CN102874880B - 纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用 - Google Patents

纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用 Download PDF

Info

Publication number
CN102874880B
CN102874880B CN201210379987.3A CN201210379987A CN102874880B CN 102874880 B CN102874880 B CN 102874880B CN 201210379987 A CN201210379987 A CN 201210379987A CN 102874880 B CN102874880 B CN 102874880B
Authority
CN
China
Prior art keywords
ferrous
nanometer
aluminium houghite
solution
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210379987.3A
Other languages
English (en)
Other versions
CN102874880A (zh
Inventor
杨麒
钟宇
李小明
罗琨
陈洪波
伍秀琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201210379987.3A priority Critical patent/CN102874880B/zh
Publication of CN102874880A publication Critical patent/CN102874880A/zh
Application granted granted Critical
Publication of CN102874880B publication Critical patent/CN102874880B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用,该纳米亚铁铝类水滑石的化学式为:[Fe2+ 1-xAl3+ x(OH)2]x+(SO4 2-)x/2·mH2O,其中x值为0.2~0.33,m的值为1.11~1.67。其制备方法包括:将氢氧化钠溶液滴加到硫酸亚铁和硫酸铝混合盐溶液中,控制混合溶液的搅拌速率和pH值,得到淡蓝色悬浮溶液;将悬浮溶液密封后进行超声陈化,快速抽滤分离悬浮溶液并洗涤、真空干燥后磨碎到100目~200目即可。本发明的纳米亚铁铝类水滑石具有陈化时间短、结晶度好、颗粒粒径小、比表面积大、同时兼具吸附和还原性能等优点,其在处理浓度为200μg/L的溴酸盐水体中,去除率达100%,表现出了很高的反应活性,具有较好的实用价值。

Description

纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用
技术领域
本发明属于水滑石材料领域,具体涉及一种纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用。
背景技术
溴酸盐是由于给水中存在溴离子,并采用臭氧消毒或加氯消毒后产生的有毒致癌副产物。溴酸盐是一种强氧化剂,在水中性质非常稳定,一经形成很难去除。在动物实验中发现溴酸盐使动物细胞出现肿瘤,还可以导致细胞DNA的损伤。国外研究表明,一个体重70kg的成年人,每天饮水2L,当溴酸盐浓度为5,0.5和0.05μg/L时,其终身致癌率为10-4,10-5和10-6。溴酸盐已经被国际癌症研究机构定为2B级(较高致癌可能性)潜在致癌物。2004年世界卫生组织最新的《饮用水水质准则》中将溴酸盐限值从25μg/L修订为10μg/L。2007年7月才开始在全国范围内实施的新《生活饮用水卫生标准》中,规定饮用水中溴酸盐的最大浓度限值为10μg/L。
鉴于水体中因臭氧深度处理而产生的溴酸盐给人类健康带来的危害,许多研究者开发了一系列相应的去除溴酸盐的方法。常见的技术方法有活性炭吸附法、纳米零价铁还原法和生物降解法。由于活性炭的吸附能力有限,且吸附效能会随着处理时间的延长而不断降低;纳米零价铁对溴酸盐的去除效率很高,但其在空气中极容易氧化;生物降解法分解溴酸盐后,还需要进行较强的后处理,以去除水中生物和产生的代谢产物。因此,上述方法在实际水体中的应用都受到一定限制。水滑石及类水滑石材料因具有特殊的层状结构及物理化学性质,在吸附、催化领域中占有重要位置,可以应用到水处理技术等许多领域,逐渐成为国内外研究的热点之一。目前,用镁铝二元类水滑石作为吸附剂的报道较多,也有利用三价铁离子制备类水滑石作为吸附剂的研究,但利用二价铁离子及超声共沉淀法制备的兼具吸附和还原性能的纳米亚铁铝类水滑石对溴酸盐的去除并未见报道。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种陈化时间短、结晶度好、颗粒粒径小、比表面积大、同时兼具吸附和还原性能的纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用;还提供一种操作简便、适用范围广、反应活性高、环境友好的纳米亚铁铝类水滑石在污染物去除中的应用。
为实现上述目的,本发明的技术方案是:
技术方案之一:
一种纳米亚铁铝类水滑石,由主体层和客体层而成,所述主体层由二价铁和三价铝形成的氢氧化物构成,所述客体层由硫酸根、氢氧根和水分子组成;该纳米亚铁铝类水滑石的化学式为:[Fe2+1-xAl3+ x(OH)2]x+(SO4 2-)x/2·mH2O,其中x值为0.2~0.33,m的值为1.11~1.67。其比表面积为71.7061m2/g,粒径为100nm~500nm。
技术方案之二:
所述纳米亚铁铝类水滑石的超声共沉淀制备方法,包括以下步骤:
(1)在纯氮保护下,将FeSO4·7H2O和Al2(SO4)3·18H2O以(1~4):1的摩尔比溶解在200mL~500mL去氧超纯水中,得到混合盐溶液;将1.0mol/L氢氧化钠溶液以20mL/min~56mL/min的速率滴加到上述混合盐溶液中,同时控制搅拌速率为1000rpm~1800rpm,得到pH值为8.5~9.5的淡蓝色悬浮溶液;
(2)将步骤(1)得到的悬浮溶液用橡胶塞密封,进行超声陈化,然后冷却至20℃~25℃(室温)后快速抽滤并经超纯水洗涤、真空干燥,磨碎到100目~200目后得到纳米亚铁铝类水滑石;所述超声陈化的温度为55℃~80℃,陈化时间为15min~120min。
步骤(1)优选为将FeSO4·7H2O和Al2(SO4)3·18H2O以2:1的摩尔比溶解在200mL去氧超纯水中,得到混合盐溶液;将1.0mol/L氢氧化钠溶液以25mL/min的速率滴加到上述混合盐溶液中,同时控制搅拌速率为1500rpm,得到pH值为9.0的淡蓝色悬浮溶液。
步骤(2)所述超声陈化的温度优选为65℃,陈化时间优选为30min。
步骤(2)所述真空干燥温度优选为90℃,干燥时间优选为24h。
技术方案之三:
所述纳米亚铁铝类水滑石在具有强氧化性酸污染物水体处理中的应用。
所述强氧化性酸包括次氯酸盐、高氯酸盐或溴酸盐。
具体操作为:在水体中加入纳米亚铁铝类水滑石,控制水体pH为7.0~11.0,并在20℃~30℃的条件下进行水浴恒温振荡反应,然后将纳米亚铁铝类水滑石分离,完成对水体中强氧化性酸的去除。
所述水体中溴酸盐浓度优选为0.2mg/L~25mg/L;所述恒温振荡反应条件优选为:恒温温度25℃,振荡频率为180rpm~190rpm,反应时间为0.5h~12h。
与现有技术相比,本发明的优点在于:
1、本发明的纳米亚铁铝类水滑石的超声共沉淀制备方法,比传统的共沉淀法陈化时间短,且制备的材料颗粒粒径小、结晶度高、比表面积大。
2、纳米亚铁铝类水滑石对初始浓度为200μg/L的溴酸盐的去除率可达100%(水体中剩余溴酸盐浓度小于0.10μg/L)。相比于活性炭、沸石、蒙脱石、镁铝水滑石等传统的吸附剂,纳米亚铁铝类水滑石表现出更好的反应活性,能快速的去除水体中的溴酸盐。
3、本发明的纳米亚铁铝类水滑石兼具吸附性能和还原性能,在处理含溴酸盐水体中起主导作用的是还原性能。
4、本发明的纳米亚铁铝类水滑石用于处理水体中的溴酸盐,还可以推广应用到含强氧化性酸的污染水体中,处理工艺简单,操作方便,为含强氧化性酸的水体污染治理提供了新的途径。
附图说明
图1为实施例1制得的纳米亚铁铝类水滑石的扫描电镜示意图。
图2为实施例1制得的纳米亚铁铝类水滑石的X射线原子衍射示意图。
图3为实施例1制得的纳米亚铁铝类水滑石的红外光谱示意图。
图4为实施例1制得的纳米亚铁铝类水滑石去除溴酸盐的效果示意图。
图5为实施例1制得的纳米亚铁铝类水滑石去除溴酸盐后的X射线原子衍射示意图。
图6为实施例1制得的纳米亚铁铝类水滑石去除溴酸盐后的红外光谱示意图。
具体实施方式
以下结合说明书附图和具体实施例对本发明作进一步描述。
实施例1
一种纳米亚铁铝类水滑石的制备方法,包括以下步骤:
(1)在纯氮保护下,将FeSO4·7H2O和Al2(SO4)3·18H2O以2:1的摩尔比溶解在200mL去氧超纯水中,得到混合盐溶液;将1.0mol/L氢氧化钠溶液以25mL/min的速率滴加到混合盐溶液中,滴加氢氧化钠溶液的导管插到混合溶液液面下;控制搅拌速率为1500rpm,得到pH值为9.0的淡蓝色悬浮溶液;
(2)将步骤(1)得到的悬浮溶液用橡胶塞密封,在65℃条件下进行超声陈化,超声陈化时间30min,然后冷却至室温(25℃)后快速抽滤并经超纯水洗涤、90℃下真空干燥24h,磨碎到100目~200目后得到纳米亚铁铝类水滑石,利用PS-6真空型电感耦合等离子体原子发射光谱仪和综合热分析仪,分别测定纳米亚铁铝类水滑石中铁、铝、硫元素和水分子含量,推算其化学式为:Fe0.671Al0.329(OH)2(SO4)0.164·1.11 H2O。
将上述制得的纳米亚铁铝类水滑石置于10000倍的扫描电子显微镜下进行观察,得到如图1所示的扫描电子显微镜图。从图1可看出,纳米亚铁铝类水滑石分布均匀,粒径为100nm~500nm左右。将上述制得的纳米亚铁铝类水滑石进行N2吸附-解析实验,在NOVA-1000全自动比表面积分析仪上进行,用BET方法计算纳米亚铁铝类水滑石的比表面积,得出纳米亚铁铝类水滑石的比表面积为71.7061m2/g;将上述制得的纳米亚铁铝类水滑石进行X射线原子衍射分析,其分析结果如图2所示。可以看出样品的低角度(003)、(006)、(009)晶面特征峰强度均高,峰形尖锐且窄,基线较平稳,结晶度较高,高角度(110)和(113)晶面衍射峰较弱,具有层状结构水滑石(LDH)的典型特征衍射峰。根据晶面参数,由Scherrer公式计算出的粒子尺寸为34.2nm,比扫描电子显微镜下观测到的粒径要小。对纳米亚铁铝类水滑石进行红外光谱分析,其分析结果如图3所示,可知纳米亚铁铝类水滑石中含有大量的羟基官能团,在3500cm-1~3200cm-1处有宽的吸收峰,表现为层板上氢氧根的伸缩振动,层板表面吸附水与柱撑硫酸根阴离子间的氢键作用使层板上氢氧根的伸缩振动比自由态的氢氧根低;在1109cm-1存在明显的吸收峰,表现为硫酸根的伸缩振动。从而使纳米亚铁铝类水滑石通过插层中的氢氧根、硫酸根与外界阴离子进行离子交换实现部分吸附成为可能。
实施例2:
本发明的纳米亚铁铝类水滑石用于处理水体中的溴酸盐,包括以下步骤:
将实施例1制得的纳米亚铁铝类水滑石分别投加到5组200mL溴酸盐溶液中,溴酸盐初始浓度均为200μg/L,纳米亚铁铝类水滑石的投加量为0.2g,分别调节每组混合溶液的pH为2.0、4.0、7.0、9.0和11.0,在25℃条件下进行水浴恒温振荡反应,12h后用滤纸将该材料从水体中分离出来,完成对水体中溴酸盐的去除。
上述的反应后,用离子色谱仪测定水体中剩余溴酸盐的浓度,计算纳米亚铁铝类水滑石对溴酸盐的去除率,结果如表1所示。
表1:不同pH值条件下纳米亚铁铝类水滑石对溴酸盐的去除率
  初始pH 溴酸盐平衡浓度(μg/L)  去除率(%)
  2.0 93.44   53.3
  4.0 23.35   88.3
  7.0 0.00   100
  9.0 0.00   100
  11.0 0.00   100
由表1可知,在酸性条件下,pH为2.0~4.0时,纳米亚铁铝类水滑石对溴酸盐的去除率较小;随着pH值的增大,当pH为7.0~11.0时,纳米亚铁铝类水滑石可将溴酸盐完全去除,即处理后的水体中检测不到溴酸盐(离子色谱仪对溴酸盐的检测限为0.10μg/L)。因此,碱性条件有利于纳米亚铁铝类水滑石对溴酸盐的去除。
实施例3:
本发明的纳米亚铁铝类水滑石用于处理水体中的溴酸盐,包括以下步骤:
将实施例1制得的纳米亚铁铝类水滑石分别投加到四种不同初始浓度的200mL含溴酸盐水体中,纳米亚铁铝类水滑石的投加量为0.2g,水体的初始pH值7.0±0.2,在25℃条件下进行水浴恒温振荡反应,12h后用滤纸将该材料从水体中分离出来,完成对水体中溴酸盐的去除。
上述的反应后,用离子色谱仪测定水体中剩余溴酸盐的浓度,计算纳米亚铁铝类水滑石对溴酸盐的去除率,结果如表2所示。
表2:不同初始浓度条件下纳米亚铁铝类水滑石对溴酸盐的去除率
  初始浓度(μg/L)  溴酸盐平衡浓度(μg/L)   去除率(%)
  202.01  0.00   100
  397.23  2.26   99.4
  604.12  2.88   99.5
  24980.27  594.41   97.6
由表2可知,在溴酸盐初始浓度为202.01μg/L的条件下,纳米亚铁铝类水滑石可将溴酸盐完全去除(离子色谱仪对溴酸盐的检测限为0.10μg/L),浓度逐渐增大到604.12μg/L时,平衡浓度为2.88μg/L,去除率为99.5%。当溴酸盐的初始浓度为24980.27μg/L时,虽然去除率仍有97.6%,但平衡浓度大于国家饮用水标准中溴酸盐的最大浓度限值10μg/L,此时可重复去除多次,最终可将剩余溴酸盐浓度降低到10μg/L以下;但实际水体中溴酸盐浓度一般每升为几十微克至几百微克,此时配制的高浓度溴酸盐是为进一步检验纳米亚铁铝类水滑石对溴酸盐的去除性能。
在上述初始浓度为24980.27μg/L(25mg/L)的反应过程中,不同时间间隔取样并用离子色谱仪测定水体中溴酸盐、溴离子、硫酸根的浓度,结果如图4所示。由图可知,在0~4h,溴酸盐的浓度逐渐下降,同时溴离子的浓度逐渐上升,表明体系中发生了还原反应,同时,溶液中硫酸根浓度快速上升,表明纳米亚铁铝类水滑石夹层中的硫酸根释放到溶液中。在4h后,溴酸盐浓度、溴离子浓度、硫酸根离子浓度没有多大变化,表明反应达到平衡。
将实施例1制得的纳米亚铁铝类水滑石去除溴酸盐后进行X射线衍射分析和红外光谱分析,得到图5和图6。从图5中可看出纳米亚铁铝类水滑石的层状结构被破坏,有大量的三价铁氧化物生成,同时有部分溴离子存留在类水滑石结构中。表明二价铁与溴酸盐发生了氧化还原反应,生成的溴离子有部分吸附在类水滑石结构中。从图6中可看出,在3500cm-1~3200cm-1和1109cm-1处都没有出现明显的基团吸收峰,表明纳米亚铁铝类水滑石夹层结构中的硫酸根和氢氧根释放到溶液中。
本发明的纳米亚铁铝类水滑石去除水体中的溴酸盐主要是利用了纳米亚铁铝类水滑石的吸附性和还原性,利用纳米亚铁铝类水滑石中亚铁离子的还原性能,还可以去除水体中其它强氧化性酸,如次氯酸盐、高氯酸盐等。
实施例4:
一种纳米亚铁铝类水滑石的制备方法,包括以下步骤:
(1)在纯氮保护下,将FeSO4·7H2O和Al2(SO4)3·18H2O以2:1的摩尔比溶解在200mL去氧超纯水中,得到混合盐溶液;将1.0mol/L氢氧化钠溶液以25mL/min的速率滴加到上述混合盐溶液中,同时控制搅拌速率为1500rpm,得到pH值为9.5的淡蓝色悬浮溶液;(2)将步骤(1)得到的悬浮溶液用橡胶塞密封,在65℃下进行超声陈化,陈化时间为15min,然后冷却至室温(25℃)后快速抽滤并经超纯水洗涤、90℃下真空干燥24h,磨碎到100目~200目后得到纳米亚铁铝类水滑石,利用PS-6真空型电感耦合等离子体原子发射光谱仪和综合热分析仪,分别测定纳米亚铁铝类水滑石中铁、铝、硫元素和水分子含量,推算其化学式为:Fe0.669Al0.331(OH)2(SO4)0.165·1.67H2O。
此条件下制得的纳米亚铁铝类水滑石结构与实施例1相似,将该实施例制得的纳米亚铁铝类水滑石分别投加到四种不同初始浓度的200mL含溴酸盐水体中,纳米亚铁铝类水滑石的投加量为0.2g,水体的初始pH值7.0±0.2,在25℃条件下进行水浴恒温振荡反应,12h后用滤纸将该材料从水体中分离出来,完成对水体中溴酸盐的去除。
上述的反应后,用离子色谱仪测定水体中剩余溴酸盐的浓度,计算纳米亚铁铝类水滑石对溴酸盐的去除率,结果如表3所示。
表3:不同初始浓度条件下纳米亚铁铝类水滑石对溴酸盐的去除率
  初始浓度(μg/L)  溴酸盐平衡浓度(μg/L)   去除率(%)
  202.01  0.00   100
  397.23  9.30   97.7
  604.12  17.53   97.1
  24980.27  792.64   96.8
由表3可知,与实施例3相比,超声陈化时间15min的纳米亚铁铝类水滑石对溴酸盐的去除率稍低于超声陈化时间为30min的纳米亚铁铝类水滑石,表明超声陈化时间对制备的纳米亚铁铝类水滑石去除溴酸盐性能有重要的影响。
综上所述,本发明中的纳米亚铁铝类水滑石与活性炭、沸石、蒙脱石和镁铝水滑石吸附剂相比,不仅比表面积大,去除效率高,而且陈化时间短、环境友好且很容易从溶液中分离,可广泛应用于强氧化性酸的水体处理中。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,与本发明构思无实质性差异的各种工艺方案均在本发明的保护范围内。

Claims (6)

1.一种纳米亚铁铝类水滑石的超声共沉淀制备方法,其特征是,包括以下步骤:
(1)在纯氮保护下,将FeSO4·7H2O和Al2(SO4)3·18H2O以(1~4):1的摩尔比溶解在200mL~500mL去氧超纯水中,得到混合盐溶液;将1.0mol/L氢氧化钠溶液以20mL/min~56mL/min的速率滴加到上述混合盐溶液中,同时控制搅拌速率为1000rpm~1800rpm,得到pH值为8.5~9.5的淡蓝色悬浮溶液;
(2)将步骤(1)得到的悬浮溶液用橡胶塞密封,进行超声陈化,然后冷却至20℃~25℃后快速抽滤并经超纯水洗涤、真空干燥,磨碎到100目~200目后,得到纳米亚铁铝类水滑石;所述超声陈化的温度为55℃~80℃,陈化时间为15min~120min。
2.根据权利要求1所述纳米亚铁铝类水滑石的超声共沉淀制备方法,其特征是,步骤(1)为将FeSO4·7H2O和Al2(SO4)3·18H2O以2:1的摩尔比溶解在200mL去氧超纯水中,得到混合盐溶液;将1.0mol/L氢氧化钠溶液以25mL/min的速率滴加到上述混合盐溶液中,同时控制搅拌速率为1500rpm,得到pH值为9.0的淡蓝色悬浮溶液。
3.根据权利要求1所述纳米亚铁铝类水滑石的超声共沉淀制备方法,其特征是,步骤(2)所述超声陈化的温度为65℃,陈化时间为30min。
4.根据权利要求1所述纳米亚铁铝类水滑石的超声共沉淀制备方法,其特征是,步骤(2)所述真空干燥温度90℃,干燥时间24h。
5.根据权利要求1所述纳米亚铁铝类水滑石的超声共沉淀制备方法,其特征是,所述纳米亚铁铝类水滑石,由主体层和客体层构成,所述主体层由二价铁和三价铝形成的氢氧化物构成,所述客体层由硫酸根、氢氧根和水分子组成;该纳米亚铁铝类水滑石的化学式为:[Fe2+ 1-xAl3+ x(OH)2]x+(SO4 2-)x/2·mH2O,其中x值为0.2~0.33,m的值为1.11~1.67。
6.根据权利要求1所述纳米亚铁铝类水滑石的超声共沉淀制备方法,其特征是,所述纳米亚铁铝类水滑石的比表面积为71.7061m2/g,粒径为100nm~500nm。
CN201210379987.3A 2012-10-09 2012-10-09 纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用 Expired - Fee Related CN102874880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210379987.3A CN102874880B (zh) 2012-10-09 2012-10-09 纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210379987.3A CN102874880B (zh) 2012-10-09 2012-10-09 纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用

Publications (2)

Publication Number Publication Date
CN102874880A CN102874880A (zh) 2013-01-16
CN102874880B true CN102874880B (zh) 2014-04-09

Family

ID=47476445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210379987.3A Expired - Fee Related CN102874880B (zh) 2012-10-09 2012-10-09 纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用

Country Status (1)

Country Link
CN (1) CN102874880B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106186080A (zh) * 2016-07-04 2016-12-07 沈阳化工大学 一种Mg‑Fe层状双金属氢氧化物的制备方法
CN109859874A (zh) * 2017-11-30 2019-06-07 西南科技大学 一种利用合金材料处理含铀废水的方法
CN108439490B (zh) * 2018-04-25 2023-05-09 深圳市寒暑科技新能源有限公司 一种三元材料前驱体的制备设备及制备方法
CN111423114B (zh) * 2020-03-31 2022-09-27 台玻安徽玻璃有限公司 高透光性节能浮法玻璃的制造方法
CN115010216B (zh) * 2022-03-30 2024-06-11 湖南大学 利用FeAl层状金属氢氧化物修饰石墨毡电极去除水体中溴酸盐的方法
CN114873623B (zh) * 2022-05-25 2023-02-03 四川农业大学 具有还原性和吸附性的可回收水滑石及其制备方法和应用
CN117696018B (zh) * 2023-12-29 2024-07-16 苏州见远检测技术有限公司 一种用于去除自来水余氯的前处理过滤介质的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962453A (zh) * 2006-11-22 2007-05-16 天津化工研究设计院 一种水滑石型层状氢氧化物的生产方法
CN101381094A (zh) * 2007-09-03 2009-03-11 襄樊市油建化工有限公司 一种制备纳米镁铝水滑石的方法及其设备
EP2366664A1 (en) * 2010-03-09 2011-09-21 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Palladium-modified hydrotalcites and their use as catalyst precursors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962453A (zh) * 2006-11-22 2007-05-16 天津化工研究设计院 一种水滑石型层状氢氧化物的生产方法
CN101381094A (zh) * 2007-09-03 2009-03-11 襄樊市油建化工有限公司 一种制备纳米镁铝水滑石的方法及其设备
EP2366664A1 (en) * 2010-03-09 2011-09-21 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Palladium-modified hydrotalcites and their use as catalyst precursors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Synthesis and bromate reduction of sulfate intercalated Fe(II)–Al(III) layered double hydroxides";Ramesh Chitrakar et al.;《Separation and Purification Technology》;20110628;第80卷(第3期);652–657 *
Ramesh Chitrakar et al.."Synthesis and bromate reduction of sulfate intercalated Fe(II)–Al(III) layered double hydroxides".《Separation and Purification Technology》.2011,第80卷(第3期),652–657.

Also Published As

Publication number Publication date
CN102874880A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
CN102874880B (zh) 纳米亚铁铝类水滑石及其超声共沉淀制备方法和应用
Kütahyalı et al. Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects
Wang et al. Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light
Xu et al. Sonocatalytic degradation of tetracycline by BiOBr/FeWO4 nanomaterials and enhancement of sonocatalytic effect
CN106362685A (zh) 一种用于除砷的改性生物炭材料、其制备及应用
CN1751783A (zh) 去除水中砷的复合吸附材料及其制备方法
CN110508243B (zh) 一种生物质基多孔炭负载铁絮体吸附材料的制备方法及应用
Yang et al. Oxygen-vacancy-enriched substrate-less SnOx/La-Sb anode for high-performance electrocatalytic oxidation of antibiotics in wastewater
CN106732358A (zh) 一种负载氧化铁的生物质碳化微球及其制备和应用
CN102872790A (zh) 一种硫酸根吸附剂磁性纳米氢氧化锆及其制备方法
CN106111060B (zh) 一种改性生物炭复合材料及其制备和应用
Zhu et al. Investigation of an enhanced Z-scheme magnetic recyclable BiVO4/GO/CoFe2O4 photocatalyst with visible-light-driven for highly efficient degradation of antibiotics
CN102351225A (zh) 一种处理氯离子药剂的制备方法
Liu et al. Highly efficient removal of As (III) by Fe-Mn-Ca composites with the synergistic effect of oxidation and adsorption
CN112275257A (zh) 一种TiO2-GO/NiFe-LDH复合材料的制备方法
CN104128161A (zh) 一种氨基改性活性焦重金属吸附剂及其制备方法
Zhang et al. Novel Z-scheme MgFe2O4/Bi2WO6 heterojunction for efficient photocatalytic degradation of tetracycline hydrochloride: Mechanistic insight, degradation pathways and density functional theory calculations
CN101456617A (zh) 一种去除饮用水中溴酸根离子的方法
Sun et al. Microwave-assisted co-precipitation preparation of CuFe2O4 photo-Fenton degradation tetracycline: Characterization, efficacy, stability in complex water quality and mechanism
Kumar et al. Ultrasound-induced PMS activation for acrylonitrile degradation with series LTZ perovskite-like catalysts: Synergistic and mechanistic insight
Mahalaxmi et al. Fabrication of an effectual, stable and reusable Mg-doped CdAl2O4 nanoparticles for photodegradation of toxic pollutants under visible light illumination
Zhang et al. Activation of ozone by CoFe-LDO-BC heterogeneous catalyst for efficient mineralization of methylene blue: The role of oxygen vacancies and acidic sites
CN103755005B (zh) 三价铁离子还原方法
CN107555554B (zh) 一种利用层状金属氧化物吸附砷的含氧酸根的电容去离子技术
CN106582500B (zh) 一种可吸附降解Cr(Ⅵ)硅藻土复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140409

Termination date: 20151009

EXPY Termination of patent right or utility model