CN112582487B - 一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法 - Google Patents

一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法 Download PDF

Info

Publication number
CN112582487B
CN112582487B CN201910929421.5A CN201910929421A CN112582487B CN 112582487 B CN112582487 B CN 112582487B CN 201910929421 A CN201910929421 A CN 201910929421A CN 112582487 B CN112582487 B CN 112582487B
Authority
CN
China
Prior art keywords
copper
film
indium selenide
ink
copper ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910929421.5A
Other languages
English (en)
Other versions
CN112582487A (zh
Inventor
季惠明
黄雄
郑哲蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910929421.5A priority Critical patent/CN112582487B/zh
Publication of CN112582487A publication Critical patent/CN112582487A/zh
Application granted granted Critical
Publication of CN112582487B publication Critical patent/CN112582487B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本发明公开一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,将制得的In2Se3纳米片分散于无水乙醇中得到纳米墨水,采用2‑氨基‑2‑甲基‑1‑丙醇作为络合剂,通过它与CuCl的络合反应,提高铜离子的溶解度,而后按照比例将In2Se3纳米墨水和铜离子溶液混合,形成CIS前驱体均匀墨水。利用浸渍提拉工艺在基底上沉积墨水,墨水中的纳米片在沉积过程取向排列,形成的前驱体层,前驱体层在硒化烧结过程发生反应:铜硒化合物生成后分解出Se液相,液相促进传质,铟硒化合物与铜硒化合物结合为致密黄铜矿结构的铜铟硒。本发明便于大规模安全生产,成本低,所得薄膜致密,织构化程度高,利于电子传输。

Description

一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的 方法
技术领域
本发明属于太阳能电池领域,具体来说,一种制备铜铟硒太阳能电池光吸收层的方法,更加具体地说,涉及到一种以硒化铟纳米片与铜离子复合制备致密织构化铜铟硒薄膜的方法。
背景技术
随着全球经济飞速增长,能源的消耗也已经达到了前所未有的程度,太阳能电池因此备受瞩目。铜铟镓硒太阳能电池作为当前光转化效率最高的薄膜太阳能电池有着重要的作用和广阔的发展前景。CuInSe2(CIS)基薄膜属于直接带隙半导体材料;具有高的光吸收系数和稳定性;禁带宽度可调,它组成了电池的光吸收层,其结构与组分极大影响了电池效率。高性能的CIS太阳能电池要求吸收层薄膜结构致密,不含有二元杂相,多是由真空法制备而来,其缺点是成本高昂,对设备要求高,难以大规模应用。
近年来,基于非真空技术的纳米晶墨水法发展迅速,CIS纳米粒子分散在溶剂中形成胶体墨水,将墨水沉积到基底表面热处理后便可得到CIS薄膜,方法简单、成本低、可大面积制备,但是纳米粒子在热处理过程中长大不明显,颗粒之间的空隙不利于电子的传输从而使器件性能降低。与纳米晶墨水法相比,我们注意到高质量的薄膜往往是通过直接将Cu-Se、In-Se、Ga-Se化合物或金属盐溶解于溶剂中沉积成膜后热处理得到的。原因在于CuSex(x=1,2)在烧结过程中包晶分解出Se液相,液相烧结促进了晶体生长和薄膜致密化。虽然薄膜质量变好,器件性能提高,但要溶解上述化合物,就难以避免使用毒性较强的溶剂,这增加了生产上的困难。
发明内容
本发明的目的在于克服现有技术的不足,提供一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,利用薄膜制备中In2Se3纳米片取向排列及烧结过程中CuSex的包晶分解促进薄膜的织构化、致密化,以提高器件性能。
本发明的技术目的通过下述技术方案予以实现。
一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,按照下步骤进行制备:
步骤1,制备混合墨水
将In2Se3纳米墨水和铜离子溶液混合制备混合墨水,铜离子(一价铜离子)与In2Se3的摩尔比为(0.5—1):1;在铜离子溶液中,将CuCl粉末均匀分散在由AMP和乙醇组成的溶液中,AMP和乙醇的体积比1:(3—5),铜离子浓度为0.4~0.6mol/L
在步骤1中,铜离子与In2Se3的摩尔比为(0.8—1):1。
在步骤1中,量取铜离子溶液加入到In2Se3纳米墨水,超声20~30min进行均匀分散,得到混合墨水。
在步骤1中,采用传统的热注射法制备硒化铟纳米片,具体步骤详见【Li,Tongfei等"Multi-morphological growth of nano-structured In2Se3 by ambient pressuretriethylene glycol based solution syntheses."Journal of Alloys and Compounds646(2015):603-611】,其中阳离子前驱液注入温度和回流温度控制在245~255℃,将获得的产物硒化铟纳米片超声分散在无水乙醇中,得到0.03~0.05mol/L的In2Se3纳米墨水待用。
在步骤1中,AMP和乙醇的体积比1:(4—5)。
步骤2,采用浸渍提拉工艺得到CIS前驱体层
将基底以1500~2500μm/s的速度浸入到步骤1得到的混合墨水中静置,再以相同速度将基底提拉出来,待溶剂挥发后,重复进入到混合墨水中反复进行提拉处理,以得到CIS前驱体层;
在步骤2中,基底为玻璃基底,对(玻璃)基底进行清洗,分别用盐酸(如1M)、丙酮、蒸馏水以及无水乙醇各超声清洗30~40min,洁净环境中烘干待用。
在步骤2中,在每次浸入到混合墨水中后,静置时间为4—6s。
在步骤2中,在浸渍提拉过程中,硒化铟纳米片因表面张力作用会在基底上沿平行基底方向取向排列叠层,经重复提拉处理后,如选择反复提拉80~100次,得到CIS前驱体层。
步骤3,硒化烧结
将经步骤2处理沉积CIS前驱体层的基底置于放有硒粉的坩埚中,并将坩埚置于管式炉中,在惰性保护气体下以10~20℃/min的升温速度自室温20—25摄氏度升至500~550℃并保温处理,得到致密织构化的CIS薄膜。
在步骤3中,坩埚为石墨坩埚。
在步骤3中,惰性保护气体为氮气、氩气或者氦气。
在步骤3中,保温温度为530~550℃,保温时间为30—60min。
本发明将制得的In2Se3纳米片分散于无水乙醇中得到纳米墨水,为了引入Cu离子,我们采用2-氨基-2-甲基-1-丙醇(AMP)作为络合剂,通过它与CuCl的络合反应,提高Cu离子的溶解度,而后按照比例将In2Se3纳米墨水和Cu离子溶液混合,形成CIS前驱体均匀墨水。利用浸渍提拉工艺在基底上沉积墨水,墨水中的纳米片在沉积过程取向排列,形成的前驱体层,前驱体层在硒化烧结过程发生反应:铜硒化合物生成后分解出Se液相,液相促进传质,铟硒化合物与铜硒化合物结合为致密黄铜矿结构的铜铟硒。反应基于提拉过程取向排列的纳米片,使得最终得到的CIS薄膜晶面取向明显择优,织构化程度与致密化程度高,可减少光的反射,有利于器件性能提高,同时避免了毒性溶剂的使用,便于大规模安全生产,成本低。
附图说明
图1为本发明实施例1中540℃下硒化烧结得到薄膜的(a)XRD图,(b)拉曼光谱图。图2为本发明实施例1中540℃下硒化处理前后得到的薄膜的扫描电镜照片,(a)热处理前薄膜的表面与断面的SEM照片,(b)热处理后薄膜的表面与断面的SEM照片。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。本发明制备了In2Se3纳米片与Cu离子的乙醇基混合墨水,其中利用AMP与Cu离子的络合溶解CuCl来引入Cu离子;沉积得到预制层薄膜后硒化烧结制备出CIS薄膜。此方法具有以下优点:所得薄膜致密,织构化程度高,利于电子传输。
实施例1:
(1)制备In2Se3纳米墨水:采用传统的热注射法制备硒化铟纳米片,具体步骤详见【Li,Tongfei等"Multi-morphological growth of nano-structured In2Se3 by ambientpressure triethylene glycol based solution syntheses."Journal of Alloys andCompounds 646(2015):603-611】,其中阳离子前驱液注入温度和回流温度控制在250℃,将获得的产物超声分散在无水乙醇中,得到0.04mol/L的In2Se3纳米墨水待用;
(2)CuCl的AMP-乙醇溶液的制备:将AMP和乙醇按体积比1:5混合,称取一定量CuCl粉末加入到混合溶液中,充分搅拌得到0.5mol/L的铜离子溶液;
(3)In2Se3和铜离子溶液混合制备混合墨水:量取一定体积的步骤(2)中得到的铜离子加入步骤(1)中得到的In2Se3纳米墨水,超声25min得到混合墨水,混合墨水中铜离子与In2Se3的摩尔比为0.9:1。
(4)清洗玻璃基底:分别用盐酸、丙酮、蒸馏水以及无水乙醇各超声清洗35min,洁净环境中烘干待用;
(5)采用浸渍提拉工艺,步骤(4)中的基底以2000μm/s的速度浸入到步骤(3)中得到的混合墨水中,静置5s后再将基底以同样速度提拉出,待溶剂挥发后再浸渍到墨水中,反复90次得到CIS前驱体层;
(6)硒化烧结:将沉积了CIS前驱体层的玻璃基底置于放有硒粉的石墨坩埚中,将坩埚放入管式炉,在氩气保护下以15℃/min的升温速度升至540℃,保温50min得到织构化CIS薄膜(自然冷却至室温即可)。
对得到的CIS薄膜进行X射线衍射和拉曼光谱表征测试,以观察其结构组成和晶面取向,对硒化烧结前后的薄膜进行形貌测试分析,观察其微观形貌、织构化程度和薄膜厚度。图1是实施例1制得的薄膜的X衍射分析(XRD)图和拉曼光谱图,可以看出薄膜由纯的黄铜矿相CIS组成,且具有单一(112)晶面取向,织构化程度高;图2为实施例1制得的薄膜烧结前后的扫描电镜分析(SEM)图,烧结后薄膜结构致密无空隙,厚度为1.1μm,相对减小47.6%。
实施例2:
(1)制备In2Se3纳米墨水:采用传统的热注射法制备硒化铟纳米片,具体步骤详见【Li,Tongfei等"Multi-morphological growth of nano-structured In2Se3 by ambientpressure triethylene glycol based solution syntheses."Journal of Alloys andCompounds 646(2015):603-611】,其中阳离子前驱液注入温度和回流温度控制在245℃,将获得的产物超声分散在无水乙醇中,得到0.03mol/L的In2Se3纳米墨水待用;
(2)CuCl的AMP-乙醇溶液的制备:将AMP和乙醇按体积比1:4混合,称取一定量CuCl粉末加入到混合溶液中,充分搅拌得到0.6mol/L的铜离子溶液;
(3)In2Se3和铜离子溶液混合制备混合墨水:量取一定体积的步骤(2)中得到的铜离子加入步骤(1)中得到的In2Se3纳米墨水,超声20min得到混合墨水,混合墨水中铜离子与In2Se3的摩尔比为0.8:1。
(4)清洗玻璃基底:分别用盐酸、丙酮、蒸馏水以及无水乙醇各超声清洗30min,洁净环境中烘干待用;
(5)采用浸渍提拉工艺,步骤(4)中的基底以1500μm/s的速度浸入到步骤(3)中得到的混合墨水中,静置4s后再将基底以同样速度提拉出,待溶剂挥发后再浸渍到墨水中,反复100次得到CIS前驱体层;
(6)硒化烧结:将沉积了CIS前驱体层的玻璃基底置于放有硒粉的石墨坩埚中,将坩埚放入管式炉,在氩气保护下以10℃/min的升温速度升至530℃,保温40min得到织构化CIS薄膜(自然冷却至室温即可)。
采用XRD和SEM进行表征,实施例2制得的薄膜为单一的黄铜矿CIS结构,(112)面取向,没有其它衍射峰,织构化程度高,薄膜致密,厚度为1μm,表现出与实施例1基本一致。
实施例3:
(1)制备In2Se3纳米墨水:采用传统的热注射法制备硒化铟纳米片,具体步骤详见【Li,Tongfei等"Multi-morphological growth of nano-structured In2Se3 by ambientpressure triethylene glycol based solution syntheses."Journal of Alloys andCompounds 646(2015):603-611】,其中阳离子前驱液注入温度和回流温度控制在255℃,将获得的产物超声分散在无水乙醇中,得到0.05mol/L的In2Se3纳米墨水待用;
(2)CuCl的AMP-乙醇溶液的制备:将AMP和乙醇按体积比1:4.5混合,称取一定量CuCl粉末加入到混合溶液中,充分搅拌得到0.4mol/L的铜离子溶液;
(3)In2Se3和铜离子溶液混合制备混合墨水:量取一定体积的步骤(2)中得到的铜离子加入步骤(1)中得到的In2Se3纳米墨水,超声30min得到混合墨水,混合墨水中铜离子与In2Se3的摩尔比为1:1。
(4)清洗玻璃基底:分别用盐酸、丙酮、蒸馏水以及无水乙醇各超声清洗40min,洁净环境中烘干待用;
(5)采用浸渍提拉工艺,步骤(4)中的基底以2500μm/s的速度浸入到步骤(3)中得到的混合墨水中,静置6s后再将基底以同样速度提拉出,待溶剂挥发后再浸渍到墨水中,反复80次得到CIS前驱体层;
(6)硒化烧结:将沉积了CIS前驱体层的玻璃基底置于放有硒粉的石墨坩埚中,将坩埚放入管式炉,在氩气保护下以20℃/min的升温速度升至550℃,保温60min得到织构化CIS薄膜(自然冷却至室温即可)。
采用XRD和SEM进行表征,实施例3制得的薄膜为单一的黄铜矿CIS结构,(112)面取向,没有其它衍射峰,织构化程度高,薄膜致密,厚度为1.2μm,表现出与实施例1基本一致。
依照本专利所述工艺,获得了大约1μm(如1—1.2μm)厚致密的CIS薄膜,薄膜具有单一的(112)面取向,织构化程度高,薄膜中晶粒交织排列,表面粗糙,有利于减少光的反射,致密的结构利于减少光生载流子复合,具有组装CIS基薄膜太阳能电池的潜在能力。申请人及发明人课题组委托河南泛锐复合材料研究院有限公司进行材料霍尔效应的检测,使用霍尔效应测试仪(Quantum Design PPMS-9)进行测试。薄膜的电学性能有显著提升,其空穴浓度为(2.52~2.63)×1017cm-3,电迁移率为7.31~7.68cm2V-1S-1,电阻率为3.19~3.52Ω·cm。
根据本发明内容进行工艺参数的调整,均可实现CIS薄膜的制备,经测试表现出与本发明基本一致的性能。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,其特征在于,按照下步骤进行制备:
步骤1,制备混合墨水
将In2Se3纳米墨水和铜离子溶液混合制备混合墨水,铜离子与In2Se3的摩尔比为(0.5—1):1,铜离子为一价铜离子;在铜离子溶液中,将CuCl粉末均匀分散在由AMP和乙醇组成的溶液中,AMP和乙醇的体积比1:(3—5),铜离子浓度为0.4~0.6mol/L
步骤2,采用浸渍提拉工艺得到CIS前驱体层
将基底以1500~2500μm/s的速度浸入到步骤1得到的混合墨水中静置,再以相同速度将基底提拉出来,待溶剂挥发后,重复进入到混合墨水中反复进行提拉处理,以得到CIS前驱体层;
步骤3,硒化烧结
将经步骤2处理沉积CIS前驱体层的基底置于放有硒粉的坩埚中,并将坩埚置于管式炉中,在惰性保护气体下以10~20℃/min的升温速度自室温20—25摄氏度升至500~550℃并保温处理,得到致密织构化的CIS薄膜。
2.根据权利要求1所述的一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,其特征在于,在步骤1中,铜离子与In2Se3的摩尔比为(0.8—1):1;AMP和乙醇的体积比1:(4—5)。
3.根据权利要求1所述的一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,其特征在于,在步骤1中,量取铜离子溶液加入到In2Se3纳米墨水,超声20~30min进行均匀分散,得到混合墨水。
4.根据权利要求1所述的一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,其特征在于,在步骤2中,基底为玻璃基底,对玻璃基底进行清洗,分别用盐酸、丙酮、蒸馏水以及无水乙醇各超声清洗30~40min,洁净环境中烘干待用。
5.根据权利要求1所述的一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,其特征在于,在步骤2中,在每次浸入到混合墨水中后,静置时间为4—6s。
6.根据权利要求1所述的一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,其特征在于,在步骤2中,在浸渍提拉过程中,硒化铟纳米片因表面张力作用会在基底上沿平行基底方向取向排列叠层,经重复提拉处理后,如选择反复提拉80~100次,得到CIS前驱体层。
7.根据权利要求1所述的一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,其特征在于,在步骤3中,惰性保护气体为氮气、氩气或者氦气。
8.根据权利要求1所述的一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法,其特征在于,在步骤3中,保温温度为530~550℃,保温时间为30—60min。
9.如权利要求1所述的方法得到的CIS薄膜。
10.根据权利要求9所述的CIS薄膜,其特征在于,CIS薄膜具有单一的(112)面取向,厚度1—1.2μm,致密且织构化程度高,薄膜中晶粒交织排列,表面粗糙;空穴浓度为(2.52~2.63)×1017cm-3,电迁移率为7.31~7.68cm2V-1S-1,电阻率为3.19~3.52Ω·cm。
CN201910929421.5A 2019-09-27 2019-09-27 一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法 Active CN112582487B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910929421.5A CN112582487B (zh) 2019-09-27 2019-09-27 一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910929421.5A CN112582487B (zh) 2019-09-27 2019-09-27 一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法

Publications (2)

Publication Number Publication Date
CN112582487A CN112582487A (zh) 2021-03-30
CN112582487B true CN112582487B (zh) 2022-07-05

Family

ID=75110724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910929421.5A Active CN112582487B (zh) 2019-09-27 2019-09-27 一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法

Country Status (1)

Country Link
CN (1) CN112582487B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958369A (zh) * 2010-07-27 2011-01-26 上海太阳能电池研究与发展中心 一种铜铟镓硒薄膜材料的制备方法
CN108219591A (zh) * 2012-02-29 2018-06-29 耶路撒冷希伯来大学伊森姆研究发展有限公司 包含金属前体纳米颗粒的油墨
WO2019031706A1 (ko) * 2017-08-09 2019-02-14 주식회사 비에스피 광 흡수 계수가 우수한 전도성 mod 잉크 조성물 및 이를 이용한 금속 박막 형성방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080193667A1 (en) * 2004-08-23 2008-08-14 Arkady Garbar Ink Jet Printable Compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958369A (zh) * 2010-07-27 2011-01-26 上海太阳能电池研究与发展中心 一种铜铟镓硒薄膜材料的制备方法
CN108219591A (zh) * 2012-02-29 2018-06-29 耶路撒冷希伯来大学伊森姆研究发展有限公司 包含金属前体纳米颗粒的油墨
WO2019031706A1 (ko) * 2017-08-09 2019-02-14 주식회사 비에스피 광 흡수 계수가 우수한 전도성 mod 잉크 조성물 및 이를 이용한 금속 박막 형성방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Self-reducible copper inks composed of copper–amino complexes and preset submicron copper seeds for thick conductive patterns on a flexible substrate;Wanli Li et al;《Journal of Materials Chemistry C》;20160822;全文 *
Synthesis of CuInSe2 nanoparticles by phase transfor-mation of In2Se3 via wet chemical process in low temperature;LI Shi-na et al;《OPTOELECTRONICS LETTERS》;20140708;全文 *

Also Published As

Publication number Publication date
CN112582487A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
Du et al. Enhanced efficiency and stability of planar perovskite solar cells by introducing amino acid to SnO2/perovskite interface
Wen et al. Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells
Tripathi et al. Temperature induced structural, electrical and optical changes in solution processed perovskite material: application in photovoltaics
Dong et al. Sol-gel processed CZTS thin film solar cell on flexible molybdenum foil
Chen et al. Doctor-bladed Cu2ZnSnS4 light absorption layer for low-cost solar cell application
Ou et al. Boosting the stability and efficiency of Cs2AgBiBr6 perovskite solar cells via Zn doping
Xu et al. 9.63% efficient flexible Cu 2 ZnSn (S, Se) 4 solar cells fabricated via scalable doctor-blading under ambient conditions
CN110993357B (zh) 一种CdS1-xSex合金量子点敏化光阳极的制备方法
Pan et al. Controllable vapor transport deposition of efficient Sb2 (S, Se) 3 solar cells via adjusting evaporation source area
Khan et al. Highly efficient Cu2ZnSn (S, Se) 4 bifacial solar cell via a composition gradient strategy through the molecular ink
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
Li et al. Cu2ZnSnS4 solar cells prepared by sulfurization of sputtered ZnS/Sn/CuS precursors
Li et al. Preparation of band-gap-grading Cu 2 ZnSn (S, Se) 4 thin-film solar cells by post-sulfo-selenization treatment
CN112582487B (zh) 一种硒化铟与铜离子复合技术制备致密织构化铜铟硒薄膜的方法
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
Qi et al. Optimization of the substrate temperature of narrow bandgap CIS solar cells by three stage coevaporation process
Lu et al. Formation process and photovoltaic properties of Cu (In, Ga) Se 2 and (Ag, Cu)(In, Ga) Se 2 on flexible stainless steel substrates formed at different selenization temperatures
CN103588180A (zh) 三乙烯四胺辅助多元醇基溶液合成铜铟铝硒纳米晶的方法
CN103601157B (zh) 一种乙二胺辅助多元醇基溶液合成铜铟铝硒纳米晶的方法
KR101137434B1 (ko) 급속열처리 공정을 사용한 cis계 화합물 박막의 제조방법 및 상기 cis계 화합물 박막을 이용한 박막 태양전지의 제조방법
Kumar et al. Growth and characterization of spray-deposited Cu2ZnSnS4 thin films by using two different carrier gases
Xu et al. Investigation of the properties of CZTS/FTO interface
Saleh et al. Investigation of the Structural and Optical Properties of Cu 2 SnS 3 Nanostructures Thin Films for Solar Cell Application
Sharma et al. Solution-Processed Solid-State Solar Cells of ZnO/CuO Core/Shell Nanrods
CN111689695A (zh) 一种以硒化铟与一价铜为中间体浸渍提拉工艺制备铜铟硒薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant