CN112592932B - 一种植物育性相关蛋白及其应用 - Google Patents

一种植物育性相关蛋白及其应用 Download PDF

Info

Publication number
CN112592932B
CN112592932B CN202010021592.0A CN202010021592A CN112592932B CN 112592932 B CN112592932 B CN 112592932B CN 202010021592 A CN202010021592 A CN 202010021592A CN 112592932 B CN112592932 B CN 112592932B
Authority
CN
China
Prior art keywords
gmms1
gene
plant
sequence
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010021592.0A
Other languages
English (en)
Other versions
CN112592932A (zh
Inventor
蒋炳军
孙�石
陈莉
韩天富
岳岩磊
侯文胜
刘路平
袁珊
武婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Original Assignee
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Crop Sciences of Chinese Academy of Agricultural Sciences filed Critical Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority to CN202010021592.0A priority Critical patent/CN112592932B/zh
Priority to US17/788,923 priority patent/US20230175007A1/en
Priority to PCT/CN2020/085004 priority patent/WO2021139024A1/zh
Publication of CN112592932A publication Critical patent/CN112592932A/zh
Application granted granted Critical
Publication of CN112592932B publication Critical patent/CN112592932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种植物育性相关蛋白及其应用。本发明保护通过降低或抑制目的植物中GmMS1蛋白的活性和/或含量得到雄性不育植物的方法。本发明还保护通过沉默或抑制目的植物中GmMS1基因的表达或敲除GmMS1基因得到雄性不育植物的方法。本发明对于植物育性研究及不育植物的育种有重要意义。

Description

一种植物育性相关蛋白及其应用
技术领域
本发明涉及大豆分子遗传育种领域,具体涉及一种植物育性相关蛋白及其应用。
背景技术
大豆是世界上最为重要的油料作物和高蛋白粮食作物。在我国,大豆是四大粮食作物之一,对保证国家粮食安全、改善城乡人民生活和增加农民收入有十分重要的作用。
大豆是典型的短日照作物,单个品种的适种范围大都在1-1.5个纬度之间,不同纬度地区间引种会因日照长度的变化导致开花时间、成熟期提前或延迟,造成产量下降甚至颗粒无收。同时,我国地域范围大,生态类型多,育种水平不均衡,迫切需要加强优异种质资源的交流应用,提升大豆育种的整体水平,提高我国大豆单产水平。
大豆是典型自花授粉作物,花朵小、去雄难,不利于传统的人工杂交工作的开展。这严重限制了大豆种质资源的挖掘利用,严重限制了优异基因位点的聚合利用。基于大豆雄性不育突变体的大豆轮回群体选择技术,可以有效拓宽大豆种质资源的遗传基础,具有广泛的应用价值。
发明内容
本发明的目的是提供一种植物育性相关蛋白及其应用。
第一方面,本发明保护一种培育雄性不育植物的方法,包括如下步骤:降低或抑制目的植物中GmMS1蛋白的活性和/或含量,得到雄性不育植物;
所述GmMS1蛋白是如下(A1)或(A2)或(A3):
(A1)由序列表中序列1所示的氨基酸序列组成的蛋白质;
(A2)来源于大豆且与(A1)具有98%以上同一性且与植物雄性育性相关的蛋白质;
(A3)将序列表中序列1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且与植物雄性育性相关的蛋白质。
上述蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到。
第二方面,本发明保护一种培育雄性不育植物的方法,包括如下步骤:沉默或抑制目的植物中GmMS1基因的表达或敲除GmMS1基因,得到雄性不育植物:
所述GmMS1基因是如下任一所述的DNA分子:
(B1)序列表的序列2所示的DNA分子;
(B2)序列表的序列7所示的DNA分子;
(B3)在严格条件下与(B1)或(B2)限定的DNA分子杂交且编码具有相同功能的蛋白的DNA分子;
(B4)与(B1)或(B2)或(B3)限定的DNA序列具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性且具有相同功能的蛋白的DNA分子。
所述严格条件可为如下:50℃,在7%十二烷基硫酸钠(SDS)、0.5M NaPO4和1mMEDTA的混合溶液中杂交,在50℃,2×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5MNaPO4和1mM EDTA的混合溶液中杂交,在50℃,1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.5×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在65℃,0.1×SSC,0.1%SDS中漂洗;也可为:在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次。
所述沉默或抑制目的植物中GmMS1基因的表达或敲除GmMS1基因,为突变目的植物中GmMS1基因使目的植物中GmMS1基因表达量降低或使目的植物中GmMS1基因发生功能缺失。
所述使目的植物中GmMS1基因表达量降低或使目的植物中GmMS1基因发生功能缺失是通过使目的植物中GmMS1基因发生突变;所述突变为缺失突变和/或插入突变和/或能够导致基因功能缺失的其他突变。
所述使目的植物基因组中GmMS1基因表达量降低或使目的植物基因组中GmMS1基因发生功能缺失是通过基因编辑技术实现的。
在本发明的实施例中,所述使目的植物基因组中GmMS1基因表达量降低或使目的植物基因组中GmMS1基因发生功能缺失是利用CRISPR/Cas9使目的植物中GmMS1基因发生如下(A)或(B)所述突变:
(A)序列表的序列2自5’端第51位碱基和52位碱基之间插入碱基A;
(B)序列表的序列7自5’端第749位碱基和750位碱基之间插入碱基A。
所述CRISPR/Cas9的靶序列如序列表的序列6所示。
所述利用CRISPR/Cas9使目的植物中GmMS1基因发生如下(A)或(B)所述突变包括如下步骤:将靶向所述靶序列的CRISPR/Cas9敲除载体导入目的植物中,得到转基因植物。所述CRISPR/Cas9载体具体可为将引物二聚体插入Cas9/gRNA载体得到的重组载体;所述引物二聚体是将F2(5’-TTGCGCCGAGGTCTAAGATACAG-3’)和引物R2(5’-AACCTGTATCTTAGACCTCGGCG-3’)退火形成的。
将靶向所述靶序列的CRISPR/Cas9敲除载体导入目的植物,具体可为:通过农杆菌介导等常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。
在本发明的实施例中,所述使目的植物基因组中GmMS1基因表达量降低或使目的植物基因组中GmMS1基因发生功能缺失是利用CRISPR/Cas9使目的植物中GmMS1基因发生如下(C)或(D)所述突变:
(C)序列表的序列2发生自5’端第18位碱基至23位碱基的缺失突变;
(D)序列表的序列7发生自5’端第716位碱基至721位碱基的缺失突变。
所述CRISPR/Cas9的靶序列如序列表的序列4所示。
所述利用CRISPR/Cas9使目的植物中GmMS1基因发生如下(C)或(D)所述突变包括如下步骤:将靶向所述靶序列的CRISPR/Cas9敲除载体导入目的植物中,得到转基因植物。所述CRISPR/Cas9载体具体可为将引物二聚体插入Cas9/gRNA载体得到的重组载体;所述引物二聚体是将F1(5’-TTGGACGGGAACACCTGTGGCGG-3’)和引物R1(5’-AACCCGCCACAGGTGTTCCCGTC-3’)退火形成的。
将靶向所述靶序列的CRISPR/Cas9敲除载体导入目的植物,具体可为:通过农杆菌介导等常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。
第三方面,本发明保护GhBZR3蛋白或其相关生物材料在调控植物育性中的应用;
所述相关生物材料为如下(1)-(3)中的任一种:
(1)GhBZR3蛋白的编码基因;
(2)用于沉默或抑制目的植物中(1)的表达或敲除(1)的物质;
(3)用于降低或抑制目的植物中GmMS1蛋白的活性和/或含量的物质;
所述GmMS1蛋白如前文所述。
所述GhBZR3蛋白的编码基因(GmMS1基因)如前文所述。
所述“用于沉默或抑制目的植物中(1)的表达或敲除(1)的物质”或“用于降低或抑制目的植物中GmMS1蛋白的活性和/或含量的物质”具体可为CRISPR/Cas9敲除载体或含有所述载体的重组菌;所述CRISPR/Cas9敲除载体的靶序列如序列表的序列4或序列6所示。所述CRISPR/Cas9载体具体可为将引物二聚体插入Cas9/gRNA载体得到的重组载体;所述引物二聚体是将F2(5’-TTGCGCCGAGGTCTAAGATACAG-3’)和引物R2(5’-AACCTGTATCTTAGACCTCGGCG-3’)退火形成的。所述CRISPR/Cas9载体具体可为将引物二聚体插入Cas9/gRNA载体得到的重组载体;所述引物二聚体是将F1(5’-TTGGACGGGAACACCTGTGGCGG-3’)和引物R1(5’-AACCCGCCACAGGTGTTCCCGTC-3’)退火形成的。
第四方面,本发明还保护(C1)或(C2)在植物育种中的应用;
(C1)前文任一所述方法;
(C2)前文任一所述的GhBZR3蛋白或其相关生物材料。
所述育种的目的可为培育雄性不育植物。
以上任一所述植物为(D1)或(D2)或(D3):
(D1)双子叶植物或单子叶植物;
(D2)豆科植物;
(D3)大豆。
所述大豆具体可为大豆品种Jack。
上述任一所述方法培育得到的雄性不育植物也属于本发明的保护范围。
本发明对于植物育性研究及不育植物的育种有重要意义。
附图说明
图1为GmMS1基因编辑的测序检测结果。
图2为GmMS1基因编辑植株的不育表型。
具体实施方式
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。
发芽培养基:3.1g/L B5培养基基础盐(Gamborgs Basal Salt Mixture,Phytotech G768),20g/L蔗糖,1ml/L B5培养基维生素溶液(Gamborgs Vitamin Solution,Phytotech G219),7g/L琼脂,pH 5.8。
共培养液体培养基:2.0g/L MS基础盐混合物(Murashige&Skoog Basal SaltMixture),3.9g/L吗啉乙磺酸(MES),30g/L蔗糖,1ml/L B5培养基维生素溶液(GamborgsVitamin Solution,Phytotech G219),150mg/L二硫苏糖醇,40mg/L乙酰丁香酮,2mg/L玉米素,pH 5.4。
共培养培养基:2.0g/L MS基础盐混合物(Murashige&Skoog BasalSaltMixture),3.9g/L吗啉乙磺酸,30g/L蔗糖,1ml/L B5培养基维生素溶液(GamborgsVitamin Solution,Phytotech G219),150mg/L二硫苏糖醇,40mg/L乙酰丁香酮,2mg/L玉米素,7g/L琼脂,pH 5.4。
恢复培养基:3.1g/L B5培养基基础盐(Gamborgs Basal Salt Mixture,Phytotech G768),0.98g/L吗啉乙磺酸,30g/L蔗糖,1ml/L B5培养基维生素溶液(GamborgsVitamin Solution,Phytotech G219),150mg/L头孢噻肟(cefotaxime),450mg/L特美汀(timentin),1mg/L 6-苄氨基嘌呤(6-Benzylaminopurine),7g/L琼脂,pH 5.7。
筛选培养基:3.1g/L B5培养基基础盐(Gamborgs Basal Salt Mixture,Phytotech G768),0.98g/L吗啉乙磺酸,30g/L蔗糖,1ml/L B5培养基维生素溶液(GamborgsVitamin Solution,Phytotech G219),150mg/L头孢噻肟,450mg/L特美汀,1mg/L6-苄氨基嘌呤,7g/L琼脂,6mg/L草丁膦(glufosinate),pH 5.7。
伸长培养基:4.0g/L MS基础盐混合物(Murashige&Skoog Basal Salt Mixture),0.6g/L吗啉乙磺酸,30g/L蔗糖,1ml/L B5培养基维生素溶液(Gamborgs VitaminSolution,Phytotech G219),150mg/L头孢噻肟,450mg/L特美汀,0.1mg/L吲哚乙酸(3-Indoleacetic acid),0.5mg/L赤霉素(Gibberellic acid),1mg/L玉米素,7g/L琼脂,6mg/L草丁膦,pH 5.6。
生根培养基:2.0g/L MS基础盐混合物(Murashige&Skoog Basal SaltMixture),0.6g/L吗啉乙磺酸,20g/L蔗糖,1ml/L B5培养基维生素溶液(Gamborgs VitaminSolution,Phytotech G219),7g/L琼脂,3mg/L草丁膦,pH 5.7。
大豆品种Jack的种子:参考文献:Wei Liu,Bingjun Jiang,Liming Ma,ShouweiZhang,Hong Zhai,Xin Xu,Wensheng Hou,Zhengjun Xia,Cunxiang Wu,Shi Sun,TingtingWu,Li Chen,Tianfu Han,Functional diversification ofFlowering Locus T homologsin soybean:GmFT1a and GmFT2a/5a have opposite roles in controlling floweringand maturation,New Phytologist,2018,217(3):1335-1345.;国家种质库保存号:WDD01579,公众可以从中国农业科学院作物科学研究所获得。
实施例1、大豆雄性核不育基因GmMS1的获得
对大豆基因组进行测序和功能分析,发现一个大豆雄性核不育基因,将其命名为GmMS1基因,其CDS如序列表的序列2所示,基因组序列如序列表的序列7所示。所述GmMS1基因编码的蛋白质命名为GmMS1蛋白,如序列表的序列1所示。
实施例2、GmMS1基因在调控大豆育性中的应用
一、Crisper/CAS9基因编辑载体的构建
1、gRNA靶点设计与合成
设计两个靶点序列,分别为
靶点1:GACGGGAACACCTGTGGCGGTGG
靶点2:CGCCGAGGTCTAAGATACAGAGG
靶点1和靶点2中,下划线为PAM序列。
根据靶点序列分别设计两对引物:
靶点1引物:
F1:5’-TTGGACGGGAACACCTGTGGCGG-3’;
R1:5’-AACCCGCCACAGGTGTTCCCGTC-3’。
靶点2引物:
F2:5’-TTGCGCCGAGGTCTAAGATACAG-3’;
R2:5’-AACCTGTATCTTAGACCTCGGCG-3’。
2、引物二聚体的形成
将引物F1和引物R1分别稀释成10μM,配置反应体系:F15μl、R15μl、H2O 15μl。混匀后95℃反应3min,然后自然冷却至25℃,然后16℃,5min,得到引物二聚体1。
将引物F2和引物R2分别稀释成10μM,配置反应体系:F25μl、R25μl、H2O 15μl。混匀后95℃反应3min,然后自然冷却至25℃,然后16℃,5min,得到引物二聚体2。
3、取步骤2得到的引物二聚体1配置反应体系:Cas9/gRNA载体1μl、引物二聚体11μl、Solution11μl、Solution21μl、H2O 6μl。16℃反应2小时。
上述载体和试剂来自北京唯尚立德生物科技有限公司,货号VK005-15。
反应结束,得到重组载体CRISPR/Cas9-GmMS1-1,重组载体CRISPR/Cas9-GmMS1-1中含有序列表的序列3所示的的DNA分子(已经测序验证),表达sgRNA。sgRNA的靶序列为序列4。
4、取步骤2得到的引物二聚体2配置反应体系:Cas9/gRNA载体1μl、引物二聚体21μl、Solution11μl、Solution21μl、H2O 6μl。16℃反应2小时。
上述载体和试剂来自北京唯尚立德生物科技有限公司,货号VK005-15。
反应结束,得到重组载体CRISPR/Cas9-GmMS1-2,重组表达重组载体CRISPR/Cas9-GmMS1-2中含有序列表的序列5所示的DNA分子,表达sgRNA(已经测序验证)。sgRNA的靶序列为序列6。
二、重组农杆菌的制备
将步骤3和步骤4构建的重组载体CRISPR/Cas9-GmMS1-1和重组载体CRISPR/Cas9-GmMS1-2分别导入导入根癌农杆菌EHA105,得到重组农杆菌GmMS1-1和重组农杆菌GmMS1-2。
三、基因编辑大豆的获得
取步骤二得到的重组农杆菌,采用根癌农杆菌介导的大豆子叶节转化方法转化大豆,具体转化方法如下:
(1)选取大小均匀一致、无病斑、无裂纹,表面光滑、无褶皱的饱满大豆品种Jack的种子,将其装入玻璃培养皿中。然后放入干燥器内,敞开培养皿。在干燥器中放入一个玻璃烧杯,先加入100mL次氯酸钠,再向烧杯中滴入4mL的浓盐酸。凡士林涂于干燥器盖的四周后盖上干燥器,形成密封状态。然后将干燥器置于通风橱中,种子消毒16-20h。
(2)完成步骤(1)后,将灭菌的种子下胚轴垂直向上接入发芽培养基中,培养皿不封口,放在25℃,16h光照/18小时黑暗的组培间培养1d。
(3)完成步骤(2)后,以萌发的大豆种子的子叶节为外植体。首先剥去大豆种皮,纵切分离两片子叶,在子叶与胚轴交接部位(子叶节)划成条状伤口,将划伤的外植体放入含重组农杆菌重悬液的共培养液体培养基(菌液OD值为0.6—0.8)中,28℃浸染30min,侵染后,将外植体(子叶)内平面向下接种于表面铺有滤纸的共培养培养基中,25℃、16h光照/18小时黑暗条件下培养5天。
(4)完成步骤(3)后,将外植体转入恢复培养基中,25℃、16h光照/18小时黑暗条件下培养7d。
(5)完成步骤(4)后,切除外植体产生的主芽,将其转入筛选培养基中,25℃、16h光照/18小时黑暗条件下培养21d。
(6)完成步骤(5)后,剥去褐化的叶片,将产生的不定芽转入伸长培养基中,进行伸长。15d继代一次,继代2-3次。期间将产生的伸长苗转入生根培养基中,进行生根。
(7)完成步骤(6),待根长出,将苗子从培养基中取出,移栽到装有基质的小盆中进行炼苗。炼苗1周后,转入大盆生长,获得T0代植株。
(8)对T0代植株进行检测,检测方法如下:
分别提取转基因植株和野生型植株基因组DNA,以此为模板,用检测引物进行PCR扩增。
F-614:CGCCATAGTGAAGTAGCGGA;
R-614:CAGTTGAAAACAAACTTACCGAAGG。
PCR反应条件:先95℃预变性5min;然后95℃30sec,56℃30sec,72℃1min,35个循环;再72℃延伸10min。将PCR产物送去测序,筛选基因编辑植株。
测序结果显示,重组农杆菌GmMS1-1转化大豆后,共得到60株T0代植株,在T1后代中得到1株为在GmMS1基因中发生突变且为纯合型突变的植株,与野生型相比,纯合突变植株的差异在于:存在6bp的缺失,该缺失位于序列2的第18位和第23位之间(GGCGGT)。重组农杆菌GmMS1-2转化大豆后,共得到56株T0代植株,在T1后代中得到5株为在GmMS1基因中发生突变且为纯合型突变的植株,与野生型相比,纯合突变植株的差异在于:存在一个核苷酸的差异(即发生了一个插入突变且为纯合型,该插入位于序列2的第51位和52位之间,插入的单碱基为A,测序结果见图1),该核苷酸的差异引起移码,从而不能有效表达GmMS1蛋白(图1)。
四、大豆育性检测
待测植株:野生型植株、5株纯合型突变植株(转入重组农杆菌GmMS1-2得到的插入突变植株)。
室外自然条件下,盆栽种植待测植株。
结果如图2所示。结果显示,野生型对照植株结荚正常,籽粒饱满,而GmMS1基因编辑移码突变的纯合植株为雄性不育植株,不能正常结荚。这些结果说明对GmMS1基因进行编辑可以导致雄性不育。
序列表
<110> 中国农业科学院作物科学研究所
<120> 一种植物育性相关蛋白及其应用
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 950
<212> PRT
<213> 大豆(Glycine max (Linn.) Merr.)
<400> 1
Met Thr Gly Thr Pro Val Ala Val Ala Ala Ala Thr Pro Arg Ser Lys
1 5 10 15
Ile Gln Arg Asn Ala Ser Gly Thr Pro Gly Gly Pro Lys Val Arg Glu
20 25 30
Glu Lys Ile Arg Val Thr Val Arg Met Arg Pro Leu Asn Thr Lys Glu
35 40 45
Gln Ala Met Tyr Asp Leu Ile Ala Trp Asp Cys Leu Asp Glu His Thr
50 55 60
Ile Val Phe Lys Asn Pro Asn Gln Glu Arg Pro Thr Thr Pro Tyr Thr
65 70 75 80
Phe Asp Lys Val Phe Ala Pro Thr Cys Ser Thr His Lys Val Tyr Glu
85 90 95
Glu Gly Ala Lys Asp Val Ala Leu Ser Ala Leu Ser Gly Ile Asn Ala
100 105 110
Thr Ile Phe Ala Tyr Gly Gln Thr Ser Ser Gly Lys Thr Phe Thr Met
115 120 125
Arg Gly Val Thr Glu Ser Ala Ile Lys Asp Ile Tyr Asp Tyr Ile Lys
130 135 140
Asn Thr Pro Glu Arg Asp Phe Ile Leu Arg Ile Ser Ala Leu Glu Ile
145 150 155 160
Tyr Asn Glu Thr Val Ile Asp Leu Leu Lys Arg Glu Ser Gly Pro Leu
165 170 175
Arg Leu Leu Asp Asp Pro Glu Lys Gly Thr Ile Val Glu Lys Leu Asn
180 185 190
Glu Glu Val Ala Glu Asp Arg Gln His Leu Arg Arg Leu Ile Gly Ile
195 200 205
Cys Glu Ala Gln Arg Gln Val Gly Glu Thr Ala Leu Asn Asp Lys Ser
210 215 220
Ser Arg Ser His Gln Ile Ile Arg Leu Thr Val Glu Ser Ser Leu Arg
225 230 235 240
Glu Ser Ser Gly His Val Lys Ser Tyr Ile Ala Ser Leu Asn Phe Val
245 250 255
Asp Leu Ala Gly Ser Glu Arg Ile Ser Gln Thr Asn Thr Cys Gly Ala
260 265 270
Arg Met Lys Glu Gly Ser His Ile Asn Arg Ser Leu Leu Thr Leu Ala
275 280 285
Ser Val Ile Arg Lys Leu Ser Gly Gly Lys Cys Gly His Ile Pro Tyr
290 295 300
Arg Asp Ser Lys Leu Thr Arg Ile Leu Gln Ser Ser Leu Gly Gly Asn
305 310 315 320
Ala Arg Thr Ala Ile Ile Cys Thr Ile Ser Pro Ser Leu Ser His Val
325 330 335
Glu Gln Thr Arg Asn Thr Leu Ala Phe Ala Thr Ser Ala Lys Glu Val
340 345 350
Ile Asn Thr Ala Arg Val Asn Met Val Val Ser Asn Lys Thr Leu Val
355 360 365
Arg Gln Leu Gln Lys Glu Val Ala Arg Leu Glu Gly Glu Leu Arg Ser
370 375 380
Pro Asp Leu Ser Val Asn Ser Cys Leu Arg Ser Leu Leu Ala Glu Lys
385 390 395 400
Glu Leu Lys Ile Gln Gln Met Glu Arg Asp Met Glu Asp Leu Arg Arg
405 410 415
Gln Arg Asp Leu Ala Gln Thr Gln Leu Asp Leu Glu Arg Arg Val Asn
420 425 430
Lys Val Pro Lys Gly Ser Asn Asp Cys Gly Pro Ser Ser Gln Ile Val
435 440 445
Arg Cys Leu Ser Phe Pro Glu Glu Asn Lys Ser Ala Asn Gly Lys Arg
450 455 460
Thr Pro Glu Arg Arg Glu Ala Val Gly Arg Gln Ala Met Leu Lys Asn
465 470 475 480
Leu Leu Ala Ser Pro Asp Pro Ser Ile Leu Val Gly Glu Ile Arg Lys
485 490 495
Leu Glu Asp Arg Gln Leu Gln Leu Cys Glu Asp Ala Asn Arg Ala Leu
500 505 510
Glu Val Leu His Gln Asp Phe Ala Thr His Lys Leu Gly Asn Gln Glu
515 520 525
Thr Ala Glu Thr Met Ser Lys Val Leu Ser Glu Ile Lys Asp Leu Val
530 535 540
Ala Ala Ser Ser Thr Pro Glu Glu Ile Val Ala Ala Asp Lys Ala Asp
545 550 555 560
Leu Met Glu Lys Ile Thr Gln Leu Lys Asn Gln Gly Asn Thr Ile Ala
565 570 575
Ser Leu Glu Arg Lys Leu Glu Asn Val Gln Lys Ser Ile Asp Lys Leu
580 585 590
Val Ser Ala Phe Asn Ala Glu Glu Thr Pro Glu Asn Lys Thr Thr Pro
595 600 605
Leu Arg Arg Lys Lys Ile Leu Pro Phe Thr Leu Ser Asn Ser Pro Asn
610 615 620
Met Gln His Ile Ile Arg Ala Pro Cys Ser Pro Leu Ser Ser Ser Arg
625 630 635 640
Lys Ala Met Glu His Asp Ile Glu Asn Arg Ala Pro Glu Asn Asn Ile
645 650 655
Gly Ile Ser Gly Ser Asp Ser Phe Ala Lys Phe His Lys Asp Thr Pro
660 665 670
Arg Lys Asp Asp Lys Ser Cys Asp Ser Ile Leu Ser Arg Ala Gly Ser
675 680 685
Pro Ala Thr Arg Lys Ser Lys Ser Val Asn Val Met Lys Ile Gln Lys
690 695 700
Met Phe Lys Asn Ala Ala Glu Glu Asn Ile Arg Ser Phe Arg Val Tyr
705 710 715 720
Val Thr Glu Leu Lys Glu Leu Val Ala Lys Leu His Tyr Gln Lys Gln
725 730 735
Leu Leu Val Cys Gln Val Leu Glu Leu Glu Ala Asn Lys Ser Leu Asn
740 745 750
Glu Glu Lys Asp Thr Pro Asp Arg Ser Pro Leu Pro Trp His Ile Leu
755 760 765
Phe Asp Gln Gln Arg Lys Gln Ile Ile Met Leu Trp His Leu Cys His
770 775 780
Ile Ser Leu Val His Arg Thr Gln Phe Phe Leu Leu Leu Gly Gly Asp
785 790 795 800
Pro Ser Asp Gln Ile Tyr Met Glu Val Glu Leu Arg Arg Leu Thr Arg
805 810 815
Leu Glu Gln His Leu Ala Glu Leu Gly Asn Ala Ser Pro Ala Leu Leu
820 825 830
Gly Asp Glu Pro Ala Gly Ser Val Ser Ala Ser Ile Arg Ala Leu Lys
835 840 845
Gln Glu Arg Glu His Leu Ala Arg Lys Val Asn Thr Lys Leu Thr Ala
850 855 860
Glu Glu Arg Glu Leu Leu Tyr Ala Lys Trp Glu Val Pro Pro Val Gly
865 870 875 880
Lys Gln Arg Arg Leu Gln Phe Val Asn Lys Leu Trp Thr Asp Pro Tyr
885 890 895
Asn Met Gln His Val Gln Glu Ser Ala Glu Ile Val Ala Lys Leu Ile
900 905 910
Asp Phe Ser Val Ser Asp Glu Asn Ser Lys Asp Met Ile Glu Leu Asn
915 920 925
Phe Ser Ser Pro Phe Asn Lys Lys Thr Trp Ala Gly Trp Asn Phe Ile
930 935 940
Ser Asn Leu Leu Asn Leu
945 950
<210> 2
<211> 2850
<212> DNA
<213> 大豆(Glycine max (Linn.) Merr.)
<400> 2
atgacgggaa cacctgtggc ggtggctgcg gcaacgccga ggtctaagat acagaggaat 60
gcttcaggta cgccgggtgg ccccaaagtt cgggaggaga aaattcgagt cacggttcgg 120
atgaggccgc tcaatacaaa ggagcaagct atgtacgatc taattgcttg ggattgtttg 180
gatgaacaca ctattgtgtt caagaatcca aaccaagaga ggcctacaac accatacacc 240
ttcgataaag tttttgcacc tacgtgctca actcataagg tttatgaaga aggggctaaa 300
gatgttgctt tatcagcact ttctggaatc aatgcaacaa tatttgcgta tgggcagact 360
agcagtggta agacattcac gatgagaggc gtcactgaaa gtgctattaa agacatctac 420
gactacatta agaatacacc agaaagggat tttattctga gaatctctgc tctggaaatc 480
tataatgaga ctgtcataga ccttctgaaa cgtgaatctg gtcctcttcg gctcttggat 540
gatcctgaga aagggactat tgtggaaaag ctgaatgaag aagtagctga agatcgtcaa 600
catcttaggc gcttaattgg catctgcgaa gctcaaaggc aagtgggaga aactgcttta 660
aatgataaaa gctcaagatc acatcaaata atcaggctga ctgtagaaag cagccttcgt 720
gaaagttcag gtcacgtaaa gtcttacata gcaagtttga attttgtgga tcttgctgga 780
agtgaacgca tctctcaaac aaatacatgt ggagcaagaa tgaaggaagg cagccacatc 840
aaccgaagtt tgttgacact tgcatcagtc atcaggaagc taagtggcgg aaaatgtggt 900
cacataccat atagagactc aaaattgaca cgaatattgc agtcttcatt aggagggaat 960
gctcgaacag cgattatctg taccataagt ccttccttaa gtcatgtgga gcaaacaaga 1020
aatacactag catttgctac cagtgcaaag gaagtcatta atactgcccg agttaatatg 1080
gtcgtttcaa ataagacact agttagacag ttgcaaaagg aagttgcgag gcttgaaggg 1140
gagttacgaa gccctgacct ttctgtgaat tcatgtctaa ggtcattgct agctgaaaag 1200
gagttgaaaa ttcagcagat ggagagggat atggaagatc tgaggcgaca gagagacctt 1260
gcacaaactc aacttgatct ggaaagaaga gtgaataaag ttccaaaggg atcaaacgat 1320
tgtgggccct ctagtcaaat agtcagatgt ctttcttttc ctgaagagaa caaatcagct 1380
aatggtaaac gtacgccaga gcgacgagag gcagtgggca ggcaggcaat gctgaagaat 1440
ttattggctt ctcctgatcc atccatactg gttggtgaaa tccgaaagct tgaggatcgg 1500
cagctccagc tctgtgagga tgcaaatcga gctcttgaag ttctgcacca ggattttgca 1560
actcacaaac ttgggaatca agaaactgct gaaaccatgt cgaaagtact atctgaaata 1620
aaagacttag tagctgccag ctctactcca gaagaaattg tggcagcaga taaggccgac 1680
ctaatggaaa agatcacaca gttgaaaaat caagggaaca ccattgcatc tttagaaagg 1740
aagctggaga atgttcaaaa atctatagac aagcttgtgt ctgcttttaa tgcagaggag 1800
actccagaaa acaagacgac ccctctgaga aggaagaaaa ttcttccttt cacattaagc 1860
aacagtccca acatgcagca tataatacgt gctccttgct cgcctctctc ctcttcgcgt 1920
aaagcaatgg aacatgacat tgagaacagg gcaccggaaa acaacattgg catctctggc 1980
agtgattctt ttgctaagtt tcataaagat actccacgaa aggatgataa aagttgtgat 2040
tctattttat cacgggcagg aagcccagct acaaggaaat caaaatcagt gaatgtgatg 2100
aagattcaaa agatgttcaa gaatgctgcg gaggagaaca ttcggagctt cagagtttat 2160
gttaccgagt taaaagagct agtggcaaaa ctgcattacc agaagcagct actggtttgc 2220
caggttttgg aactggaagc aaacaagtca ttaaatgaag aaaaggatac acctgatcgg 2280
tctcccttgc catggcatat actatttgat cagcagagaa agcaaattat catgttatgg 2340
catttatgcc acatatctct tgtgcaccgg acacagtttt ttcttctgtt aggaggagac 2400
ccttctgatc agatatatat ggaagttgaa cttagaagat tgactcggtt agaacagcac 2460
ctggcagagc ttgggaatgc tagtcctgca cttctaggtg atgagcctgc aggctctgtt 2520
tcagcaagca ttagagctct gaagcaagaa agggaacatc ttgctaggaa ggtgaacact 2580
aaacttacag cagaggagag ggaactgctt tatgcaaaat gggaagttcc tccagttgga 2640
aaacaaagga gactgcaatt tgtaaataaa ttgtggaccg acccttataa catgcaacat 2700
gtgcaagaaa gtgctgaaat tgtagcaaag ctcattgatt tcagtgtatc tgatgaaaac 2760
agcaaggata tgattgaatt aaacttttca agccctttta ataagaaaac atgggcgggc 2820
tggaacttta tatcaaatct tctaaatttg 2850
<210> 3
<211> 548
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ttcgttgaac aacggaaact cgacttgcct tccgcacaat acatcatttc ttcttagctt 60
tttttcttct tcttcgttca tacagttttt ttttgtttat cagcttacat tttcttgaac 120
cgtagctttc gttttcttct ttttaacttt ccattcggag tttttgtatc ttgtttcata 180
gtttgtccca ggattagaat gattaggcat cgaaccttca agaatttgat tgaataaaac 240
atcttcattc ttaagatatg aagataatct tcaaaaggcc cctgggaatc tgaaagaaga 300
gaagcaggcc catttatatg ggaaagaaca atagtatttc ttatataggc ccatttaagt 360
tgaaaacaat cttcaaaagt cccacatcgc ttagataaga aaacgaagct gagtttatat 420
acagctagag tcgaagtagt gattggacgg gaacacctgt ggcgggtttt agagctagaa 480
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 540
cttttttt 548
<210> 4
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gacgggaaca cctgtggcgg 20
<210> 5
<211> 548
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ttcgttgaac aacggaaact cgacttgcct tccgcacaat acatcatttc ttcttagctt 60
tttttcttct tcttcgttca tacagttttt ttttgtttat cagcttacat tttcttgaac 120
cgtagctttc gttttcttct ttttaacttt ccattcggag tttttgtatc ttgtttcata 180
gtttgtccca ggattagaat gattaggcat cgaaccttca agaatttgat tgaataaaac 240
atcttcattc ttaagatatg aagataatct tcaaaaggcc cctgggaatc tgaaagaaga 300
gaagcaggcc catttatatg ggaaagaaca atagtatttc ttatataggc ccatttaagt 360
tgaaaacaat cttcaaaagt cccacatcgc ttagataaga aaacgaagct gagtttatat 420
acagctagag tcgaagtagt gattgcgccg aggtctaaga tacaggtttt agagctagaa 480
atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg 540
cttttttt 548
<210> 6
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
cgccgaggtc taagatacag 20
<210> 7
<211> 6884
<212> DNA
<213> 大豆(Glycine max (Linn.) Merr.)
<400> 7
ttgaagtagc cgttactata cacacctctt actatctctg gaactttgaa tttcagagcg 60
tttttttctc tttcgaaaag taaacctcgt cgtcgttcat tcgttctttc tctctttcag 120
atcgattgca gaatttattt cgccactcca aactacgtcg ttcagcattt ccaccggcga 180
ctgagcctcc tcttcttcat ctgcaagtac ttcttttctt tcatttcaca aagaatcaat 240
ttctttttca ataaacgtgc tcgattagtt gaattgaatg tgcctagtaa agatcaacaa 300
gaagaagaag aagatttagc aaaatatcat atgaaacaga tgtcaatcgc catagtgaag 360
tagcggatta ctattttgtt tttttttcgg aggtgttctg ataggtgatt tgttgggcga 420
ttcagcaatt ttaaaagctt cagatcgtgc taggttttag cttaatcttc attcgctctt 480
tttgcaatgt agctaattca gaaatcgata tccgtttttc tttctattac cgttttcatc 540
caaatcagtg acctccaaag ttgcaacggt tttcggaaga acatggctta gctattattt 600
ataatgttct ttatttcaag tattttctct ttagaaatga agtgctgtaa actgctgttg 660
ctgacggatc gatctgcaga aattgaaggc agagctcgat gacgggaaca cctgtggcgg 720
tggctgcggc aacgccgagg tctaagatac agaggaatgc ttcaggtacg ccgggtggcc 780
ccaaagttcg ggaggagaaa attcgagtca cggttcggat gaggccgctc aatacaaagg 840
agcaagctat gtacgatcta attgcttggg attgtttgga tgaacacact attgtgttca 900
agaatccaaa ccaagagagg cctacaacac catacacctt cggtaagttt gttttcaact 960
gtgttttttt tttccgagag gaatttgata aacttacatt ttcgtgaaca gaaattcatg 1020
aatttatatt taaatttctg tataaatggg aggtaatgaa tataaacctg gttaacgttc 1080
tagtgcgttt attgtttaac gttgtttgag tggatttgta tttgttaagt ttctatttcc 1140
ttttatataa catttatctt atttgttatt tgttacttgt tacctttttt cttattatta 1200
tttgttatgt tgcagataaa gtttttgcac ctacgtgctc aactcataag gtttatgaag 1260
aaggggctaa agatgttgct ttatcagcac tttctggaat caatggtaac ttgttctcag 1320
ctaatgcttg tgttagatta cgggatgttt tagatgcatt caaaagtttc atttttttgc 1380
agcaacaata tttgcgtatg ggcagactag cagtggtaag acattcacga tgagaggcgt 1440
cactgaaagt gctattaaag acatctacga ctacattaag aatgtgagtt actagtttac 1500
tgttgatacc taccaaactt tatatgtcaa ttatcttcta ctgagtataa agtagaaggc 1560
tattcatgag ttgaatccta ttagtattta tcaagattaa ttgcaggatt tgatggcaat 1620
tacttgcaat tatgaacatt ttttattcgt ttcaatttcc acagacacca gaaagggatt 1680
ttattctgag aatctctgct ctggaaatct ataatgagac tgtcatagac cttctgaaac 1740
gtgaatctgg tcctcttcgg ctcttggatg atcctgaggt atagttcagg gctaaaccct 1800
gaacggaaat ttgtcaggga tgctttaaaa tttccttgat ttgtcgcaaa tcctgaggta 1860
gattttttct ttggtacaga aagggactat tgtggaaaag ctgaatgaag aagtagctga 1920
agatcgtcaa catcttaggc gcttaattgg catctgcgaa ggtaatctag aaatctggtg 1980
tggtttgtca tgtgagacat atataggttt ctcaagagca tacagtatca ccatgttgtt 2040
tggctaagac ttttatatct cactattggt gatgttctct ttgtatagaa accatgaaaa 2100
tatataagtt gtgggcattt tgcacttagg ttatctgcat agtactattg ttcatgtaaa 2160
tattgtatct gcagctcaaa ggcaagtggg agaaactgct ttaaatgata aaagctcaag 2220
atcacatcaa ataatcaggc tggtaagctc agctgaggaa gtacaagtat tcattataat 2280
gcatgcatat ttcagattgg ttaatttacc catttatttt ctctggctac tttatgcgga 2340
gattagaaat aagacttatg cttactgctc tgtaatcact attttcatac gaatatttca 2400
gactgtagaa agcagccttc gtgaaagttc aggtcacgta aagtcttaca tagcaagttt 2460
ggtatgtttc gtcttcatag cttgacttga tagtcttgat aacaagctag tcatagtgat 2520
gaatcattat tataacctca cagaattttg tggatcttgc tggaagtgaa cgcatctctc 2580
aaacaaatac atgtggagca agaatgaagg aaggcagcca catcaaccga agtttgttga 2640
cacttgcatc agtcatcagg aagctaaggt ccaacatctt taaatatcaa aatgcatgtg 2700
gctactttgt tattgttctt ctacaaaaga gccatgatta taaaaattta gcagccaaga 2760
tcaacaagat gtagagaaaa aaaaatacta aaaggcccat ttgtttgtgt gttttttttt 2820
ataagaaaaa catttttttt aaattaaaaa tatgtttaaa atctccacaa taattgattt 2880
ttttttaaat aaaaaatcct caacaagatt ttaatatttt ttgcttttaa tcatcaaatg 2940
tcacattaaa gttgtcttgt gacatgaagg taggttcaaa tctttgaaac agtcgctcta 3000
cttacagggg gataagactg cttacatcta tcctttcaat atctcactag gaagaagcct 3060
catgcaccag gctactcttt ttgttcaaac tgaaaagttt ttgacaacta ctaatatact 3120
tgtggaatcc agtttttctc gtaatcattt tcatttgatg actagaaatt gtttactgag 3180
gaagttggtt aatttgaaat tgtttattgt ggaagttggt taatttgaaa ttggcattga 3240
ttattattat gatgaagtaa agacctgtag agctatgtaa tttggtcaat agacaggcgt 3300
ccgattcagc ttttggaggt tttcttttgc tttgcagtgg cggaaaatgt ggtcacatac 3360
catatagaga ctcaaaattg acacgaatat tgcagtcttc attaggaggg aatgctcgaa 3420
cagcgattat ctgtaccata agtccttcct taagtcatgt ggagcaaaca agaaatacac 3480
tagcatttgc taccagtgca aaggaagtca ttaatactgc ccgagttaat atggtatgat 3540
taaatgtcta aatataatta tgatttggtt gattgaagag tagattagta tgaaaatctt 3600
ttctcctcgt gttcttatat tacttgataa aatcattttt tcccaaaaat ttgttttcaa 3660
acagaagctt gcagcagttt ggcatctttc aatctttttg acaagtgtaa atttggatag 3720
tagctctcct aggtttctga tacttagttc atagcctagc ccaccttgac tagcagcaaa 3780
gtgtatttgt ttggtagaag tatttgaaat tattgagaaa agtgatggat gcaccttctt 3840
cataaaaagc accttgtctt ttatttcggg tggcaattat agaggacttg ttttcccctc 3900
tactcgctaa gtgatattca tttttttttg ttatttcgag aagccacctc attgattaca 3960
agctttcata ttttccatga aaaaagaaag gtatatacta agatagatgg tgatgatcat 4020
ttaacaggtc gtttcaaata agacactagt tagacagttg caaaaggaag ttgcgaggct 4080
tgaaggggag ttacgaagcc ctgacctttc tgtgaattca tgtctaaggt cattgctagc 4140
tgaaaaggag ttgaaaattc agcaggtaca aacttcttta cttggtctta actttcatgt 4200
taactttact gtgttaaaat ttttgaacta acctcttctc tgagtcctct agatggatat 4260
tataatggta ttctttggag ttcttacatt attattatct cttgtctcaa gatgtggtca 4320
ataatttgat ttctatgtag ctaaacattc caacattcaa gtaaaatatt catatactct 4380
ttgtgtatgc aatgggttta actttcccat tccacaatgg atcaaaatcc cgggaactgg 4440
cttcccgttg tctgcttttc ttgtcgaatg aactgtgaaa gaccaattta ttagtaacac 4500
ttaattgtct tttcttgagc ttttagaaga gaaactcttt tggatgaatt gaattgataa 4560
acacaaattt gcagatggag agggatatgg aagatctgag gcgacagaga gaccttgcac 4620
aaactcaact tgatctggaa agaagagtga ataaagttcc aaaggtattt ggaatggtca 4680
tatcacatta ttgtaaccct gatttagact tctgactcaa attatataat tcttgcaggg 4740
atcaaacgat tgtgggccct ctagtcaaat agtcagatgt ctttcttttc ctgaagagaa 4800
caaatcagct aatggtaaac gtacgccaga gcgacgagag gcagtgggca ggcaggcaat 4860
gctgaagaat ttattggctt ctcctgatcc atccatactg gttggtgaaa tccgaaagct 4920
tgaggatcgg cagctccagc tctgtgagga tgcaaatcga gctcttgaag ttctgcacca 4980
ggattttgca actcacaaac ttgggaatca agaaactgct gaaaccatgt cgaaagtact 5040
atctgaaata aaagacttag tagctgccag ctctactcca gaagaaattg tggcagcaga 5100
taaggccgac ctaatggaaa agatcacaca gttgaaaaat caagggaaca ccattgcatc 5160
tttagaaagg aagctggaga atgttcaaaa atctatagac aagcttgtgt ctgcttttaa 5220
tgcagaggag actccagaaa acaagacgac ccctctgaga aggaagaaaa ttcttccttt 5280
cacattaagc aacagtccca acatgcagca tataatacgt gctccttgct cgcctctctc 5340
ctcttcgcgt aaagcaatgg aacatgacat tgagaacagg gcaccggaaa acaacattgg 5400
catctctggc agtgattctt ttgctaagtt tcataaagat actccacgaa aggatgataa 5460
aagttgtgat tctattttat cacgggcagg aagcccagct acaaggaaat caaaatcagt 5520
gaatgtgatg aagattcaaa agatgttcaa gaatgctgcg gaggagaaca ttcggagctt 5580
cagagtttat gttaccgagt taaaagagct agtggcaaaa ctgcattacc agaagcagct 5640
actggtttgc caggtaaggt tttttgattt ccactactat gctataataa tgtgtgctgc 5700
aatgctcgtt ttgccatttt aggaaaactg tttctcacat tgaatcatgt cagcatttgt 5760
ttcaggttaa acctattgca gataatgctt gtatgagttt aagactttaa gtgtaatagt 5820
aatttgttat tcttattggc gtataatatg ctgatacctt ttatcccctg cacgcacggg 5880
tttaggtttt ggaactggaa gcaaacaagt cattaaatga agaaaaggat acacctgatc 5940
ggtctccctt gccatggcat atactatttg atcagcagag aaagcaaatt atcatgttat 6000
ggcatttatg ccacatatct cttgtgcacc ggacacagtt ttttcttctg ttaggaggag 6060
acccttctga tcagatatat atggaagttg aacttagaag attgactcgg ttagaacagc 6120
acctggcaga gcttgggaat gctagtcctg cacttctagg tgatgagcct gcaggctctg 6180
tttcagcaag gtatgctcgt gtctttgaaa gacatgtgtc ttttttgaca attcctgcta 6240
gtcctgcact tctaggtgtc tttgataatt ccttaaatca agtgtctttg ataaagctcg 6300
tgtatttgaa aaacaggttt attttagaaa attctaataa attagtgcat ggccttgcac 6360
gcttttattt gtataatgag cagagaatag tatattaatc ttttgctatt gattgatcat 6420
caaatgcagc attagagctc tgaagcaaga aagggaacat cttgctagga aggtgaacac 6480
taaacttaca gcagaggaga gggaactgct ttatgcaaaa tgggaagttc ctccagttgg 6540
aaaacaaagg agactgcaat ttgtaaataa attgtggacc gacccttata acatgcaaca 6600
tgtgcaagaa agtgctgaaa ttgtagcaaa gctcattgat ttcagtgtat ctgatgaaaa 6660
cagcaaggat atgattgaat taaacttttc aagccctttt aataagaaaa catgggcggg 6720
ctggaacttt atatcaaatc ttctaaattt gtaaacacat tgttgtagtt gtacgtcatt 6780
tgtagttgag aagagaagta gagaactatc aaatatatat aatatttcga ttccattaac 6840
tgattattag gtgtacaagt ggcatgtttg caagaaagaa agaa 6884

Claims (9)

1.一种培育雄性不育植物的方法,包括如下步骤:降低或抑制目的植物中GmMS1蛋白的活性和/或含量,得到雄性不育植物;
所述GmMS1蛋白的氨基酸序列如序列表中序列1所示;
所述植物为大豆。
2.一种培育雄性不育植物的方法,包括如下步骤:沉默或抑制目的植物中GmMS1基因的表达或敲除GmMS1基因,得到雄性不育植物:
所述GmMS1基因是如下任一所述的DNA分子:
(B1)序列表的序列2所示的DNA分子;
(B2)序列表的序列7所示的DNA分子;
所述植物为大豆。
3.如权利要求2所述的方法,其特征在于:所述沉默或抑制目的植物中GmMS1基因的表达或敲除GmMS1基因,为突变目的植物中GmMS1基因使目的植物中GmMS1基因表达量降低或使目的植物中GmMS1基因发生功能缺失。
4.如权利要求3所述的方法,其特征在于:所述使目的植物中GmMS1基因表达量降低或使目的植物中GmMS1基因发生功能缺失是通过使目的植物中GmMS1基因发生突变;所述突变为缺失突变和/或插入突变和/或能够导致基因功能缺失的其他突变。
5.如权利要求3或4所述的方法,其特征在于:所述使目的植物基因组中GmMS1基因表达量降低或使目的植物基因组中GmMS1基因发生功能缺失是通过基因编辑技术实现的。
6.如权利要求5所述的方法,其特征在于:所述使目的植物基因组中GmMS1基因表达量降低或使目的植物基因组中GmMS1基因发生功能缺失是利用CRISPR/Cas9使目的植物中GmMS1基因发生如下(A)或(B)所述突变:
(A)序列表的序列2自5’端第51位碱基和52位碱基之间插入碱基A;
(B)序列表的序列7自5’端第749位碱基和750位碱基之间插入碱基A。
7.如权利要求6所述的方法,其特征在于:所述CRISPR/Cas9的靶序列如序列表的序列6所示。
8.GmMS1蛋白或其相关生物材料在调控植物育性中的应用;
所述相关生物材料为如下(1)-(3)中的任一种:
(1) GmMS1蛋白的编码基因;
(2)用于沉默或抑制目的植物中(1)的表达或敲除(1)的物质;
(3)用于降低或抑制目的植物中GmMS1蛋白的活性和/或含量的物质;
所述GmMS1蛋白的氨基酸序列如序列表中序列1所示;
所述植物为大豆。
9.(C1)或(C2)在植物育种中的应用;
(C1)权利要求1-7中任一所述方法;
(C2)权利要求8中所述的GmMS1蛋白或其相关生物材料;所述育种的目的为培育雄性不育大豆;
所述植物为大豆。
CN202010021592.0A 2020-01-09 2020-01-09 一种植物育性相关蛋白及其应用 Active CN112592932B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010021592.0A CN112592932B (zh) 2020-01-09 2020-01-09 一种植物育性相关蛋白及其应用
US17/788,923 US20230175007A1 (en) 2020-01-09 2020-04-16 A plant fertility-associated protein and its application thereof
PCT/CN2020/085004 WO2021139024A1 (zh) 2020-01-09 2020-04-16 一种植物育性相关蛋白及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010021592.0A CN112592932B (zh) 2020-01-09 2020-01-09 一种植物育性相关蛋白及其应用

Publications (2)

Publication Number Publication Date
CN112592932A CN112592932A (zh) 2021-04-02
CN112592932B true CN112592932B (zh) 2022-03-22

Family

ID=75180101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010021592.0A Active CN112592932B (zh) 2020-01-09 2020-01-09 一种植物育性相关蛋白及其应用

Country Status (3)

Country Link
US (1) US20230175007A1 (zh)
CN (1) CN112592932B (zh)
WO (1) WO2021139024A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112391395A (zh) * 2020-12-03 2021-02-23 吉林省农业科学院 一种大豆不育基因突变体、应用及大豆不育系的构建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107072165A (zh) * 2014-09-26 2017-08-18 先锋国际良种公司 小麦Ms1多核苷酸、多肽以及使用方法
CN109312357A (zh) * 2016-04-12 2019-02-05 Kws种子欧洲股份公司 通过细胞色素p450氧化酶突变的细胞核编码雄性不育
CN110386967A (zh) * 2018-03-26 2019-10-29 中国农业科学院作物科学研究所 与植物雄性育性相关的蛋白SiMS1及其编码基因与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022782A (ja) * 2006-07-21 2008-02-07 Tokyo Univ Of Agriculture & Technology 雄性不稔植物体およびその作出方法
CA2844470A1 (en) * 2011-06-21 2013-05-10 Pioneer Hi-Bred International, Inc. Methods and compositions for producing male sterile plants
CN102634522B (zh) * 2012-03-07 2013-12-04 四川农业大学 控制水稻育性的基因及其编码蛋白和应用
CN104131012B (zh) * 2014-07-10 2017-02-08 安徽农业大学 一种鉴定大豆细胞核雄性不育系的分子标记及其鉴定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107072165A (zh) * 2014-09-26 2017-08-18 先锋国际良种公司 小麦Ms1多核苷酸、多肽以及使用方法
CN109312357A (zh) * 2016-04-12 2019-02-05 Kws种子欧洲股份公司 通过细胞色素p450氧化酶突变的细胞核编码雄性不育
CN110386967A (zh) * 2018-03-26 2019-10-29 中国农业科学院作物科学研究所 与植物雄性育性相关的蛋白SiMS1及其编码基因与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
The cloning and CRISPR/Cas9-mediated mutagenesis of a male sterility gene MS1 of soybean;Bingjun Jiang等;《Plant Biotechnology Journal》;20211231;第19卷;第1098–1100页 *
大豆分子育种研究进展;蒋炳军等;《大豆科学》;20121231;第31卷(第4期);第662-667页 *
登录号AC235472.1;Grimwood,J.;《NCBI_GenBank》;20090312;第43082-49965位 *
登录号XP_003541319.1;无;《NCBI_GenPept》;20180831;第1-950位 *

Also Published As

Publication number Publication date
WO2021139024A1 (zh) 2021-07-15
CN112592932A (zh) 2021-04-02
US20230175007A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
CN112626080B (zh) 一种控制大豆-根瘤菌匹配性的r基因及其蛋白质和应用
CN111333707B (zh) 一种植物粒型相关蛋白及其编码基因与应用
WO2020007332A1 (zh) 一种利用MsPALM1人工定点突变体获得多叶型紫花苜蓿材料的方法
CN111440804B (zh) 玉米ZmBES1/BZR1-5基因在培育大籽粒植物中的应用
CN110257421B (zh) 一种甘蓝型油菜基因突变体ptg8的构建方法及其应用
CN108642065B (zh) 一种水稻胚乳粉质相关基因OsSecY2及其编码蛋白质和应用
CN113025627A (zh) 水稻分蘖控制基因OsMYB27及其在育种上的应用
CN112250741B (zh) 来源于水稻的蛋白质的用途
CN107475266B (zh) 一种水稻胚乳粉质相关基因OscyMDH及其编码蛋白质和应用
CN112250742B (zh) 蛋白质及其相关生物材料在调控植物机械强度中的用途
CN112592932B (zh) 一种植物育性相关蛋白及其应用
CN113265403A (zh) 大豆Dt1基因编辑位点及其应用
EP0620855A1 (en) Regulation of plant genes
CN111875689B (zh) 一种利用番茄绿茎紧密连锁标记创制雄性不育系的方法
CN110790831B (zh) 植物耐盐耐旱性蛋白及其编码基因与应用
CN111690679B (zh) 一种用于培育黄瓜雄性不育系的重组表达载体及其构建方法和应用
CN110407922B (zh) 水稻耐冷基因qSCT11及其应用
CN114085854A (zh) 一种水稻抗旱、耐盐基因OsSKL2及其应用
CN113416747B (zh) 一种创建温度敏感型雄性不育植物的方法
CN112194713B (zh) 一种与水稻胚乳淀粉颗粒发育相关的蛋白fse5及其编码基因和应用
CN112080481B (zh) 穗型相关基因OsFRS5及其应用和表型恢复的方法
LU501061B1 (en) USE OF SOYBEAN PROTEIN KINASE GENE GmSTK_IRAK
CN107338257B (zh) 水稻谷氧还蛋白基因OsGrxC2在育种中的应用
CN108315336B (zh) 一种控制水稻小穗发育基因pis1的应用
CN106349353A (zh) 一种调控植物淀粉合成相关蛋白OsFSE及其编码基因与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant