CN112563250B - 一种多颗芯片同时制备封装使用的方法 - Google Patents

一种多颗芯片同时制备封装使用的方法 Download PDF

Info

Publication number
CN112563250B
CN112563250B CN202011365995.3A CN202011365995A CN112563250B CN 112563250 B CN112563250 B CN 112563250B CN 202011365995 A CN202011365995 A CN 202011365995A CN 112563250 B CN112563250 B CN 112563250B
Authority
CN
China
Prior art keywords
chip
chips
wafer
terminal structure
packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011365995.3A
Other languages
English (en)
Other versions
CN112563250A (zh
Inventor
陈允峰
李士颜
刘昊
陈谷然
黄润华
柏松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN202011365995.3A priority Critical patent/CN112563250B/zh
Publication of CN112563250A publication Critical patent/CN112563250A/zh
Application granted granted Critical
Publication of CN112563250B publication Critical patent/CN112563250B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本发明公开了一种多颗芯片同时制备封装使用的方法,该方法包括:器件芯片所在圆片布局设计优化;器件芯片具体结构设计优化;原有微加工工艺流程和难度不变;器件划片和封装使用过程简化,器件总制备成本降低。本发明通过设计优化,减小器件在测试、划片、挑片阶段的工作量,达到降低成本,提高产品竞争力的目的;尤其对碳化硅基器件等体积小、功率大的器件有较好的潜在应用价值。

Description

一种多颗芯片同时制备封装使用的方法
技术领域
本发明涉及半导体器件领域,特别是一种多颗芯片同时制备封装使用的方法。
背景技术
SiC材料禁带宽度大、击穿电场高、饱和漂移速度和热导率大,这些材料优越性能使其成为制作高功率、高频、耐高温、抗辐射器件的理想材料。因此,SiC材料常常可以用更小的体积,实现和其他半导体材料(尤其是硅)相同的电学性能。然而,特别小的尺寸也会给SiC材料器件带来成本上的增加,主要包括芯片切割的复杂度、芯片取用的复杂度等。
尤其碳化硅的优势在于制作高压器件。对于高压器件的芯片,需要一定宽度的终端结构控制边缘电场,这部分面积与电压大小正相关,因而在总面积较小的小电流芯片中占比较大。
发明内容
本发明的目的在于提供一种多颗芯片同时制备封装使用的方法,通过设计优化,减小器件在测试、划片、挑片阶段的工作量,从而降低成本、提高产品竞争力,尤其对碳化硅基器件等体积小、功率大的器件有较好的潜在应用价值。
实现本发明目的的技术方案为:一种多颗芯片同时制备封装使用的方法,包括以下步骤:
S1:在碳化硅器件芯片的结构设计时,根据圆片大小、芯片尺寸,确认多颗芯片阵列的周期性结构m*n,m和n为大于等于1的自然数,且m*n大于等于2;
S2:在碳化硅器件芯片的结构设计时,根据器件耐压需求,对芯片阵列的相邻芯片之间的终端结构,即重叠区域进行优化,优化内容包括省去原有的划片槽,以及通过电场仿真,重新确认终端结构;若终端结构为场限制环,优化对象为环的根数、环宽和间距,若终端结构为JTE,优化对象为各注入条件的区域宽度;
S3:进行圆片的工艺加工;
S4:完成圆片的微加工工艺后,对圆片性能进行测试、筛选统计;
S5:完成测试后,沿芯片阵列的边缘对圆片进行划片;
S6:划片完成后,依照不同的应用需求,将芯片阵列进行分拣;
S7:将芯片阵列应用于不同需求的模块或者电路中。
与现有技术相比,本发明的有益效果为:本发明根据芯片实际应用需求,从芯片设计阶段开始,通过多颗芯片阵列复合使用,选择合适结构、优化芯片之间终端结构,不增加微加工工艺复杂度,减小芯片后期划片、取用、封装的成本,达到提升产品应用价值的目的。而相比于SoC(system on chips),本发明主要还是基于正常的芯片制备工艺流程,阵列单元中都是相同的重复单一元器件,设计复杂度和制备工艺复杂度都很低。
附图说明
图1是本发明的具体实施方式中根据圆片大小、芯片尺寸,确认多颗芯片阵列的周期性结构的示意图,图中选取的是3*3。
图2是本发明的具体实施方式中芯片阵列对划片槽面积优化的示意图,图中外围一圈深色区域为划片槽,阵列内部的芯片之间如A点位置的划片槽可以省略。
图3是本发明的具体实施方式中芯片阵列对终端结构位置优化的示意图,图中A点位置原本并行的两条终端结构可以交叠优化,B点位置在四颗芯片之间,可用于监控芯片阵列实际终端电场。
图4是本发明的具体实施方式中对芯片阵列根据实际性能决定是否合格、是否打线的示意图。
图5是本发明的具体实施方式中对芯片阵列在电路应用中,对阵列中的芯片进行编码和使用的示意图,图中既可以对坏点B1位置不编码、不打线,也可以对B1编码后在系统中不使用。
图6为实施例中Silvaco软件生成剖面的电场分布图。
图7为实施例中场限制环仿真优化示意图
图8为实施例中JTE结构仿真优化示意图。
具体实施方式
本发明提供一种多颗芯片同时制备封装使用的方法,主要适用于小尺寸、大功率的碳化硅器件,包括以下的工艺步骤:
S1:在碳化硅器件芯片的结构设计时,根据圆片大小、芯片尺寸,确认多颗芯片阵列的周期性结构m*n,m和n为大于等于1的自然数,且m*n大于等于2;
S2:在碳化硅器件芯片的结构设计时,根据器件耐压需求,对芯片阵列的相邻芯片之间的终端结构,即重叠区域进行优化,优化内容包括省去原有的划片槽,以及通过电场仿真,重新确认终端结构;若终端结构为场限制环,优化对象为环的根数、环宽和间距,若终端结构为JTE,优化对象为各注入条件的区域宽度;
S3:依照原本的流程进行圆片的工艺加工,不增加额外流程;
S4:完成圆片的微加工工艺后,对圆片性能进行测试、筛选统计;
S5:完成测试后,沿芯片阵列的边缘对圆片进行划片;
S6:划片完成后,依照不同的应用需求,将芯片阵列进行分拣;
S7:最后,将芯片阵列应用于不同需求的模块或者电路中。
进一步的,所述步骤S1中,主要针对尺寸较小的芯片,默认条件下指边长小于1mm,从而最大化减小划片刀数,缩短工艺时间的优势;m*n结构的选择默认条件下,按照芯片阵列的实际边长0.3-2cm区间进行选择,兼顾圆片边缘面积的损失,和芯片阵列集成到电路或者模块时的难易程度,所以最终要根据实际应用场景决定。
步骤S2中,对芯片阵列的优化内容,包括划片槽区域,以及器件终端耐压区域。
步骤S3中,对既定的圆片加工工艺难度和复杂度,均没有增加。
步骤S5和S6中,由于采用芯片阵列为最小单元,可以缩短圆片的划片和分拣周期,减小成本。
下面结合附图,对本发明的技术方案做进一步的阐述。
实施例
本发明公开了一种多颗芯片同时制备、封装、使用的方法,主要适用于小体积、大功率的碳化硅器件,应用情形主要针对阵列单元,该项发明主要但不仅限用于以下几个情况:
A模块中使用,需要多颗相同小电流芯片的情形,可以通过外接电路将阵列中的芯片用于模块的不同位置;
B需要高可靠性的电路中,阵列单元中的芯片由于是同批次同片的流片,器件一致性高,器件之间可以互为备份;
C甚至仅从降低成本的角度,阵列单元的不同芯片之间相互并联独立,通过测试筛选,可以剔除阵列单元中的废芯片不打线封装(或者打线封装后在电路中选择不使用),而整个阵列单元还是合格的,相比于相同面积下的独立芯片在该情形下只能整颗报废,可以提升圆片成品率。
包括以下步骤:
S1:在碳化硅器件芯片的结构设计时,根据圆片大小、芯片尺寸,确认多颗芯片阵列的周期性结构m*n,m和n为大于等于1的自然数,且m*n大于等于2,如图1所示;
在碳化硅器件芯片所在圆片的布局设计时,根据实际小电流管芯的管芯尺寸(例如边长<1mm),以及整个圆片的尺寸(例如4、6英寸),选择合适的m*n阵列(m和n为大于等于1的自然数,且m*n大于等于2)作为最小单元,兼顾圆片的面积最大利用,以及后续封装使用的配套材料尺寸;由此带来的圆片边缘损失管芯可以用作PCM测试图形;
S2:在碳化硅器件芯片的结构设计时,根据器件耐压需求,对芯片阵列的相邻芯片之间的终端结构,即重叠区域进行优化,优化内容包括省去原有的划片槽,以及通过电场仿真,重新确认终端结构;若终端结构为场限制环,优化对象为环的根数、环宽和间距,若终端结构为JTE结构,优化对象为各注入条件的区域宽度,如图2和图3所示;
其中,通过电场仿真,重新确认终端结构,具体为:
对于特定半导体器件终端结构的电场仿真,使用Silvaco软件,具体仿真流程如下:
1)进行终端结构的剖面2D结构进行定义描述,包括半导体材料种类、浓度、区域结构;
2)通过软件自带工具包的功能,仿真外加电压下的电场分布情况,提供Silvaco软件生成剖面的电场分布图,如图6所示;
3)调节终端结构,并在软件中定义图中电场分布变化剧烈的区域调节仿真计算精度,从而得到更准确的仿真结构。
终端结构的作用是将器件工作时的高电压,在终端边缘部分逐渐过渡到无穷远处的零电压,避免局部场强过大导致器件烧毁。
场限制环终端结构是指采用同种注入条件(包括注入元素种类、注入能量和注入剂量等),在一次完整注入过程后,形成的多根不同宽度和不同间距环形结构,该结构使得电压降分散在各个环与环之间,达到降低场强的目的。限制环结构的优化可以通过不断仿真优化实现,趋势上环数越多、环间距越细密,电场降低效果越好,但设计也受到终端面积总量、工艺尺寸精度等成本和技术条件的限制,需要实验验证获得最优解。通常对于1kV的电压降,会采用10-20根环,环宽小于10um,环间距在1um左右,其中越靠近器件的部分环宽和环间距越细。
对于JTE(junction termination extension)终端结构,会采用多种注入条件,形成不同注入深度或者注入浓度的环形区域叠加,同样实现降低边缘电场的效果。通常在靠近器件的位置先采用较高注入剂量,以一定注入能量形成JTE1区域,例如采用300KeV注入2e13 cm-2;再在远离器件位置,采用较低注入剂量,以相同或者更高注入能量形成JTE2区域,例如采用500KeV注入1e13 cm-2。JTE结构同样需经过仿真筛选最优解。因为注入条件太多会增加工艺成本,JTE结构的环形区域数目有限,如2-4块。相比限制环结构,JTE结构需要占用的终端面积更小,即物料方面成本更低,但是对于工艺精度的要求更高,即工艺容错更小。也有部分器件终端是将JTE结构和场限制环结构复合使用。
在本发明中,无论是场限制环还是JTE结构,设计思路是类似的。单枚芯片的终端设计时,会考虑流出足够的设计冗余宽度和划片槽宽度,而在多枚芯片的条件下,划片槽宽度首先可以省去,其次芯片与芯片之间的冗余宽度设计部分只要留其中一份即可。然后进一步优化,可以设计为不留冗余宽度部分,直接对芯片之间的终端结构连在一起进行仿真优化,如图7、图8。
S3:依照原本的流程进行圆片的工艺加工,不增加额外流程,不增加工艺难度和精度要求;
S4:完成圆片的微加工工艺后,对圆片中每颗芯片性能进行测试,再按照芯片阵列区域进行良率筛选统计;此处根据前文不同的应用情况,情况A和情况B中只有所有单芯片合格的芯片阵列被认为合格,情况C中可以额外将部分非全芯片合格的芯片阵列判作次级合格品;
S5:完成测试后,沿芯片阵列的边缘对圆片进行划片;在器件划片过程中,原本按单颗划开的方案中,由于划片槽宽度占用所带来的圆片面积损失不可避免,尤其在小电流小面积芯片中比重较大,采用阵列单元可以减小该部分面积损失;其次,采用阵列单元可以减少所需的划片总刀数,减少划片时间和划片损耗,降低成本;
S6:划片完成后,依照不同的应用需求,将芯片阵列进行分拣,可以只对合格芯片进行打线,如图4所示;
S7:最后,将芯片阵列应用于不同需求的模块或者电路中,先对芯片进行编码,如图5所示。然后根据不同的应用情况,情况A中可以依照编码将芯片用于电路中不同的位置;情况B中可以默认将一些闲置芯片设为备用芯片,例如将C3芯片设为其余所有芯片或者部分芯片的备份,当电路出现异常时,可以用作替代,避免整个阵列或者电路的报废;情况C中可以将前面提及的存在不合格单芯片的芯片阵列次级合格品,在编码时,将坏芯片如B1在电路中设为不使用。

Claims (5)

1.一种多颗芯片同时制备封装使用的方法,其特征在于,包括以下步骤:
S1:在碳化硅器件芯片的结构设计时,根据圆片大小、芯片尺寸,确认多颗芯片阵列的周期性结构m*n,m和n为大于等于1的自然数,且m*n大于等于2;
S2:在碳化硅器件芯片的结构设计时,根据器件耐压需求,对芯片阵列的相邻芯片之间的终端结构,即重叠区域进行优化,优化内容包括省去原有的划片槽,以及通过电场仿真,重新确认终端结构;若终端结构为场限制环,优化对象为环的根数、环宽和间距,若终端结构为JTE,优化对象为各注入条件的区域宽度;
S3:进行圆片的工艺加工;
S4:完成圆片的微加工工艺后,对圆片性能进行测试、筛选统计;
S5:完成测试后,沿芯片阵列的边缘对圆片进行划片;
S6:划片完成后,依照不同的应用需求,将芯片阵列进行分拣;
S7:将芯片阵列应用于不同需求的模块或者电路中。
2.根据权利要求1所述的多颗芯片同时制备封装使用的方法,其特征在于:步骤S6中,只对合格芯片进行打线。
3.根据权利要求1所述的多颗芯片同时制备封装使用的方法,其特征在于:步骤S7中,先对芯片进行编码,然后根据不同的应用情况,分别处理:
情况A:依照编码将芯片用于电路中不同的位置;
情况B:默认将一些闲置芯片设为备用芯片,当电路出现异常时,用作替代;
情况C:将存在不合格单芯片的芯片阵列次级合格品,在编码时,将坏芯片在电路中设为不使用。
4.根据权利要求1所述的多颗芯片同时制备封装使用的方法,其特征在于:步骤S6中,步骤S2中,通过电场仿真,重新确认终端结构,具体为:
对于半导体器件终端结构的电场仿真,使用Silvaco软件,具体仿真流程如下:
1)进行终端结构的剖面2D结构进行定义描述,包括半导体材料种类、浓度、区域结构;
2)通过软件自带工具包的功能,仿真外加电压下的电场分布情况,提供Silvaco软件生成剖面的电场分布图;
3)调节终端结构,得到更准确的仿真结构。
5.根据权利要求1所述的多颗芯片同时制备封装使用的方法,其特征在于:步骤S1 中,芯片边长小于1mm。
CN202011365995.3A 2020-11-29 2020-11-29 一种多颗芯片同时制备封装使用的方法 Active CN112563250B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011365995.3A CN112563250B (zh) 2020-11-29 2020-11-29 一种多颗芯片同时制备封装使用的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011365995.3A CN112563250B (zh) 2020-11-29 2020-11-29 一种多颗芯片同时制备封装使用的方法

Publications (2)

Publication Number Publication Date
CN112563250A CN112563250A (zh) 2021-03-26
CN112563250B true CN112563250B (zh) 2022-07-22

Family

ID=75046520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011365995.3A Active CN112563250B (zh) 2020-11-29 2020-11-29 一种多颗芯片同时制备封装使用的方法

Country Status (1)

Country Link
CN (1) CN112563250B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101258583A (zh) * 2005-07-29 2008-09-03 飞思卡尔半导体公司 利用多管芯小片的三维集成电路的制造
CN105329850A (zh) * 2015-10-21 2016-02-17 美新半导体(无锡)有限公司 圆片级芯片尺寸封装的测试方法
CN107123669A (zh) * 2017-06-28 2017-09-01 电子科技大学 一种碳化硅功率器件终端结构
CN110246830A (zh) * 2019-06-10 2019-09-17 芯盟科技有限公司 一种半导体结构、图像传感器、芯片及其形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101258583A (zh) * 2005-07-29 2008-09-03 飞思卡尔半导体公司 利用多管芯小片的三维集成电路的制造
CN105329850A (zh) * 2015-10-21 2016-02-17 美新半导体(无锡)有限公司 圆片级芯片尺寸封装的测试方法
CN107123669A (zh) * 2017-06-28 2017-09-01 电子科技大学 一种碳化硅功率器件终端结构
CN110246830A (zh) * 2019-06-10 2019-09-17 芯盟科技有限公司 一种半导体结构、图像传感器、芯片及其形成方法

Also Published As

Publication number Publication date
CN112563250A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US6121677A (en) Reduced size integrated circuits and methods using test pads located in scribe regions of integrated circuits wafers
US6525350B1 (en) Semiconductor integrated circuit basic cell semiconductor integrated circuit using the same
US8680653B2 (en) Wafer and a method of dicing a wafer
EP0343720B1 (en) Semiconductor wafer and method of dividing it
US20080277659A1 (en) Test structure for semiconductor chip
WO1995019645A1 (en) Methods and apparatus for producing integrated circuit devices
TWI571642B (zh) 使用單一探針測試晶片的多個連接墊的測試裝置及方法
CN106887425A (zh) 用于电熔丝的静电放电保护结构
CN112563250B (zh) 一种多颗芯片同时制备封装使用的方法
CN109196648B (zh) Esd装置的触点阵列优化
CN113130428A (zh) 半导体元件封装结构
EP0073721A2 (en) Large scala integration semiconductor device having monitor element and method of manufacturing the same
US9633969B2 (en) Semiconductor device, semiconductor chip, and method of manufacturing semiconductor device
US8291368B2 (en) Method for reducing surface area of pad limited semiconductor die layout
US20060125059A1 (en) Semiconductor wafer with protection structure against damage during a die separation process
KR100541798B1 (ko) 반도체 장치의 테그 패턴 형성방법
JP4002143B2 (ja) 半導体装置の製造方法
JP2000269281A (ja) 半導体装置およびそのテスト方法
CN107331711B (zh) 一种超低漏电水平的低压tvs器件及其制造方法
JP2022157422A (ja) 半導体装置及び半導体装置の製造方法
US20040232517A1 (en) Semiconductor wafer, semiconductor device, and process for manufacturing the semiconductor device
CN218585952U (zh) 一种圆形晶圆片结构
CN113838836B (zh) 晶圆结构及其制造方法
CN112349703B (zh) 一种测试电路的稳压芯片及其制备方法
S Rodriguez et al. Package and process design augmentation of QFN leadframe device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant