CN112592011B - 一种剩余污泥破解剂及其制备方法及应用 - Google Patents

一种剩余污泥破解剂及其制备方法及应用 Download PDF

Info

Publication number
CN112592011B
CN112592011B CN202011315331.6A CN202011315331A CN112592011B CN 112592011 B CN112592011 B CN 112592011B CN 202011315331 A CN202011315331 A CN 202011315331A CN 112592011 B CN112592011 B CN 112592011B
Authority
CN
China
Prior art keywords
fly ash
precursor
solid
excess sludge
cracking agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011315331.6A
Other languages
English (en)
Other versions
CN112592011A (zh
Inventor
相玉琳
相玉秀
曹峰
毕志高
戴春雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Ocean University
Original Assignee
Jiangsu Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Ocean University filed Critical Jiangsu Ocean University
Priority to CN202011315331.6A priority Critical patent/CN112592011B/zh
Publication of CN112592011A publication Critical patent/CN112592011A/zh
Application granted granted Critical
Publication of CN112592011B publication Critical patent/CN112592011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开的一种剩余污泥破解剂及其制备方法及应用,通过对固废粉煤灰进行有效的改性处理,使粉煤灰自身有用成分被激活,并负载上新的功能基团,使粉煤灰在光照下能够产生大量的活性自由基,这些自由基可快速击穿污泥微生物细胞壁,使剩余污泥得到快速破解,大大缩短了污泥的处理时间,改善了处理效率,具有成本低、有用成分破坏小、破解率高、绿色环保、易操作等优点。

Description

一种剩余污泥破解剂及其制备方法及应用
技术领域
本发明属于污泥处理技术领域,涉及一种剩余污泥破解剂及其制备方法及应用。
背景技术
随着我国经济的飞速发展,污水处理量逐年增加,伴生的剩余污泥量也越来越大。剩余污泥含水率高(可达99%以上)、脱水性能差,占地面积大,同时,剩余污泥中含有大量病原菌微生物、有机污染物以及重金属,处置不当极易造成周边环境的污染,并威胁人们的健康,如何妥善处置剩余污泥已成为当前社会关注的热点问题。
若要实现污泥的安全处理处置,污泥破解是行之有效的措施。鉴于此,剩余污泥的破解引起了人们的重点关注,目前常用的污泥破解方法主要热碱处理、Fenton、超声波及它们的联用等。对比研究耦合联用对污泥的破解效果较好。如艾乐仙等在《现代化工》第39卷第3期P171-175“超声波-高锰酸钾耦合工艺对污泥破解效果的研究”中采用超声波-高锰酸钾耦合工艺预处理剩余污泥,结果显示,超声波-高锰酸钾耦合工艺对剩余污泥的破解效果显著。胡潇鹏等在《现代化工》第39卷第5期P173-178“柠檬酸-微波联合对污泥破解的研究”利用柠檬酸-微波联合破解污泥,结果显示,利用柠檬酸-微波联合破解污泥,可使污泥SV30降至21.22%,SVI降至27.99mL/g,联合方法可有效改善污泥的沉降性能,破解效果显著。任宏洋等在《水处理技术》第45卷第12期P105-109“臭氧耦合A/A/O污泥减量及污水处理效能研究”将剩余污泥臭氧化与A/A/O工艺系统耦合,考察耦合作用下污泥的减量效果,结果显示,臭氧耦合A/A/O系统污泥减量效果显著。上述方法对剩余污泥均实现了有效的破解,污泥得到明显的减量,甚至还实现了污泥的资源化利用。然而这些方法破解成本较高、破解时间相对长、有些方法还会严重破坏污泥中的有效成分或对环境造成再次污染,同时破解成效也存在很大提升空间。
粉煤灰作为燃煤电厂的固体排放物,具有量大、污染严重、处理难等特点。调查显示粉煤灰中含有CaO、SiO2、Fe2O3、Al2O3等多种化合物,若能对粉煤灰进行恰当的改性,使其中含有的有益成分得到有效开发利用,不仅可实现粉煤灰的资源化利用,还能解决粉煤灰的处理处置及环境污染问题。
发明内容
为了解决现有技术中存在的剩余污泥处理时间长、处理成本高、破解效果差、以及存在二次污染等缺陷问题,本发明提供一种剩余污泥破解剂及其制备方法及应用,具有成本低、有用成分破坏小、破解率高、绿色环保、易操作等优点。
为实现上述目的,本发明提供如下技术方案:一种剩余污泥破解剂制备方法,具体包括以下步骤:
S1、将粉煤灰与氯化镁混合后加入水中得到第一前驱体,调节第一前驱体的pH为碱性,对第一前驱体进行电子束辐照,辐照后静置,静置后对第一前驱体进行加热处理,加热结束后冷却、过滤、烘干,得到固体A;
S2、将NaNO3和步骤S1中得到的固体A混合后加入水中得到第二前驱体,再在第二前驱体中加入Fe3O4、Na2CO3和NaOH,得到第三前驱体,之后对第三前驱体进行电子束辐照,辐照结束后对第三前驱体进行搅拌,搅拌结束后将第三前驱体烘干、粉碎、过筛,得到改性粉煤灰破解剂。
进一步的,所述步骤S1中,所述粉煤灰和氯化镁的质量比为(5~9):1,所述粉煤灰和氯化镁的混合物与水的质量比为1:(4~8),所述水为去离子水。
进一步的,所述第一前驱体在不断搅拌的情况下采用氨水溶液调节溶液pH,所述溶液pH调节在10.5~12之间。
进一步的,所述步骤S1中,所述第一前驱体的辐照剂量为11kGy~15kGy,辐照时间0.5min~3min,辐照后静置2h~5h,然后将辐照后的第一前驱体在93℃~98℃条件下加热7h~9.5h。
进一步的,所述步骤S2中,所述固体A与NaNO3的质量比为1:(1~3),所述固体A与NaNO3混合后加入58℃~63℃的去离子水中,其固液质量比1:(6~10)。
进一步的,所述Fe3O4加入量为固体A质量的3%~9%,所述Fe3O4加入后快速搅拌10s~14s;所述Na2CO3加入量为所述固体A质量的5%~10%;所述NaOH的加入量为固体A质量的6%~11%。
进一步的,所述步骤S2中,所述第三前驱体的辐照计量为0.5kGy~1.1kGy,辐照时间30s~55s;所述搅拌在90℃~98℃条件下,搅拌时间为6h~8h。
本发明还提供一种剩余污泥破解剂制备方法制得的改性粉煤灰破解剂。
本发明还提供一种改性粉煤灰破解剂的应用,将剩余污泥与改性粉煤灰破解剂充分混合后置于反应器中,在持续搅拌条件下进行光照,光照后静置,过滤,分离改性粉煤灰材料,对固液相进行分离、检测分析。
进一步的,所述改性粉煤灰破解剂的质量占所述剩余污泥质量的1%~5%,所述反应器为透光反应器,所述光照为自然光照,所述光照时间为0.5h~2.5h;所述改性粉煤灰破解剂通过磁分离技术分离。
与现有技术相比,本发明至少具有以下有益效果:
本发明提供的一种剩余污泥破解剂的制备方法,通过对固废粉煤灰进行有效的改性处理,使粉煤灰自身有用成分如硅铝等成分被激活,通过镁与粉煤灰中铝活性基团等形成镁铝片层结构,负载上新的功能基团,使粉煤灰在光照下能够产生大量羟基自由基等其他活性自由基,这些自由基可快速击穿污泥微生物细胞壁,使剩余污泥得到快速破解,大大缩短了污泥的处理时间,改善了处理效率;相对于传统方法,本发明方法中自由基击穿细胞壁后,自由基数目减少,效能降低,因此不会对细胞内的成分造成进一步的破坏;本方法操作简便、安全可靠、成本低、效率高、绿色环保,易于推广。
本发明粉煤灰得到了充分利用,有效的解决了粉煤灰的处理处置及环境污染等问题;本发明采用氯化镁与粉煤灰在该条件下可形成层状结构,并且热稳定性良好,并且氯化镁便宜易得进一步降低破解剂的成本;采用Na2CO3和NaOH使粉煤灰在碱性条件下提供交换反应的前驱体CO3,改变粉煤灰的结构;本发明的粉煤灰改性时加入Fe3O4,使改性粉煤灰破解剂具有磁性,因此在使用后的改性粉煤灰破解剂可通过简单的磁分离技术分离提纯并实现重复利用。
本发明方法效果显著,经济性高,可实现粉煤灰的有效处置与资源化利用、以及剩余污泥的减量化,破解后的污泥有用成分如蛋白质等,可开发其他下游产品,还可进一步增加处理过程的附加值,降低成本。
本发明改性粉煤灰和剩余污泥充分混合,在光照下,达到粉煤灰活性成分的快速激活,进而实现剩余污泥的破解,破解的粉煤灰材料因其具有磁性,可通过简单的磁分离技术实现分离并充分利用。本发明具有新颖、独特、绿色环保、处理效率高、经济性高、安全可靠等特点。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
实施例1
1)取一定量粉煤灰除去表面浮杂后,将粉煤灰与氯化镁按照5:1的质量比混合,然后将混合物加入去离子水中(固液质量比1:4),在不断搅拌的条件下注入氨水溶液直至溶液pH为10.5,充分搅拌后进行电子束辐照处理,辐照剂量11kGy,辐照时间0.5min,辐照后静置2h,然后于93℃加热7h,加热完成将冷却至室温,过滤,烘干,得固体A;
2)将步骤(1)所得固体A与NaNO3按照1:1质量比混合后加入58℃的去离子水中(固液质量比1:6),充分搅拌后向水溶液中加入Fe3O4(加入量为固体A质量的3%),并快速搅拌10s。随后向溶液中加入Na2CO3(加入量为固体A质量的5%)和NaOH(加入量为固体A质量的6%),并在0.5kGy的辐照剂量下辐照30s。在90℃搅拌6h,然后将混合烘干,碾碎并过筛,得改性粉煤灰破解剂;
3)剩余污泥破解程序:将剩余污泥置于透光反应器中,并在剩余污泥加入质量比为1%的改性粉煤灰破解剂,充分混合后置于自然光照下,在持续搅拌下光照0.5h,照射完成后静置待固液分层,过滤,通过磁分离技术分离改性粉煤灰破解剂,然后对固液相进行分离、检测分析。
破解效果:
Figure BDA0002791173070000051
式中:SCOD0与SCODafter—分别为破解前、后剩余污泥中的溶解性COD量;TCOD0—剩余污泥中总COD的量。
剩余污泥破解效果见表1-1。
表1-1剩余污泥破解效果
Figure BDA0002791173070000052
由表1-1数据可知,改性粉煤灰破解剂首次应用剩余污泥的破解效率显著,同时,改性粉煤灰破解剂重复利用五次,剩余污泥的破解效率仍然很高。
感官评价显示破解后的剩余污泥无明显异味;结合破解前的对照样,通过凝胶色谱分析,污泥蛋白质未发生较大破坏。
实施例2
1)取一定量粉煤灰除去表面浮杂后,将粉煤灰与氯化镁按照6:1的质量比混合,然后将混合物加入去离子水中(固液质量比1:5),在不断搅拌的条件下注入氨水溶液直至溶液pH为10.7,充分搅拌后进行电子束辐照处理,辐照剂量12kGy,辐照时间1min,辐照后静置2.5h,然后于94℃加热7.5h,加热完成将冷却至室温,过滤,烘干,得固体A;
2)将步骤(1)所得固体A与NaNO3按照1:1.5质量比混合后加入59℃的去离子水中(固液质量比1:7),充分搅拌后向水溶液中加入Fe3O4(加入量为固体A质量的4%),并快速搅拌11s。随后向溶液中加入Na2CO3(加入量为固体A质量的6%)和NaOH(加入量为固体A质量的7%),并在0.6kGy的辐照剂量下辐照35s。在92℃搅拌6.5h,然后将混合烘干,碾碎并过筛,得改性粉煤灰破解剂;
3)剩余污泥破解程序:将剩余污泥置于透光反应器中,并在剩余污泥加入质量比为2%的改性粉煤灰破解剂,充分混合后置于自然光照下,在持续搅拌下光照1h,照射完成后静置待固液分层,过滤,通过磁分离技术分离改性粉煤灰破解剂,然后对固液相进行分离、检测分析。
破解效果:
Figure BDA0002791173070000061
式中:SCOD0与SCODafter—分别为破解前、后剩余污泥中的溶解性COD量;TCOD0—剩余污泥中总COD的量。
剩余污泥破解效果见表2-1。
表2-1剩余污泥破解效果
Figure BDA0002791173070000071
由表2-1数据可知,改性粉煤灰破解剂首次应用剩余污泥的破解效率显著,改性粉煤灰破解剂材料重复利用五次,剩余污泥的破解效率仍然很高。
感官评价显示破解后的剩余污泥无明显异味;结合破解前的对照样,通过凝胶色谱分析,污泥蛋白质未发生较大破坏。
实施例3
1)取一定量粉煤灰除去表面浮杂后,将粉煤灰与氯化镁按照7:1的质量比混合,然后将混合物加入去离子水中(固液质量比1:6),在不断搅拌的条件下注入氨水溶液直至溶液pH为11,充分搅拌后进行电子束辐照处理,辐照剂量13kGy,辐照时间1.5min,辐照后静置3h,然后于95℃加热8h,加热完成将冷却至室温,过滤,烘干,得固体A;
2)将步骤(1)所得固体A与NaNO3按照1:2质量比混合后加入60℃的去离子水中(固液质量比1:8),充分搅拌后向水溶液中加入Fe3O4(加入量为固体A质量的5%),并快速搅拌12s。随后向溶液中加入Na2CO3(加入量为固体A质量的7%)和NaOH(加入量为固体A质量的8%),并在0.7kGy的辐照剂量下辐照40s。在94℃搅拌7h,然后将混合烘干,碾碎并过筛,得改性粉煤灰破解剂;
3)剩余污泥破解程序:将剩余污泥置于透光反应器中,并在剩余污泥加入质量比为3%的改性粉煤灰破解剂,充分混合后置于自然光照下,在持续搅拌下光照1.5h,照射完成后静置待固液分层,过滤,通过磁分离技术分离改性粉煤灰破解剂,然后对固液相进行分离、检测分析。
破解效果:
Figure BDA0002791173070000081
式中:SCOD0与SCODafter—分别为破解前、后剩余污泥中的溶解性COD量;TCOD0—剩余污泥中总COD的量。
剩余污泥破解效果见表3-1。
表3-1剩余污泥破解效果
Figure BDA0002791173070000082
由表3-1数据可知,改性粉煤灰破解剂首次应用剩余污泥的破解效率显著,改性粉煤灰破解剂重复利用五次,剩余污泥的破解效率仍然很高。
感官评价显示破解后的剩余污泥无明显异味;结合破解前的对照样,通过凝胶色谱分析,污泥蛋白质未发生较大破坏。
实施例4
取一定量粉煤灰除去表面浮杂后,将粉煤灰与氯化镁按照8:1的质量比混合,然后将混合物加入去离子水中(固液质量比1:7),在不断搅拌的条件下注入氨水溶液直至溶液pH为11.5,充分搅拌后进行电子束辐照处理,辐照剂量14kGy,辐照时间2.5min,辐照后静置4h,然后于97℃加热9h,加热完成将冷却至室温,过滤,烘干,得固体A;将固体A与NaNO3按照1:2.5质量比混合后加入62℃的去离子水中(固液质量比1:9),充分搅拌后向水溶液中加入Fe3O4(加入量为固体A质量的8%),并快速搅拌13s。随后向溶液中加入Na2CO3(加入量为固体A质量的9%)和NaOH(加入量为固体A质量的10%),并在1kGy的辐照剂量下辐照50s。在96℃搅拌7.5h,然后将混合烘干,碾碎并过筛,得改性粉煤灰破解剂;将剩余污泥置于透光反应器中,并在剩余污泥加入质量比为4%的改性粉煤灰破解剂,充分混合后置于自然光照下,在持续搅拌下光照2h,照射完成后静置待固液分层,过滤,通过磁分离技术分离改性粉煤灰破解剂,然后对固液相进行分离、检测分析。
剩余污泥破解效果见表4-1。
表4-1剩余污泥破解效果
Figure BDA0002791173070000091
由表4-1数据可知,改性粉煤灰破解剂首次应用剩余污泥的破解效率显著,改性粉煤灰破解剂重复利用五次,剩余污泥的破解效率仍然很高。
感官评价显示破解后的剩余污泥无明显异味;结合破解前的对照样,通过凝胶色谱分析,污泥蛋白质未发生较大破坏。
实施例5
取一定量粉煤灰除去表面浮杂后,将粉煤灰与氯化镁按照9:1的质量比混合,然后将混合物加入去离子水中(固液质量比1:8),在不断搅拌的条件下注入氨水溶液直至溶液pH为12,充分搅拌后进行电子束辐照处理,辐照剂量15kGy,辐照时间3min,辐照后静置5h,然后于98℃加热9.5h,加热完成将冷却至室温,过滤,烘干,得固体A;将所得固体A与NaNO3按照1:3质量比混合后加入63℃的去离子水中(固液质量比1:10),充分搅拌后向水溶液中加入Fe3O4(加入量为固体A质量的9%),并快速搅拌14s。随后向溶液中加入Na2CO3(加入量为固体A质量的10%)和NaOH(加入量为固体A质量的11%),并在1.1kGy的辐照剂量下辐照55s。在98℃搅拌8h,然后将混合烘干,碾碎并过筛,得改性粉煤灰破解剂;将剩余污泥置于透光反应器中,并在剩余污泥加入质量比为5%的改性粉煤灰破解剂,充分混合后置于自然光照下,在持续搅拌下光照2.5h,照射完成后静置待固液分层,过滤,通过磁分离技术分离改性粉煤灰破解剂,然后对固液相进行分离、检测分析。
剩余污泥破解效果见表5-1。
表5-1剩余污泥破解效果
Figure BDA0002791173070000101
由表5-1数据可知,粉煤灰首次应用剩余污泥的破解效率显著,改性粉煤灰破解剂重复利用五次,剩余污泥的破解效率仍然很高。
感官评价显示破解后的剩余污泥无明显异味;结合破解前的对照样,通过凝胶色谱分析,污泥蛋白质未发生较大破坏。
上述方法应用改性粉煤灰破解剂破解剩余污泥,效果显著、构思巧妙,易操作、效率高、成本低,破解后的剩余污泥无异味,污泥有效成分未遭较大破坏,可开发附加值较高的下游产品,进一步增加了污泥处理过程的经济性;同时,本方法破解污泥时借助自然光照即可,不需外加能源,大大降低了处理成本,破解后的污泥脱水性能显著,污泥得到了明显的减量。本方法既可实现粉煤灰的资源化利用,又可实现剩余污泥的减量化与资源化,具有安全可靠、绿色环保、易操作、效率高、成本低等特点。
以上述及内容仅为本发明构思下的基本说明,而依据本发明的技术方案所作的任何等效变换,均应属于本发明的保护范围。

Claims (10)

1.一种剩余污泥破解剂制备方法,其特征在于,具体包括以下步骤:
S1、将粉煤灰与氯化镁混合后加入水中得到第一前驱体,调节第一前驱体pH为碱性,对第一前驱体进行电子束辐照,辐照后静置,静置后对第一前驱体进行加热处理,加热结束后冷却、过滤、烘干,得到固体A;
S2、将NaNO3和步骤S1中得到的固体A混合后加入水中得到第二前驱体,在第二前驱体中加入Fe3O4、Na2CO3和NaOH,得到第三前驱体,对第三前驱体进行电子束辐照,辐照结束后对第三前驱体进行搅拌,搅拌结束后将第三前驱体烘干、粉碎、过筛,得到改性粉煤灰破解剂。
2.根据权利要求1所述的一种剩余污泥破解剂制备方法,其特征在于,所述步骤S1中,所述粉煤灰和氯化镁的质量比为(5~9):1,所述粉煤灰和氯化镁的混合物与水的质量比为1:(4~8),所述水为去离子水。
3.根据权利要求1所述的一种剩余污泥破解剂制备方法,其特征在于,所述第一前驱体在不断搅拌的情况下采用氨水溶液调节溶液pH,所述溶液pH调节在10.5~12之间。
4.根据权利要求1所述的一种剩余污泥破解剂制备方法,其特征在于,所述步骤S1中,所述第一前驱体的辐照剂量为11kGy~15kGy,辐照时间0.5min~3min,辐照后静置2h~5h,然后将辐照后的第一前驱体在93℃~98℃条件下加热7h~9.5h。
5.根据权利要求1所述的一种剩余污泥破解剂制备方法,其特征在于,所述步骤S2中,所述固体A与NaNO3的质量比为1:(1~3),所述固体A与NaNO3混合后加入58℃~63℃的去离子水中,其固液质量比1:(6~10)。
6.根据权利要求1所述的一种剩余污泥破解剂制备方法,其特征在于,所述Fe3O4加入量为固体A质量的3%~9%,所述Fe3O4加入后搅拌10s~14s;所述Na2CO3加入量为所述固体A质量的5%~10%;所述NaOH的加入量为固体A质量的6%~11%。
7.根据权利要求1所述的一种剩余污泥破解剂制备方法,其特征在于,所述步骤S2中,所述第三前驱体的辐照计量为0.5kGy~1.1kGy,辐照时间30s~55s;所述搅拌在90℃~98℃条件下,搅拌时间为6h~8h。
8.根据权利要求1至7中任一项所述的一种剩余污泥破解剂制备方法制得的改性粉煤灰破解剂。
9.根据权利要求8所述的一种改性粉煤灰破解剂的应用,其特征在于,将剩余污泥与所述改性粉煤灰破解剂充分混合后置于反应器中,在持续搅拌条件下进行光照,光照后静置,过滤,分离改性粉煤灰材料,对固液相进行分离、检测分析。
10.根据权利要求9所述的一种改性粉煤灰破解剂的应用,其特征在于,所述改性粉煤灰破解剂的质量占所述剩余污泥质量的1%~5%,所述反应器为透光反应器,所述光照为自然光照,所述光照时间为0.5h~2.5h;所述改性粉煤灰破解剂通过磁分离技术分离。
CN202011315331.6A 2020-11-20 2020-11-20 一种剩余污泥破解剂及其制备方法及应用 Active CN112592011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011315331.6A CN112592011B (zh) 2020-11-20 2020-11-20 一种剩余污泥破解剂及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011315331.6A CN112592011B (zh) 2020-11-20 2020-11-20 一种剩余污泥破解剂及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN112592011A CN112592011A (zh) 2021-04-02
CN112592011B true CN112592011B (zh) 2022-11-29

Family

ID=75183521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011315331.6A Active CN112592011B (zh) 2020-11-20 2020-11-20 一种剩余污泥破解剂及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN112592011B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116947280B (zh) * 2023-09-21 2024-01-19 山东恒泰利华环境科技有限公司 一种污泥处理方法、隔墙板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417714A2 (en) * 1989-09-11 1991-03-20 Nkk Corporation Method for removal of dioxin generated in waste combustion
CN105217905A (zh) * 2015-09-30 2016-01-06 王立鹏 γ射线联合改性粉煤灰破解剩余污泥的方法
CN105399291A (zh) * 2015-12-11 2016-03-16 清华大学 一种剩余污泥的破解方法及在发酵产氢中的应用
CN105461183A (zh) * 2015-12-31 2016-04-06 浙江清华长三角研究院 一种aox污染的剩余活性污泥的处理方法
CN106000288A (zh) * 2016-06-17 2016-10-12 广东省资源综合利用研究所 一种稀土负载改性粉煤灰的制备方法
CN110776925A (zh) * 2019-11-20 2020-02-11 榆林学院 一种利用剩余污泥制备的保水剂及其制备方法和使用方法
CN110773118A (zh) * 2019-10-23 2020-02-11 华北电力大学(保定) 针对氯离子的改性粉煤灰-水滑石吸附剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865108B2 (en) * 2012-06-21 2014-10-21 Hashem M. A. ALHEBSHI Process for making multi-walled carbon nanotubes and multi-walled carbon nanotubes formed therefrom

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417714A2 (en) * 1989-09-11 1991-03-20 Nkk Corporation Method for removal of dioxin generated in waste combustion
CN105217905A (zh) * 2015-09-30 2016-01-06 王立鹏 γ射线联合改性粉煤灰破解剩余污泥的方法
CN105399291A (zh) * 2015-12-11 2016-03-16 清华大学 一种剩余污泥的破解方法及在发酵产氢中的应用
CN105461183A (zh) * 2015-12-31 2016-04-06 浙江清华长三角研究院 一种aox污染的剩余活性污泥的处理方法
CN106000288A (zh) * 2016-06-17 2016-10-12 广东省资源综合利用研究所 一种稀土负载改性粉煤灰的制备方法
CN110773118A (zh) * 2019-10-23 2020-02-11 华北电力大学(保定) 针对氯离子的改性粉煤灰-水滑石吸附剂的制备方法
CN110776925A (zh) * 2019-11-20 2020-02-11 榆林学院 一种利用剩余污泥制备的保水剂及其制备方法和使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
粉煤灰改性及钝化污泥实验研究;谢礼国等;《土木建筑与环境工程》;20100215(第01期);全文 *

Also Published As

Publication number Publication date
CN112592011A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
US20220126267A1 (en) Co-pyrolyzed sludge biochar modified by lanthanum carbonate, preparation method and use thereof
Wang et al. Possible solutions for sludge dewatering in China
CN111437825A (zh) 一种铁锰生物炭催化剂及调理污泥脱水的应用
CN108083609A (zh) 一种通过药剂复配调理城市污泥的方法
CN102827661A (zh) 一种城市污水处理厂污泥燃料化处理工艺方法
CN102091593A (zh) 功能化粉煤灰沸石复合颗粒的制备方法
CN112592011B (zh) 一种剩余污泥破解剂及其制备方法及应用
CN104355674A (zh) 利用城市污泥烧制多孔陶瓷材料的方法
CN101596444B (zh) 工业废水脱色处理剂及其制备方法
CN102874880B (zh) 纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用
CN104437389A (zh) 一种处理含铅废水吸附剂的制备方法及应用
CN102580666A (zh) 用于净化重金属污水的改性浮石及其制备方法和用途
CN107935355A (zh) 一种基于铁循环促进市政污泥深度脱水的方法
Yuan et al. Progress of improving waste activated sludge dewaterability: Influence factors, conditioning technologies and implications and perspectives
Zhang et al. Enhancing the deep dewatering performance of municipal sludge pretreated by microwave combined with biomass ash
CN106554140B (zh) 一种剩余活性污泥破解减量方法
CN104399315B (zh) 一种同时对蓝藻进行脱毒和脱水的方法
CN109264942A (zh) 污泥低增比固体生物环保调理剂
CN111925098B (zh) 一种污泥破壁处理剂、方法及深度脱水方法
CN105540703A (zh) 一种基于天然矿石的复合高效污水处理剂及其制备方法
CN109336361A (zh) 一种污泥调理药剂及其应用
CN101428983B (zh) 对粉煤灰改性处理的方法
CN110563298A (zh) 一种市政污泥脱水的处理方法
CN115722227A (zh) 一种铁渣掺杂酿酒污泥生物炭材料及其制备方法和应用
CN115403229A (zh) 一种养殖废水的处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221018

Address after: 222006 No. 59 Cangwu Road, Haizhou District, Lianyungang City, Jiangsu Province

Applicant after: Jiangsu Ocean University

Address before: Building 4, West family District, Yulin College, Yulin City, Shaanxi Province

Applicant before: Wang Lipeng

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant