CN112575189B - 一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法 - Google Patents

一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法 Download PDF

Info

Publication number
CN112575189B
CN112575189B CN202011307724.2A CN202011307724A CN112575189B CN 112575189 B CN112575189 B CN 112575189B CN 202011307724 A CN202011307724 A CN 202011307724A CN 112575189 B CN112575189 B CN 112575189B
Authority
CN
China
Prior art keywords
sulfide
ions
solution
washing
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011307724.2A
Other languages
English (en)
Other versions
CN112575189A (zh
Inventor
钟清慎
贺秀珍
解婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinchuan Group Copper Gui Co ltd
Original Assignee
Jinchuan Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinchuan Group Co Ltd filed Critical Jinchuan Group Co Ltd
Priority to CN202011307724.2A priority Critical patent/CN112575189B/zh
Publication of CN112575189A publication Critical patent/CN112575189A/zh
Application granted granted Critical
Publication of CN112575189B publication Critical patent/CN112575189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法,包括:(1)向浸出液中加入亚硫酸钠进行预还原反应;再用石灰乳调整经步骤(1)得到的预还原溶液pH,经过滤、洗涤得到滤液和洗液;将得到的滤液和洗液混合后升温,加入硫化钠晶体进行沉淀反应,然后经静置、过滤洗涤得到硫化沉淀母液和硫化渣;将得到的硫化沉淀母液升温,通入压缩空气,加入石灰乳进行中和反应,调整硫化沉淀母液pH,然后经过滤得到尾渣和尾液。采用本发明,试剂消耗量少,成本低,工艺流程短,有价金属元素回收率98%以上。

Description

一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法
技术领域
本发明涉及稀贵金属冶炼技术领域,具体涉及一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法。
背景技术
铂矿具有铂族金属贮量较大、品位高、矿体厚度稳定的特点,铂族金属贮量为412吨,基本品位为5.22g/t。铂矿采用常规的半自磨+球磨+分级碎磨流程,粗选+精选、粗选尾矿再磨再选精选的阶段浮选阶段磨矿浮选工艺流程,每年可产出约82000吨的贵金属精矿,其中含Cr2O30.7~3.5%、MgO12~21%。该精矿除了每年可带入铂族金属约9.5吨的同时,还可带入镍、铜、钴量分别为2492吨、1533吨、246吨。
铂精矿采用湿法强化浸出工艺时,大部分铜、镍、钴,铁、铬、镁、铝等元素被浸出,进入浸出液中,同时,少量贵金属也进入浸出液中。因此,高效回收镍、铜、钴具有重要意义。
上述复杂共伴生铂族贵金属选矿精矿酸浸溶液中含有Ni、Cu、Co有价金属元素离子,同时还有少量的Pt、Pd、Rh、Ir、Os、Ru、Au、Ag贵金属元素离子,此外,还有大量的Fe、Cr、Mg、Si、Al等杂质元素离子以及H2SO4。其中的Fe、Cr大部分分别以Fe3+、Cr6+形式存在。
由于溶液中有价金属离子浓度较低,杂质元素离子种类多、浓度较高,选择经济合理的有价金属元素的分离回收工艺是十分必要的。
发明内容
针对上述已有技术存在的不足,本发明提供一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法。
本发明是通过以下技术方案实现的。
一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法,其特征在于,所述方法包括以下步骤:
(1)预还原:向浸出液中加入亚硫酸钠进行预还原反应;
(2)残酸中和:再用石灰乳调整经步骤(1)得到的预还原溶液pH,经过滤、洗涤得到滤液和洗液;
(3)硫化钠沉淀:将经步骤(2)得到的滤液和洗液混合后升温,加入硫化钠晶体进行沉淀反应,然后经静置、过滤洗涤得到硫化沉淀母液和硫化渣;
(4)将经步骤(3)得到的硫化沉淀母液升温,通入压缩空气,加入石灰乳进行中和反应,调整硫化沉淀母液pH,然后经过滤得到尾渣和尾液。
进一步地,所述步骤(1)浸出液成分:Au 0.003~0.005g/L、Pd 0.0045~0.0050g/L、Pt 0.00092~0.00096g/L、Rh 0.0012~0.0015g/L、Ir 0.0015~0.0018g/L、Ni 2.02~2.05g/L、Cu 6.36~6.40g/L、Fe 9.62~9.68g/L、Co 0.057~0.059g/L、As 0.0021~0.0026g/L、Cr 1.13~1.15g/L、Mg 6.22~6.32g/L、Al 2.60~2.63g/L。
进一步地,所述步骤(1)亚硫酸钠的加入量为将浸出液中三价铁离子还原为二价铁离子和将六价铬离子还原为三价铬离子理论量的1.1~1.8倍。
进一步地,所述步骤(1)预还原温度为75℃~85℃,反应时间0.5~1h。
进一步地,所述步骤(2)采用浓度(按质量百分比计)为20%~30%石灰乳调整经步骤(1)得到的预还原溶液pH至0.5~1.5,中和反应时间为30~40min。
进一步地,所述步骤(3)将经步骤(2)得到的滤液和洗液升温至75℃~85℃,硫化钠晶体加入量为用于沉淀滤液和洗液中镍离子、钴离子以及铜离子理论量的1.0~2.0倍,反应时间1h~2h。
进一步地,所述步骤(4)将经步骤(3)得到的硫化沉淀母液升温至45℃~50℃,通入压缩空气,流量为0.6~0.8立方米/分,采用浓度为20%~21%的石灰乳进行中和反应,调整硫化沉淀母液pH至8.5~9.0,反应时间2~2.5h。
本发明的有益技术效果,本发明提供了一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法,所得硫化渣、残酸中和得到的中和渣并入熔炼处理,尾渣为废渣,处理后的尾液可以返回使用,该工艺试剂消耗量少,成本低。工艺流程短,有价金属元素回收率98%以上。
附图说明
图1为本发明的工艺流程示意图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
实施例1
一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法,它包括以下步骤:
浸出液成分:Au 0.003g/L、Pd 0.0045g/L、Pt 0.00092g/L、Rh 0.0012g/L、Ir0.0015g/L、Ni 2.02g/L、Cu 6.36g/L、Fe 9.62g/L、Co 0.057g/L、As 0.0021g/L、Cr 1.13g/L、Mg 6.22g/L、Al 2.60g/L。
步骤1、预还原:取强化浸出溶液1.5L,升温至75℃,先加入亚硫酸钠进行预还原,亚硫酸钠加入量为将溶液中三价铁离子和六价铬高价离子还原为低价离子(二价铁离子和三价铬离子)理论量的1.1倍,反应时间0.5h。
步骤2、残酸中和:再用20%的石灰乳调整预还原溶液pH至0.5,反应30min,过滤、洗涤,滤液及洗液进行硫化沉淀。
步骤3、硫化钠沉淀:残酸中和液(滤液及洗液)升温至75℃,加入溶液中镍钴铜离子浓度完全沉淀时理论量1.0倍数的硫化钠晶体,反应时间1h,静置沉淀后过滤洗涤,分析硫化沉淀母液和硫化渣成分。结果如表1-1。
表1-1硫化钠沉淀结果
Figure BDA0002788795330000041
步骤4、尾液中和沉淀:硫化沉淀后的溶液中含有大量的镁等金属离子,可以加入20%的石灰乳中和沉淀镁、锰,使溶液的pH调节至8.5,并通入压缩空气(流量为0.6立方米/分)氧化,将溶液中的有害元素离子除去,使溶液达标排放。
取硫化沉淀后溶液(即硫化沉淀母液)2.0L,升温至45℃,通入压缩空气(流量为0.6立方米/分),用20%的石灰乳调整溶液pH至8.5(排放废水pH6~9),反应时间2h,确定尾液中和终点pH、分析尾渣成分。结果如表1-2。
表1-2尾液中和沉淀结果
Figure BDA0002788795330000042
实施例2
一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法,它包括以下步骤:
浸出液成分:Au 0.005g/L、Pd 0.0050g/L、Pt0.00096 g/L、Rh 0.0015g/L、Ir0.0018 g/L、Ni 2.05g/L、Cu 6.40g/L、Fe9.68 g/L、Co 0.059g/L、As 0.0026g/L、Cr1.15g/L、Mg 6.32g/L、Al 2.63g/L。
步骤1、预还原:取强化浸出溶液1.5L,升温至85℃,先加入亚硫酸钠进行预还原,亚硫酸钠加入量为溶液中三价铁离子和六价铬高价离子还原为低价离子理论量的1.8倍,反应1h。
步骤2、残酸中和:再用30%的石灰乳调整预还原溶液pH至1.5,反应40min,过滤,滤液及洗液进行硫化沉淀。
步骤3、硫化钠沉淀:残酸中和液升温至85℃,加入溶液中镍钴铜离子浓度完全沉淀时理论量2.0倍数的硫化钠晶体,反应时间2h,静置沉淀后过滤洗涤,分析硫化沉淀母液和硫化渣成分。结果如表2-1。
表2-1硫化钠沉淀结果
Figure BDA0002788795330000051
步骤4、尾液中和沉淀:硫化沉淀后的溶液中含有大量的镁等金属离子,可以加入30%石灰乳中和沉淀镁、锰,使溶液的pH调节至9,并通入压缩空气(流量为0.8立方米/分)氧化,将溶液中的有害元素离子除去,使溶液达标排放。
取硫化沉淀后溶液2.0L,升温至45℃,通入压缩空气(流量为0.8立方米/分),用21%的石灰乳调整溶液pH至9.0(排放废水pH6~9),反应时间2.5h,确定尾液中和终点pH、分析尾渣成分。结果如表2-2。
表2-2尾液中和沉淀结果
Figure BDA0002788795330000052
实施例3
一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法,它包括以下步骤:
浸出液成分:Au 0.004g/L、Pd 0.0047g/L、Pt 0.00094g/L、Rh 0.0014g/L、Ir0.0017g/L、Ni 2.04g/L、Cu 6.38g/L、Fe 9.65g/L、Co 0.058g/L、As 0.0024g/L、Cr 1.14g/L、Mg 6.27g/L、Al 2.62g/L。
步骤1、预还原:取强化浸出溶液1.5L,升温至80℃,先加入亚硫酸钠进行预还原,亚硫酸钠加入量为溶液中三价铁离子和六价铬高价离子还原为低价离子理论量的1.5倍,反应45min。
步骤2、残酸中和:再用25%的石灰乳调整预还原溶液pH至1.2,反应32min,过滤,滤液及洗液进行硫化沉淀。
步骤3、硫化钠沉淀:残酸中和液升温至80℃,加入溶液中镍钴铜离子浓度完全沉淀时理论量1.5倍数的硫化钠晶体,反应时间1.4h,静置沉淀后过滤洗涤,分析硫化沉淀母液和硫化渣成分。结果如表3-1。
表3-1硫化钠沉淀结果
Figure BDA0002788795330000061
步骤4、尾液中和沉淀:硫化沉淀后的溶液中含有大量的镁等金属离子,可以加入25%石灰乳中和沉淀镁、锰,使溶液的pH调节至9,并通入压缩空气(流量为0.7立方米/分)氧化,将溶液中的有害元素离子除去,使溶液达标排放。
取硫化沉淀后溶液2.0L,升温至48℃,通入压缩空气(流量为0.7立方米/分),用21%的石灰乳调整溶液pH至9.0(排放废水pH6~9),反应时间2.1h,确定尾液中和终点pH、分析尾渣成分。结果如表3-2。
表3-2尾液中和沉淀结果
Figure BDA0002788795330000071
实施例4
一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法,它包括以下步骤:
浸出液成分:Au 0.004g/L、Pd 0.0046g/L、Pt 0.00094g/L、Rh 0.0013g/L、Ir0.0017g/L、Ni 2.03g/L、Cu 6.37g/L、Fe 9.65g/L、Co 0.058g/L、As 0.0024g/L、Cr 1.14g/L、Mg 6.29g/L、Al 2.61g/L。
步骤1、预还原:取强化浸出溶液1.5L,升温至80℃,先加入亚硫酸钠进行预还原,亚硫酸钠加入量为溶液中三价铁离子和六价铬等高价离子还原为低价离子理论量的1.3倍,反应1h。
步骤2、残酸中和:再用23%的石灰乳调整预还原溶液pH至1.0,反应35min,过滤,滤液及洗液进行硫化沉淀。
步骤3、硫化钠沉淀:残酸中和液升温至80℃,加入溶液中镍钴铜离子浓度完全沉淀时理论量1.8倍数的硫化钠晶体,反应时间1.5h,静置沉淀后过滤洗涤,分析硫化沉淀母液和硫化渣成分。结果如表4-1。
表4-1硫化钠沉淀结果
Figure BDA0002788795330000072
步骤4、尾液中和沉淀:硫化沉淀后的溶液中含有大量的镁等金属离子,可以加入26%石灰乳中和沉淀镁、锰,使溶液的pH调节至9,并通入压缩空气(流量为0.65立方米/分)氧化,将溶液中的有害元素离子除去,使溶液达标排放。
取硫化沉淀后溶液2.0L,升温至50℃,通入压缩空气(流量为0.65立方米/分),用20.5%的石灰乳调整溶液pH至9.0(排放废水pH6~9),反应时间2h,确定尾液中和终点pH、分析尾渣成分。结果如表2-2。
表4-2尾液中和沉淀结果
Figure BDA0002788795330000081
以上所述的仅是本发明的较佳实施例,并不局限发明。应当指出对于本领域的普通技术人员来说,在本发明所提供的技术启示下,还可以做出其它等同改进,均可以实现本发明的目的,都应视为本发明的保护范围。

Claims (2)

1.一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法,其特征在于,所述方法包括以下步骤:
(1)预还原:向浸出液中加入亚硫酸钠进行预还原反应;所述浸出液成分:Au0.003~0.005g/L、Pd 0.0045~0.0050g/L、Pt 0.00092~0.00096g/L、Rh0.0012~0.0015g/L、Ir0.0015~0.0018g/L、Ni 2.02~2.05g/L、Cu 6.36~6.40g/L、Fe 9.62~9.68g/L、Co 0.057~0.059g/L、As 0.0021~0.0026g/L、Cr 1.13~1.15g/L、Mg 6.22~6.32g/L、Al 2.60~2.63g/L;所述预还原温度为75℃~85℃,反应时间0.5~1h;
(2)残酸中和:再用浓度为20%~30%石灰乳调整经步骤(1)得到的预还原溶液pH至0.5~1.5,中和反应时间为30~40min,经过滤、洗涤得到滤液和洗液;
(3)硫化钠沉淀:将经步骤(2)得到的滤液和洗液混合后升温至75℃~85℃,加入硫化钠晶体进行沉淀反应,硫化钠晶体加入量为用于沉淀滤液和洗液中镍离子、钴离子以及铜离子理论量的1.0~2.0倍,反应时间1h~2h然后经静置、过滤洗涤得到硫化沉淀母液和硫化渣;
(4)将经步骤(3)得到的硫化沉淀母液升温至45℃~50℃,通入压缩空气,流量为0.6~0.8立方米/分,加入浓度为20%~21%的石灰乳进行中和反应,调整硫化沉淀母液pH至8.5~9.0,反应时间2~2.5h,然后经过滤得到尾渣和尾液。
2.根据权利要求1所述的方法,其特征在于,所述步骤(1)亚硫酸钠的加入量为将浸出液中三价铁离子还原为二价铁离子和将六价铬离子还原为三价铬离子理论量的1.1~1.8倍。
CN202011307724.2A 2020-11-20 2020-11-20 一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法 Active CN112575189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011307724.2A CN112575189B (zh) 2020-11-20 2020-11-20 一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011307724.2A CN112575189B (zh) 2020-11-20 2020-11-20 一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法

Publications (2)

Publication Number Publication Date
CN112575189A CN112575189A (zh) 2021-03-30
CN112575189B true CN112575189B (zh) 2023-01-24

Family

ID=75122978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011307724.2A Active CN112575189B (zh) 2020-11-20 2020-11-20 一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法

Country Status (1)

Country Link
CN (1) CN112575189B (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1040868A (en) * 1975-04-02 1978-10-24 Inco Ltd. Process for recovery of valuable metals from solution using neutralization by lime or limestone
US20010001650A1 (en) * 1999-03-09 2001-05-24 William P.C. Duyvesteyn Recovery of nickel and cobalt from ore
CN100355917C (zh) * 2003-04-11 2007-12-19 隆敏有限公司 对铂系金属的回收
US7387767B2 (en) * 2005-04-07 2008-06-17 Dynatec Corporation Recovery of nickel, cobalt, iron, silica, zinc and copper from laterite ore by sulfuric acid leaching
CN102492858A (zh) * 2011-12-22 2012-06-13 河南省冶金研究所有限责任公司 一种从电池废料浸出液中分离富集镍钴的方法
CN102994773B (zh) * 2012-12-07 2014-09-03 金川集团股份有限公司 含铁的镍电解阳极液中回收铂族金属的方法
CN103276205B (zh) * 2013-05-29 2014-12-10 东北大学 一种钒铬浸出液中分离提取钒铬的方法
JP5880488B2 (ja) * 2013-06-17 2016-03-09 住友金属鉱山株式会社 ヘマタイトの製造方法、並びにそのヘマタイト
CN103911512A (zh) * 2014-04-28 2014-07-09 北京矿冶研究总院 一种从锌冶炼浸出液中除砷、锑的方法
JP6363459B2 (ja) * 2014-09-30 2018-07-25 Jx金属株式会社 金属の浸出方法及びそれを用いた金属の回収方法
JP6915497B2 (ja) * 2017-10-23 2021-08-04 住友金属鉱山株式会社 銅とニッケルおよびコバルトの分離方法
CN110564950B (zh) * 2019-08-26 2021-09-24 金川集团股份有限公司 一种铜钴混合矿精炼方法
CN111100992B (zh) * 2019-12-31 2022-01-18 荆门市格林美新材料有限公司 一种基于高温还原的镍湿法精炼尾渣的处理方法

Also Published As

Publication number Publication date
CN112575189A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
US7387767B2 (en) Recovery of nickel, cobalt, iron, silica, zinc and copper from laterite ore by sulfuric acid leaching
CN109234526B (zh) 红土镍矿的处理方法
CN102994747B (zh) 一种从高铅铜锍中回收金属铜的工艺
CN112359205B (zh) 一种铂族金属选矿精矿强化浸出液的处理方法
CN109110826B (zh) 一种电池级硫酸镍的生产方法
CN113897491B (zh) 一种综合高效处理锌浸出渣的方法
CN111100992B (zh) 一种基于高温还原的镍湿法精炼尾渣的处理方法
CN106916945B (zh) 一种高铁低锗氧化锌焙砂和亚硫酸锌的综合处理回收有价金属的方法
US6409979B1 (en) Selective precipitation of nickel and cobalt
WO2024000818A1 (zh) 一种废旧锂电池材料的回收方法
CN114604837B (zh) 一种磷酸铁的制备方法、磷酸铁锂的制备方法
CN113846214B (zh) 一种湿法炼锌生产中含锌物料的处理方法
CN112575189B (zh) 一种高铬高镁铂族金属选矿精矿强化浸出液的处理方法
WO2021181275A1 (en) A noble and base metal recovery process
CN109735714B (zh) 一种不锈钢氧化皮的处理方法
EP0641392B1 (en) Process for the separation of cobalt from nickel
CN115927852A (zh) 一种从硫精矿焙砂水洗废液中回收金、银、铜的方法
CN114427037A (zh) 从低浓度镍钴溶液中连续化富集镍钴的方法
US1286400A (en) Process of treating ores.
CN113215407A (zh) 一种从铜镉渣中生产金属铜粉方法
CN113621835A (zh) 一种基于萃取-沉淀结合高效除钼的方法
US6949232B2 (en) Producing cobalt (III) hexammine sulfate from nickel cobalt sulfides
CN112458306A (zh) 一种降低湿法炼锌过程浮选银精矿含锌的方法
CN110819806A (zh) 一种从提锗后液中制备硫酸铁锌絮凝剂的制备方法
CN115058600B (zh) 一种阳极渣制备硫酸锰溶液和回收铅的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240416

Address after: 737199 No. 2 Jianshe Road, Jinchuan District, Jinchang City, Gansu Province (east of Beijing Road, west of Heya Road, south of Guiyang Road)

Patentee after: Jinchuan Group Copper Gui Co.,Ltd.

Country or region after: China

Address before: 737103 No. 98, Jinchuan Road, Jinchang, Gansu

Patentee before: JINCHUAN GROUP Co.,Ltd.

Country or region before: China