼纳米薄膜进行测试,所得结果如图5所示,由图5可知,(040)峰在图中向左移动。计算表明面间距扩大,证明了Sn原子成功插入到范德华间隙中。
实施例2
一种锡掺杂氧化钼纳米薄膜,其制备方法包括以下步骤:
S1、氧化钼纳米薄膜的制备:称取一定质量的氧化钼粉末放置在石英盅内,然后将石英盅放置在CVD管式炉内;取一片硅衬底,依次用酒精、丙酮、去离子水清洁三次后,用氮气枪吹干,然后将硅衬底放入CVD管式炉内距盛放氧化钼粉末的石英盅的放置处12cm的位置,而后向CVD管式炉内通三次氮气排尽空气,进行抽真空处理。将CVD管式炉内的温度按照20℃/min的速度升至780℃,温度达到之后保温2h,然后让炉体自然冷却到室温,在硅衬底上生产出氧化钼纳米薄膜;而后将其从硅衬底上剥离,得到氧化钼纳米薄膜。
S2、配制插层溶液,包括:先配制50mL浓度为0.4mol/L的盐酸溶液;而后将适量的氯化亚锡粉末和酒石酸粉末加入所配好的盐酸溶液中,用玻璃棒轻轻搅拌均匀,得到澄清透明的插层溶液。
S3、将氧化钼纳米薄膜进行锡插层处理,包括:将加热台加热到60~70℃,在加热台上放置一片载玻片,而后将步骤S1制得的氧化钼纳米薄膜放在载玻片上,用滴管取步骤S2制得的插层溶液滴至氧化钼纳米薄膜上,而后观察氧化钼纳米薄膜的颜色变化,每三分钟在光学显微镜下观察一次,直至界面全部变为绿色为止,停止加热,冷却至室温,制得锡掺杂氧化钼纳米薄膜。
实施例3
一种锡掺杂氧化钼纳米薄膜,其制备方法包括以下步骤:
S1、氧化钼纳米薄膜的制备:称取一定质量的氧化钼粉末放置在石英盅内,然后将石英盅放置在CVD管式炉内;取两片石英玻璃衬底,依次用酒精、丙酮、去离子水清洁三次后,用氮气枪吹干,然后将两石英玻璃衬底分别放置于CVD管式炉内石英盅(盛放氧化钼粉末)放置处的上游和下游,两石英玻璃衬底与石英盅(盛放氧化钼粉末)的距离均为15cm,而后向CVD管式炉内通三次氮气排尽空气,进行抽真空处理。将CVD管式炉内的温度按照15℃/min的速度升至700℃,温度达到之后保温3h,然后让炉体自然冷却到室温,在硅衬底上生产出氧化钼纳米薄膜;而后将其从硅衬底上剥离,得到氧化钼纳米薄膜。
S2、配制插层溶液,包括:先配制50mL浓度为0.3mol/L的盐酸溶液;而后将适量的氯化亚锡粉末和酒石酸粉末加入所配好的盐酸溶液中,用玻璃棒轻轻搅拌均匀,得到澄清透明的插层溶液。
S3、将氧化钼纳米薄膜进行锡插层处理,包括:将加热台加热到55~65℃,在加热台上放置一片载玻片,然后将步骤S1制得的氧化钼纳米薄膜放在载玻片上,用滴管取步骤S2制得的插层溶液滴至氧化钼纳米薄膜上,而后观察氧化钼纳米薄膜的颜色变化,每三分钟在光学显微镜下观察一次,直至界面全部变为绿色为止,停止加热,冷却至室温,制得锡掺杂氧化钼纳米薄膜。
以上所制得的锡掺杂氧化钼可应用于制备近红外光电探测器。例如,请参阅图6,图6示出了本发明近红外光电探测器一实施例的结构示意图。如图6所示,该近红外光电探测器包括绝缘衬底21、金属电极22、石墨烯层23和锡掺杂氧化钼纳米薄膜24。
绝缘层衬底21的材质可采用单晶硅、石英玻璃、云母、SiO2、Al2O3、蓝宝石、PET中的至少一种。在本实施例中,绝缘衬底21包括单晶硅衬底211和设于单晶硅衬底211表面的二氧化硅层212,二氧化硅层212的厚度一般为250~350nm。金属电极22包括正极221和负极222,正极221和负极222间隔相对设于二氧化硅层212上背离单晶硅衬底211的一侧表面,金属电极22具体可采用金电极,金属电极22的厚度可设置为80~100nm。石墨烯层23搭设于正极221和负极222上,石墨烯层23可为单层或多层,本实施例中采用单层石墨烯层。锡掺杂氧化钼纳米薄膜24叠设于石墨烯层23上,本实施例中所采用的锡掺杂氧化钼纳米薄膜24为实施例1所制得的锡掺杂氧化钼纳米薄膜。
图6所示近红外光电探测器的制备可参照图7,具体包括以下步骤:
S1、取一单晶硅衬底211,如图7中(a)所示;而后如图7中(b)所示,在单晶硅衬底上沉积二氧化硅层212,制得绝缘衬底21;
S2、在二氧化硅层212上用光刻技术定义金电极区域,而后利用热蒸发制备金电极,金电极包括正极221和负极222,如图7中(c)所示;
S3、如图7中(d)所示,在金电极上设置一层石墨烯层23,且石墨烯层23搭接在正极221和负极222上;
S4、如图7中(e)所示,在石墨烯层23上设置锡掺杂氧化钼纳米薄膜24,制得近红外光电探测器。
在2200nm照明下对以上制得的图6所示近红外光电探测器进行光电流图像测试,所得结果如图8所示,由图8可知,该近红外光电探测器显示出显著的光响应,响应上升时间为70s,下降时间为30s。
以上近红外光电探测器将石墨烯层与锡掺杂氧化钼纳米薄膜通过范德华尔兹力结合成叠层结构,其中通过利用锡插层氧化钼可减少氧化钼的禁带宽度,进而可实现对近红外光子的高效吸收,将光生载流子转移到石墨烯层,再利用石墨烯超高的迁移率将光生载流子传输到两端电极,从而可实现近红外波段光的高响应率。

Claims (10)

1.一种锡掺杂氧化钼纳米薄膜的制备方法,其特征在于,包括以下步骤:
S1、采用化学气相沉积法制备氧化钼纳米薄膜;
S2、将亚锡盐和还原剂加入盐酸溶液中,混合均匀,制得插层溶液;
S3、将所述插层溶液覆于所述氧化钼纳米薄膜上,在50~70℃环境下进行插层处理;
其中,步骤S1和步骤S2的顺序不限。
2.根据权利要求1所述的锡掺杂氧化钼纳米薄膜的制备方法,其特征在于,步骤S1包括:取氧化钼粉末和衬底放置于密闭环境中,所述氧化钼粉末与所述衬底间距放置,在真空条件下,将所述密闭环境内的温度升至680~780℃,保温2~4h,而后冷却至室温。
3.根据权利要求2所述的锡掺杂氧化钼纳米薄膜的制备方法,其特征在于,步骤S1中,将所述密闭环境内温度按照10~20℃/min的速度升至680~780℃。
4.根据权利要求1所述的锡掺杂氧化钼纳米薄膜的制备方法,其特征在于,步骤S2中,所述亚锡盐选自氯化亚锡。
5.根据权利要求1所述的锡掺杂氧化钼纳米薄膜的制备方法,其特征在于,步骤S2中,所述还原剂选自酒石酸。
6.根据权利要求1所述的锡掺杂氧化钼纳米薄膜的制备方法,其特征在于,步骤S2中,所述盐酸溶液的浓度为0.2~0.4mol/L。
7.根据权利要求1至6中任一项所述的锡掺杂氧化钼纳米薄膜的制备方法,其特征在于,步骤S3包括:将所述氧化钼纳米薄膜在50~70℃加热,而后将所述插层溶液覆于所述氧化钼纳米薄膜上,进行插层处理。
8.一种锡掺杂氧化钼纳米薄膜,其特征在于,由权利要求1至7中任一项所述的锡掺杂氧化钼纳米薄膜的制备方法制得。
9.一种近红外光电探测器,其特征在于,包括:
绝缘衬底;
金属电极,所述金属电极包括正极和负极,所述正极和所述负极间隔相对设于所述绝缘衬底上;
石墨烯层,所述石墨烯层搭接于所述正极和所述负极上;
锡掺杂氧化钼纳米薄膜,所述锡掺杂氧化钼纳米薄膜设于所述石墨烯层上,所述锡掺杂氧化钼纳米薄膜为权利要求8所述的锡掺杂氧化钼纳米薄膜。
10.根据权利要求9所述的近红外光电探测器,其特征在于,所述绝缘衬底的材质为单晶硅、石英玻璃、云母、SiO2、Al2O3、蓝宝石、PET中的至少一种。
CN202011422549.1A 2020-12-08 2020-12-08 锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器 Pending CN112635334A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011422549.1A CN112635334A (zh) 2020-12-08 2020-12-08 锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011422549.1A CN112635334A (zh) 2020-12-08 2020-12-08 锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器

Publications (1)

Publication Number Publication Date
CN112635334A true CN112635334A (zh) 2021-04-09

Family

ID=75308872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011422549.1A Pending CN112635334A (zh) 2020-12-08 2020-12-08 锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器

Country Status (1)

Country Link
CN (1) CN112635334A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893518A (zh) * 2022-11-08 2023-04-04 北京交通大学 一种超薄二维高熵金属氧化物纳米薄膜材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060165572A1 (en) * 2004-06-29 2006-07-27 Mchugh Lawrence F Method of making MoO2 powders, products made from MoO2 powders, deposition of MoO2 thin films, and methods of using such materials
CN107663648A (zh) * 2017-09-07 2018-02-06 暨南大学 一种插层氧化钼单晶膜及其制备方法和用途
CN109449247A (zh) * 2018-09-11 2019-03-08 暨南大学 锡掺杂氧化钼薄膜、基于锡掺杂氧化钼薄膜的宽光谱光电探测器阵列及其制备方法
CN110098267A (zh) * 2019-04-09 2019-08-06 深圳激子科技有限公司 一种基于声子激元增强的石墨烯中红外光探测器及其制备方法
CN110697778A (zh) * 2019-10-09 2020-01-17 西北工业大学 二硫化锡钼/二硫化锡纳米片的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060165572A1 (en) * 2004-06-29 2006-07-27 Mchugh Lawrence F Method of making MoO2 powders, products made from MoO2 powders, deposition of MoO2 thin films, and methods of using such materials
CN107663648A (zh) * 2017-09-07 2018-02-06 暨南大学 一种插层氧化钼单晶膜及其制备方法和用途
CN109449247A (zh) * 2018-09-11 2019-03-08 暨南大学 锡掺杂氧化钼薄膜、基于锡掺杂氧化钼薄膜的宽光谱光电探测器阵列及其制备方法
CN110098267A (zh) * 2019-04-09 2019-08-06 深圳激子科技有限公司 一种基于声子激元增强的石墨烯中红外光探测器及其制备方法
CN110697778A (zh) * 2019-10-09 2020-01-17 西北工业大学 二硫化锡钼/二硫化锡纳米片的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
姚迎等 编: "《化学知识辞典》", 30 September 1995, 济南出版社, pages: 140 *
王吉清;苏永超;张继德;许利剑;张薇;: "MoO_3/SnO_2催化剂的酸位及氧化中心研究", 《湖南农业大学学报(自然科学版)》, no. 02, 15 April 2007 (2007-04-15), pages 247 - 252 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893518A (zh) * 2022-11-08 2023-04-04 北京交通大学 一种超薄二维高熵金属氧化物纳米薄膜材料及其制备方法与应用
CN115893518B (zh) * 2022-11-08 2024-04-16 北京交通大学 一种超薄二维高熵金属氧化物纳米薄膜材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
EP2462264B1 (en) Large area deposition and doping of graphene
EP2462624B1 (en) Electronic device including doped graphene-based layers
KR101724773B1 (ko) 이형-에피택셜하게 성장한 그래핀의 결합 제거 및 이전 기법과 이를 포함하는 제품
EP2584072A2 (en) Large area deposition of graphene hetero-epitaxial growth, and products including the same
Wang et al. Highly transparent and conductive γ-CuI films grown by simply dipping copper films into iodine solution
Zhang et al. Fabrication of comb-like ZnO nanostructures for room-temperature CO gas sensing application
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN114606568B (zh) 低维碲晶体的制备方法
Kayanuma et al. Heteroepitaxial growth of layered semiconductors, LaZnOPn (Pn= P and As)
CN111115590B (zh) 一种二维碲化铟纳米片及其制得的偏振光探测器
CN112635334A (zh) 锡掺杂氧化钼纳米薄膜及其制备方法和近红外光电探测器
CN109449247B (zh) 锡掺杂氧化钼薄膜、基于锡掺杂氧化钼薄膜的宽光谱光电探测器阵列及其制备方法
CN214254350U (zh) 一种近红外光电探测器
CN104726825B (zh) 一种p型透明导电钴氧化物金属纳米复合薄膜的制备方法
Shu-Wen A Study of annealing time effects on the properties of Al: ZnO
KR101397451B1 (ko) Cu(In,Ga)Se2 나노로드 또는 나노와이어의 제조방법 및 이를 포함하는 재료
CN114150379A (zh) 元素计量比可调的二维层状卤氧化铋材料及其制备方法与在紫外探测器上的应用
CN110190154B (zh) 准一维硫化锡纳米线的宽波段偏振光探测器及其制备方法
Cheng et al. Growth kinetics and surface properties of single-crystalline aluminum-doped zinc oxide nanowires on silicon substrates
CN114464694B (zh) 光电探测器及其制备方法
CN104630716B (zh) 一种P型透明Ca3Co4O9导电薄膜的制备方法
JP2014192306A (ja) 半導体用材料およびその製造方法
CN110981215B (zh) 一种提高铝掺杂氧化锌导电玻璃热稳定性的方法
CN115241306B (zh) 一种铋硒硫半导体、制备及广谱、超快偏振光电探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination