CN112599611B - 波长选择性响应的光电探测器的制备方法 - Google Patents

波长选择性响应的光电探测器的制备方法 Download PDF

Info

Publication number
CN112599611B
CN112599611B CN202011469548.2A CN202011469548A CN112599611B CN 112599611 B CN112599611 B CN 112599611B CN 202011469548 A CN202011469548 A CN 202011469548A CN 112599611 B CN112599611 B CN 112599611B
Authority
CN
China
Prior art keywords
film layer
thin film
layer
nanopore
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011469548.2A
Other languages
English (en)
Other versions
CN112599611A (zh
Inventor
吴绍龙
詹纯
王冬唤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202011469548.2A priority Critical patent/CN112599611B/zh
Priority to PCT/CN2021/084961 priority patent/WO2022126933A1/zh
Publication of CN112599611A publication Critical patent/CN112599611A/zh
Application granted granted Critical
Publication of CN112599611B publication Critical patent/CN112599611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电器件领域,公开了波长选择性响应光电探测器的制备方法,在透明基底上依次设置纳米孔图案化金属薄膜层、光敏半导体材料层、致密金属薄膜层、绝缘保护层、以及分别在纳米孔图案化金属薄膜层和致密金属薄膜层引出两个引线端;纳米孔图案化金属薄膜层与致密金属薄膜层形成法布里‑珀罗谐振腔。由于纳米孔为对称的阵列结构,使其对入射光子的偏振角度具有不显著的依赖特性,进而使得光电探测器可实现偏振不敏感的波长选择性响应,法布里‑珀罗谐振腔使得目标光子在光敏半导体材料层中光学共振,增强了光敏半导体材料层对目标光子的吸收率。

Description

波长选择性响应的光电探测器的制备方法
技术领域
本发明属于光电器件领域,涉及一种对可见-近红外波段范围内的光子具有选择性响应的光电探测器的制备方法,尤其涉及窄带波段范围内的光谱调控技术。
背景技术
透明导电层是一种对一定波段范围内的光子具有较高透光率,同时具有良好导电性的薄膜层。透明导电层被广泛用作太阳能电池、光电探测器、发光二极管、光催化等光电子器件的正面电极。通常,理想的透明导电层需要在尽可能宽的光谱范围内呈现高透明性(即透光率高)和高导电率(即方块电阻很小)。目前,被广泛使用的透明导电材料主要有两类,一是金属掺杂的宽禁带半导体薄膜,如掺铝的氧化锌、掺锡的氧化铟;二是高占空比的金属网状薄膜或超薄的金属薄膜。
然而,用于光通信、光传感、激光测距等领域的光电探测器往往需要前置滤光装置,以实现器件针对单个目标波长或窄波段的光谱具有选择性的响应信号输出。若采用传统的氧化物膜系、高占孔比的金属网或超薄的金属薄膜作为上述领域光电探测器的透明导电电极,则光电器件不仅对目标波长会有响应,对干扰或噪声光波也同样具有响应。为了避免噪声光子的干扰,提高信噪比,外置滤光系统是必不可少的。如此操作,既增加了目标光信号的探测成本,还会增加探测系统的体积,不利于光电探测系统的小型化与集成化应用。
发明内容
本发明为解决现有技术中光电探测器不能自动对可见-近红外波段范围内的入射光子进行选择性识别和输出响应信号的问题。采用的技术方案如下:
波长选择性响应的光电探测器的制备方法,包括以下步骤:
1)采用石英玻璃为透明基底;
2)对清洗后的透明基底进行紫外-臭氧处理;
3)在透明基底上进行微/纳米球自组装排列;
4)对微/纳米球自组装排列进行反应离子束刻蚀,使微/纳米球自组装排列变成稀疏微/纳米球阵列;
5)采用电子束蒸镀技术在稀疏微/纳米球阵列表面镀金属薄膜;
6)去除稀疏微/纳米球阵列,得到纳米孔图案化金属薄膜层;
7)在纳米孔图案化金属薄膜层上沉积光敏半导体材料层;
8)在光敏半导体材料层表面蒸镀、溅射或涂覆致密金属薄膜层;
9)分别在纳米孔图案化金属薄膜层和致密金属薄膜层上引出导线,作为器件的两个引线端;
10)涂覆绝缘保护层,将致密金属薄膜层及器件的侧壁完全包覆好,露出两个引线端与未被纳米孔图案化金薄膜覆盖的透明基底的表面。
优选地,纳米孔图案化金属薄膜层与致密金属薄膜层形成法布里-珀罗谐振腔。
所述的光敏半导体材料层包括:单一的n型掺杂半导体层、单一的p型掺杂半导体层、构筑成p-n结型半导体层、构筑成n-p结型半导体层之一;所述的致密金属薄膜层与光敏半导体材料层形成欧姆接触;当光敏半导体材料层为单一的n型掺杂半导体层或单一的p型掺杂半导体层时,所述的纳米孔图案化金属薄膜层与光敏半导体材料层形成肖特基接触;当光敏半导体材料层为构筑成p-n结型半导体层或构筑成n-p结型半导体层,所述的纳米孔图案化金属薄膜层与光敏半导体材料层形成欧姆接触。
通过调控纳米孔的周期和半径,可以调控透过纳米孔图案化薄膜的波段范围及其中心波长,通过优化纳米孔的厚度,可以调控纳米孔图案化薄膜的窄带光透过率的峰值。纳米孔图案化薄膜既可作为导电性能优异的器件电极层,还可以作为入射光子的滤波装置。当光敏材料层为单一的p型或n型半导体材料层时,纳米孔图案化薄膜还与光敏半导体材料层构成肖特基结,进而作为光电探测器的工作结。由于纳米孔阵列为高对称性的结构,使其对入射光子的偏振角度具有不显著的依赖特性,进而使得光电探测器可实现偏振不敏感的波长选择性响应。此外,纳米孔图案化金属薄膜层与致密金属薄膜层形成法布里-珀罗谐振腔,使得选择性透过纳米孔图案化金属薄膜层的目标光子可在光敏半导体材料层中形成光学共振,从而极大增强了光敏半导体材料层对目标光子的吸收率。
附图说明
图1:一种波长选择性响应光电探测器的结构示意图;
其中:11透明基底,12为纳米孔图案化金属薄膜层;13为光敏半导体材料层;14为致密金属薄膜层;15为绝缘保护层;16为引线端。
图2:三角排列的纳米孔图案化金属薄膜层的结构示意图;
其中:D为纳米孔直径;P为纳米孔周期;t为纳米孔的厚度。
图3:纳米孔直径变化时,沉积于石英玻璃上基底的纳米孔图案化金属薄膜层的透射光谱图;
其中:31对应的纳米孔直径为280nm;32对应的纳米孔直径为240nm;33对应的纳米孔直径为200nm;34对应的纳米孔直径为120nm。
图4:纳米孔周期变化时,沉积于石英玻璃上基底的纳米孔图案化金属薄膜层的透射光谱图;
其中:41对应的纳米孔周期为2000nm;42对应的纳米孔周期为1800nm;43对应的纳米孔周期为1600nm;44对应的纳米孔周期为1400nm;45为相同厚度的连续金薄膜。
图5:纳米孔厚度变化时,沉积于石英玻璃上基底的纳米孔图案化金属薄膜层的透射光谱图;
其中:51对应的纳米孔厚度为140nm;52对应的纳米孔厚度为100nm;53对应的纳米孔厚度为60nm。
图6:沉积于石英玻璃上基底的纳米孔图案化金属薄膜层有无引入半导体吸收层时对应的透射光谱图;
其中:61对应为没有引入半导体材料层;62对应为引入了单晶硅薄膜层;63对应为将纳米孔图案化金属薄膜层替换为连续致密金属薄膜。
具体实施方式
为了更清楚地说明本技术方案,下面结合附图及实施例作进一步描述。
实施例一
波长选择性响应的光电探测器的制备方法,包括以下步骤:
1)对透明基底进行RCA标准化学清洗;
2)对清洗后的基底进行紫外-臭氧处理;
3)在石英玻璃基底上对原始直径为200~4000nm的聚苯乙烯微/纳米球进行自组装排列;
4)对密排好的聚苯乙烯微/纳米球阵列进行反应离子束刻蚀,使其直径减小为原始值的30%~70%;
5)以尺寸减小后的聚苯乙烯微/纳米球阵列覆盖的石英玻璃为基底,采用电子束蒸镀钛/金薄膜,厚度分别为0~5nm和50~150nm;
6)去除聚苯乙烯微/纳米球阵列,得到不同尺寸的纳米孔图案化金薄膜层。沉积于石英玻璃基底上的不同尺寸的纳米孔图案化金薄膜及对比样对应的计算所得的透射光谱图分别如图3~5所示,其中:图3中纳米孔的周期为550nm,厚度为100nm,纳米孔直径是变化的;图4中纳米孔的直径为周期的一半,厚度为100nm,纳米孔周期是变化的;图5中纳米孔的周期为550nm,厚度为100nm,纳米孔厚度是变化的;
7)以纳米孔图案化金属薄膜层覆盖的石英玻璃为基底,采用共蒸发法或等离子体反应法在纳米孔图案化金属薄膜层上沉积n型(或先后沉积p型和n型)非晶、微晶硅、Cu(In,Ga)Se2、CuInSe2、CuInTe2、AgInSe2或AgAlTe2薄膜。通过调控与纳米孔图案化金薄膜直接接触的半导体材料的掺杂浓度,使得n型半导体薄膜与金形成肖特基接触;先后沉积p、n型半导体薄膜时,纳米孔图案化金薄膜与p型半导体薄膜形成欧姆接触;
8)在半导体薄膜层的另一面蒸镀、溅射或涂覆致密金属薄膜层,通过选择金属材质,使得致密金属薄膜层与最后沉积的半导体薄膜形成欧姆接触;
9)分别在纳米孔图案化金属薄膜层和连续致密金属薄膜层上引出导电电线,作为器件的两个引线端;
10)涂覆绝缘保护层,将致密金属薄膜层及器件的侧壁包覆好,只露出两个引线端与未被纳米孔图案化金薄膜覆盖的石英玻璃的表面。
通过上述方法制备得到的波长选择性响应的光电探测器,如图1所述,为复合层式结构,沿着光入射方向依次包括透明基底11、纳米孔图案化金属薄膜层12、光敏半导体材料层13、致密金属薄膜层14、绝缘保护层15、以及分别在纳米孔图案化金属薄膜层和致密金属薄膜层引出的两个引线端16。
优选地,所述纳米孔图案化金属薄膜层的厚度为50~100nm。
优选地,所述纳米孔图案为三角排列,直径为100~1000nm,纳米孔面积占空比为8%~30%。纳米孔面积占空比定义为π×(半径/周期)2
优选地,所述纳米孔图案化金属薄膜层的材质为金、银、铝中任意一种。
优选地,在所述纳米孔图案化金属薄膜层和所述透明基底之间引入厚度为2~5nm的钛或铬,作为纳米孔图案化金属薄膜层与透明基底的粘附层。
优选地,绝缘保护层为有机硅胶、聚氟乙烯、聚乙烯醇缩丁醛、乙烯聚醋酸乙烯酯中的任一种。
上述方案中透明基底在整个可见-近红外波段具有超高的光透射率(>98%),沉积于透明基底的周期性纳米孔图案化薄膜对入射光子具有窄带选择性的透过特性。
实施例二
与实施例一相比,波长选择性响应的光电探测器的制备方法,
将步骤5)替换为:以尺寸减小后的聚苯乙烯微/纳米球阵列覆盖的石英玻璃为基底,采用电子束蒸镀铬/银(或铬/铝)薄膜,厚度分别为0~5nm和50~150nm。
将步骤7)替换为:以纳米孔图案化金属薄膜层覆盖的石英玻璃为基底,采用共蒸发法或等离子体反应法在纳米孔图案化金属薄膜层上沉积p型(或先后沉积n型和p型)非晶、微晶硅、Cu(In,Ga)Se2、CuInSe2、CuInTe2、AgInSe2或AgAlTe2薄膜。通过调控与纳米孔图案化金属薄膜层直接接触的半导体材料的掺杂浓度,使得p型半导体薄膜与银(或铝)形成肖特基接触;先后沉积n、p型半导体薄膜时,纳米孔图案化银(或铝)薄膜与n型半导体薄膜形成欧姆接触。
实施例三
与实施例一相比,波长选择性响应的光电探测器的制备方法,
光敏半导体材料层不以纳米孔图案化金属薄膜层覆盖的石英玻璃为基底进行薄膜沉积,而是直接采用已经生长好的n型或p-n结型硅、锗、砷化镓、铟镓砷或磷化铟单晶片为光敏层。制备的主要过程包括:
1)直接采用已经生长好的n型或p-n结型半导体单晶片的正面与以石英玻璃为基底的纳米孔图案化金薄膜【制备步骤参见与实施例一中的步骤1)至步骤6)】紧密贴合。通过仿真计算得到,透过纳米孔图案化金属薄膜层覆盖的石英玻璃的透射谱如图6所示(此时对应的纳米孔周期为550nm,直径为280nm,厚度为100nm,光垂直入射于裸露的玻璃面)。
2)在已经生长好的n型或p-n结型半导体单晶片的背面沉积致密的金属薄膜,通过选择金属材质和对半导体单晶片的背面进行掺杂,使得半导体单晶片的背面与致密的金属薄膜形成欧姆接触。
3)分别在纳米孔图案化金薄膜层和致密金属薄膜层上引出两个导电端,然后涂覆绝缘保护层,将致密金属薄膜层和器件的侧壁完全密封起来,只露出两个引线端与未被纳米孔图案化金薄膜覆盖的石英玻璃的表面。
实施例四
与实施例三相比,一种波长选择性响应光电探测器的制备过程的主要步骤有如下两处改变。
一是将“电子束蒸镀钛/金薄膜”替换为“电子束蒸镀铬/银(或铬/铝)薄膜”。
二是将“直接采用已经生长好的n型(或p-n结型)硅、锗、砷化镓、铟镓砷或磷化铟单晶片为光敏层”替换为“直接采用已经生长好的p型(或n-p结型)硅、锗、砷化镓、铟镓砷或磷化铟单晶片为光敏层”。

Claims (1)

1.波长选择性响应的光电探测器的制备方法,其特征在于包括以下步骤:
1)采用石英玻璃为透明基底;
2)对清洗后的透明基底进行紫外-臭氧处理;
3)在透明基底上进行微/纳米球自组装排列;
4)对微/纳米球自组装排列进行反应离子束刻蚀,使微/纳米球自组装排列变成稀疏微/纳米球阵列;
5)采用电子束蒸镀技术在稀疏微/纳米球阵列表面镀金属薄膜;
6)去除稀疏微/纳米球阵列,得到呈周期性排列分布的纳米孔图案化金属薄膜层;
通过调控纳米孔的周期和半径,调控透过纳米孔图案化薄膜层的波段范围及其中心波长,通过优化纳米孔的厚度,调控纳米孔图案化薄膜层的窄带光透过率的峰值;
7)在纳米孔图案化金属薄膜层上沉积光敏半导体材料层;
所述的光敏半导体材料层包括:单一的n型掺杂半导体层、单一的p型掺杂半导体层、构筑成p-n结型半导体层、构筑成n-p结型半导体层之一;
当光敏半导体材料层为单一的n型掺杂半导体层或单一的p型掺杂半导体层时,所述的纳米孔图案化金属薄膜层与光敏半导体材料层形成肖特基接触;
当光敏半导体材料层为构筑成p-n结型半导体层或构筑成n-p结型半导体层时,所述的纳米孔图案化金属薄膜层与光敏半导体材料层形成欧姆接触;
在光敏半导体材料层表面蒸镀、溅射或涂覆致密金属薄膜层;
所述的致密金属薄膜层与光敏半导体材料层形成欧姆接触;
纳米孔图案化金属薄膜层与致密金属薄膜层形成法布里-珀罗谐振腔;
9)分别在纳米孔图案化金属薄膜层和致密金属薄膜层上引出导线,作为器件的两个引线端;
10)涂覆绝缘保护层,将致密金属薄膜层及器件的侧壁完全包覆好,露出两个引线端与未被纳米孔图案化金薄膜覆盖的透明基底的表面。
CN202011469548.2A 2020-12-14 2020-12-14 波长选择性响应的光电探测器的制备方法 Active CN112599611B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011469548.2A CN112599611B (zh) 2020-12-14 2020-12-14 波长选择性响应的光电探测器的制备方法
PCT/CN2021/084961 WO2022126933A1 (zh) 2020-12-14 2021-04-01 波长选择性响应的光电探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011469548.2A CN112599611B (zh) 2020-12-14 2020-12-14 波长选择性响应的光电探测器的制备方法

Publications (2)

Publication Number Publication Date
CN112599611A CN112599611A (zh) 2021-04-02
CN112599611B true CN112599611B (zh) 2022-08-30

Family

ID=75195169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011469548.2A Active CN112599611B (zh) 2020-12-14 2020-12-14 波长选择性响应的光电探测器的制备方法

Country Status (2)

Country Link
CN (1) CN112599611B (zh)
WO (1) WO2022126933A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113744620A (zh) * 2021-09-06 2021-12-03 中国科学院微电子研究所 显色结构、显色结构的制备方法和防伪标识
CN114242921B (zh) * 2021-12-09 2024-02-20 广东省科学院半导体研究所 一种发光场效应晶体管及其制备方法
CN115438515B (zh) * 2022-11-07 2023-01-24 中国人民解放军国防科技大学 大厚度透明基底镀制金属薄膜的仿真与计算相结合的方法
CN116137297B (zh) * 2023-04-18 2023-07-25 合肥工业大学 集成非对称F-P腔的GaSe基日盲紫外光电探测器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339128B (zh) * 2008-08-27 2011-01-12 中国科学院光电技术研究所 一种表面等离子体共振成像纳米结构阵列芯片的制备方法
CN104555910B (zh) * 2014-12-31 2016-05-18 吉林大学 一种基于反应离子束刻蚀技术制备薄膜有序微结构的方法
DE112016002770T5 (de) * 2015-06-19 2018-03-22 Technische Universität Dresden Organische Photodetektoren und deren Herstellungsverfahren
KR102004650B1 (ko) * 2018-02-28 2019-10-01 재단법인대구경북과학기술원 태양전지용 메타소재 전극 및 이의 제조방법
CN108565301B (zh) * 2018-04-08 2020-04-17 哈尔滨工业大学 基于金属表面等离子诱导双波段响应的光电探测器及制备方法
CN109659387B (zh) * 2018-12-24 2022-04-01 苏州大学 基于杂化型等离子共振增强的红外探测器
CN110137300A (zh) * 2019-05-15 2019-08-16 苏州大学 一种超薄膜红外宽带热电子光电探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tunable infrared hot-electron photodetection by exciting gap-mode plasmons with wafer-scale gold nanohole arrays;Hao Ding等;《Optics EXPRESS》;20200219;全文 *

Also Published As

Publication number Publication date
CN112599611A (zh) 2021-04-02
WO2022126933A1 (zh) 2022-06-23

Similar Documents

Publication Publication Date Title
CN112599611B (zh) 波长选择性响应的光电探测器的制备方法
CN109659387B (zh) 基于杂化型等离子共振增强的红外探测器
CN111341875B (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN106571405B (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
CN105047749B (zh) 一种具有滤波功能钝化层的碳化硅肖特基紫外探测器
CN110335908B (zh) 异质结分波段探测器及其制备方法与应用
EP0102204A1 (en) An optically enhanced photovoltaic device
WO2013171286A1 (en) Solar cells having a nanostructured antireflection layer
CN114702960B (zh) 红外量子点层及其制备方法、红外探测器及其制备方法
CN111628035A (zh) 一种光电探测器及其制备方法
Xu et al. Surface engineering in SnO2/Si for high-performance broadband photodetectors
CN112331737B (zh) 一种紫外-可见-近红外硅基光电探测器及其制备方法
KR101658534B1 (ko) 태양전지 및 그 제조방법
WO2012160764A1 (ja) 光電変換素子
KR102221178B1 (ko) 광대역 포토디텍터 및 그 제조 방법
JPS62209872A (ja) 光電変換素子
JPS61278171A (ja) 薄膜光電変換素子
WO1989003593A1 (en) Low noise photodetection and photodetector therefor
US10529870B1 (en) Light trapping in hot-electron-based infrared photodetectors
CN111653631B (zh) 工作波长与入射光角度无关的热电子光探测器及制造方法
CN108281496A (zh) 一种硅基PiN紫外光电二极管及其制备方法
CN213601884U (zh) 一种波长选择性响应的光电探测器
CN115425146B (zh) 一种背照式微结构阵列宽光谱成像探测器及其制备方法
CN112599629A (zh) 一种波长选择性响应的光电探测器
CN114175278A (zh) 晶片太阳能电池、太阳能模块以及用于制造晶片太阳能电池的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant