CN112538656B - 一种钒酸铁锂正极单晶材料的制备方法及其应用 - Google Patents

一种钒酸铁锂正极单晶材料的制备方法及其应用 Download PDF

Info

Publication number
CN112538656B
CN112538656B CN202011354502.6A CN202011354502A CN112538656B CN 112538656 B CN112538656 B CN 112538656B CN 202011354502 A CN202011354502 A CN 202011354502A CN 112538656 B CN112538656 B CN 112538656B
Authority
CN
China
Prior art keywords
lithium iron
phase
lithium
vanadate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202011354502.6A
Other languages
English (en)
Other versions
CN112538656A (zh
Inventor
王坤鹏
张建秀
刘泳
任衍彪
徐本燕
李凤丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zaozhuang University
Original Assignee
Zaozhuang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zaozhuang University filed Critical Zaozhuang University
Priority to CN202011354502.6A priority Critical patent/CN112538656B/zh
Publication of CN112538656A publication Critical patent/CN112538656A/zh
Application granted granted Critical
Publication of CN112538656B publication Critical patent/CN112538656B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/02Zone-melting with a solvent, e.g. travelling solvent process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种钒酸铁锂正极单晶材料的制备方法及其应用,将锂源、二价态铁源、和高价态钒源按摩尔比Li:Fe:V=1:1:1进行配料,于玛瑙坩埚中充分研磨,在充有惰性气体的密闭马弗炉中煅烧12小时;取出重新研磨,在马弗炉中和保护气氛下进行高温固相反应,得到纯相的钒酸铁锂化合物;得到的纯相钒酸铁锂破碎,加入助熔剂,在玛瑙坩埚中充分研磨混合均匀,制作晶体生长料棒;料棒引入光学浮区炉,采用助熔剂浮区技术生长该化合物的单晶体,晶体尺寸达到厘米级。本发明中的钒酸铁锂正极单晶材料为纯相的橄榄石结构,无杂质相,电化学性能优异。

Description

一种钒酸铁锂正极单晶材料的制备方法及其应用
技术领域
本发明涉及一种钒酸铁锂正极单晶材料的制备方法及其应用,属于电池材料技术领域。
背景技术
相对而言,我国的能源储备量较低,目前仍有超过50%的原油需要进口,因此,大力发展锂离子电池技术已经变得十分迫切,其中,锂离子电池正极材料是核心,它决定了锂离子电池的能量密度和循环寿命。
目前已经商业化的锂离子电池正极材料主要包括磷酸铁锂和三元正极材料,然而,它们的安全性、寿命和能量密度仍然达不到未来电动汽车和储能系统应用的要求,均需要继续改进提高,因此,寻找一种比容量高、成本 低廉、环境友好的锂离子电池正极材料,仍然是当前锂离子电池领域的一个主要研究方向。
传统锂离子电池正极材料一般是粒径为1微米左右的球形二次颗粒,在充放电过程中,球形二次颗粒内部的晶界容易开裂甚至整个颗粒发生破碎,近两年来,人们开始采用单晶颗粒取代传统的球形二次颗粒,以降低颗粒内部的晶界和缺陷,提高材料的稳定性。
发明内容
本发明的目的在于提供一种钒酸铁锂正极单晶材料的制备方法及其应用,以解决上述背景技术中提出的问题。
为实现上述目的本发明采用以下技术方案:
一种钒酸铁锂正极单晶材料的制备方法,所述钒酸铁锂的化学式为:LiFeVO4,其晶型为单一纯相的橄榄石结构,所述的单晶尺寸为微米极至厘米级,制备方法包括以下步骤:
(1)将锂源、二价态铁源、和高价态钒源按摩尔比Li:Fe:V = 1:1:1进行配料,于玛瑙坩埚中充分研磨,在充有惰性气体的密闭马弗炉中煅烧12小时;取出重新研磨,在马弗炉中和保护气氛下进行高温固相反应,得到纯相的钒酸铁锂(LiFeVO4)化合物;
(2)将步骤(1)中得到的纯相钒酸铁锂破碎,加入助熔剂,在玛瑙坩埚中充分研磨混合均匀,制作晶体生长料棒;
(3)将步骤(2)所述的料棒引入光学浮区炉,采用助熔剂浮区技术生长该化合物的单晶体,晶体尺寸达到厘米级。
优选的,所述锂源为Li2CO3、LiNO3、Li2C2O4.H2O或LiOH,所述二价态铁源为Fe(OH)2或FeCO3,所述高价态钒源为V2O5;惰性气体为N2或Ar气,煅烧温度为320oC,高温固相反应温度为850-900oC,反应时间为24-48小时;
优选的,所述助熔剂为Li2O, LiF或Li2O-V2O5;制备的料棒直径为0.5-0.8 cm,料棒长度为5-15cm;
优选的,晶体生长温度为1050-1080 oC,料棒旋转速率为30-50rpm,晶体生长速率为0.15-5mm/h。
上述的制备方法制备得到的橄榄石型钒酸铁锂单晶正极材料,其特征在于,将所述橄榄石型钒酸铁锂材料在制备锂离子电池正极中的应用。
本发明中相关化学反应方程式为:
(1) 2LiOH + 2FeCO3 + V2O5 → 2LiFeVO4 + 2CO2↑ + H2O↑ ;
(2) Li2CO3 + 2Fe(OH)2 + V2O5 → 2LiFeVO4 + CO2↑ + 2H2O↑;
(3) Li2O + 2FeCO3 + V2O5 → 2LiFeVO4 + 2CO2↑ ;
(4) 2LiNO3 + 2FeO + V2O5 → 2LiFeVO4 + 2NO2+ O2↑。
与现有技术相比,本发明的有益效果是:本发明所述制备方法与现有锂离子电池正极材料制备技术相比较,可获得从微米级到厘米级单晶颗粒,生长速度快,成本低等优点。
附图说明
图1为本发明钒酸铁锂的粉末X射线衍射谱。
图2为本发明钒酸铁锂的单晶结构图。
图3为本发明钒酸铁锂的晶体照片。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的阐述。
实施例1
合成钒酸铁锂(LiFeVO4)化合物:
采用固相合成法在850oC烧结24小时,其化学方程式为:2LiOH + 2FeCO3 + V2O5→ 2LiFeVO4 + 2CO2↑ + H2O↑ ;
将LiOH、FeCO3、V2O5按照化学计量比1:1:1置于玛瑙坩埚内,用无水酒精充分研磨30分钟,然后置于密闭马弗炉中,抽真空后充入氮气至2bar,缓慢升温至320oC,恒温12小时,以充分放出气体,然后自然降温至室温,取出坩埚再次研磨30分钟,再置于马弗炉中于850oC恒温24小时,降至室温后,取出研磨即获得钒酸铁锂(LiFeVO4)化合物,对该化合物进行粉末XRD测试,如图1所示;
钒酸铁锂(LiFeVO4)料棒的制备:
将上述步骤的纯相钒酸铁锂破碎,加入助熔剂LiF,其中钒酸铁锂与助熔剂的摩尔比为1: 0.5,在玛瑙坩埚中充分研磨混合均匀,制作晶体生长料棒,料棒的直径为0.8 cm,料棒的长度为 8cm;
钒酸铁锂(LiFeVO4)单晶的生长:
将上述步骤的料棒引入光学浮区炉,采用助熔剂浮区技术生长该化合物的单晶体,晶体生长温度为1050oC,料棒旋转速率为30 rpm,晶体生长速率为0.15/h,获得直径为0.6cm, 长度为5cm的钒酸铁锂(LiFeVO4)单晶。图2为该晶体的单晶X射线结构解析图,图3为该晶体的照片。
实施例2
反应式Li2CO3 + 2Fe(OH)2 + V2O5 → 2LiFeVO4 + CO2↑ + 2H2O↑合成LiFeVO4化合物,具体操作步骤依据实施例1进行;
将Li2CO3、2Fe(OH)2、V2O5按照化学计量比1:1:1置于玛瑙坩埚内,用无水酒精充分研磨45分钟,然后置于密闭马弗炉中,抽真空后充入氮气至5bar,缓慢升温至340oC,恒温18小时,以充分放出气体,然后自然降温至室温,取出坩埚再次研磨45分钟,再置于马弗炉中于880oC恒温48小时,降至室温后,取出研磨即获得钒酸铁锂(LiFeVO4)化合物,对该化合物进行粉末XRD测试;
钒酸铁锂(LiFeVO4)料棒的制备:
将上述步骤的纯相钒酸铁锂破碎,加入助熔剂Li2O,其中钒酸铁锂与助熔剂的摩尔比为1: 1,在玛瑙坩埚中充分研磨混合均匀,制作晶体生长料棒,料棒的直径为0.5 cm,料棒的长度为 12 cm;
钒酸铁锂(LiFeVO4)单晶的生长:
将上述步骤的料棒引入光学浮区炉,采用助熔剂浮区技术生长该化合物的单晶体,晶体生长温度为1080oC,料棒旋转速率为40 rpm,晶体生长速率为0.2/h,获得直径为0.4cm, 长度为9cm的钒酸铁锂(LiFeVO4)单晶。
实施例3
反应式Li2O + 2FeCO3 + V2O5 → 2LiFeVO4 + 2CO2↑ 合成LiFeVO4化合物,具体操作步骤依据实施例1进行;
将Li2O、FeCO3、V2O5按照化学计量比1:1:1置于玛瑙坩埚内,用无水酒精充分研磨15分钟,然后置于密闭马弗炉中,抽真空后充入氮气至8 bar,缓慢升温至360oC,恒温20小时,以充分放出气体,然后自然降温至室温,取出坩埚再次研磨20分钟,再置于马弗炉中于830oC恒温24小时,降至室温后,取出研磨即获得钒酸铁锂(LiFeVO4)化合物,对该化合物进行粉末XRD测试;
钒酸铁锂(LiFeVO4)料棒的制备:
将上述步骤的纯相钒酸铁锂破碎,加入助熔剂Li2O-V2O5,其中钒酸铁锂与助熔剂的摩尔比为1: 1.5,在玛瑙坩埚中充分研磨混合均匀,制作晶体生长料棒,料棒的直径为1.0 cm, 料棒的长度为 6 cm;
钒酸铁锂(LiFeVO4)单晶的生长:
将上述步骤的料棒引入光学浮区炉,采用助熔剂浮区技术生长该化合物的单晶体,晶体生长温度为1090oC,料棒旋转速率为50 rpm,晶体生长速率为0.1/h,获得直径为0.8cm, 长度为4.5 cm的钒酸铁锂(LiFeVO4)单晶。
实施例4
反应式2LiNO3 + 2FeO + V2O5 → 2LiFeVO4 + 2NO2+ O2↑ 合成LiFeVO4化合物,具体操作步骤依据实施例1进行;
将LiNO3、FeO、V2O5按照化学计量比1:1:1置于玛瑙坩埚内,用无水酒精充分研磨20分钟,然后置于密闭马弗炉中,抽真空后充入氮气至10 bar,缓慢升温至380oC,恒温28小时,以充分放出气体,然后自然降温至室温,取出坩埚再次研磨30分钟,再置于马弗炉中于850oC恒温48小时,降至室温后,取出研磨即获得钒酸铁锂(LiFeVO4)化合物,对该化合物进行粉末XRD测试;
钒酸铁锂(LiFeVO4)料棒的制备:
将上述步骤的纯相钒酸铁锂破碎,加入助熔剂LiF,其中钒酸铁锂与助熔剂的摩尔比为1: 2,在玛瑙坩埚中充分研磨混合均匀,制作晶体生长料棒,料棒的直径为1.2 cm, 料棒的长度为 9 cm;
钒酸铁锂(LiFeVO4)单晶的生长:
将上述步骤的料棒引入光学浮区炉,采用助熔剂浮区技术生长该化合物的单晶体,晶体生长温度为1090oC,料棒旋转速率为20 rpm,晶体生长速率为0.5/h,获得直径为1.1cm, 长度为6 cm的钒酸铁锂(LiFeVO4)单晶。
以上所述为本发明较佳实施例,对于本领域的普通技术人员而言,根据本发明的教导,在不脱离本发明的原理与精神的情况下,对实施方式所进行的改变、修改、替换和变型仍落入本发明的保护范围之内。

Claims (2)

1.一种钒酸铁锂正极单晶材料的制备方法,其特征在于,所述钒酸铁锂的化学式为:LiFeVO4,其晶型为单一纯相的橄榄石结构,所述的单晶尺寸为微米极至厘米级,制备方法包括以下步骤:
(1)将锂源、二价态铁源、和高价态钒源按摩尔比Li:Fe:V = 1:1:1进行配料,于玛瑙坩埚中充分研磨,在充有惰性气体的密闭马弗炉中煅烧12小时;取出重新研磨,在马弗炉中和保护气氛下进行高温固相反应,得到纯相的钒酸铁锂化合物;
(2)将步骤(1)中得到的纯相钒酸铁锂破碎,加入助熔剂,在玛瑙坩埚中充分研磨混合均匀,制作晶体生长料棒;
(3)将步骤(2)所述的料棒引入光学浮区炉,采用助熔剂浮区技术生长该化合物的单晶体,晶体尺寸达到厘米级;
所述锂源为Li2CO3、LiNO3、Li2C2O4.H2O或LiOH,所述二价态铁源为Fe(OH) 2或FeCO3,所述高价态钒源为V2O5;惰性气体为N2或Ar气,煅烧温度为320oC,高温固相反应温度为850-900oC,反应时间为24-48小时;所述助熔剂为Li2O, LiF或Li2O- V2O5;制备的料棒直径为0.5-0.8 cm,料棒长度为5-15cm;晶体生长温度为1050-1080 oC,料棒旋转速率为30-50rpm,晶体生长速率为0.15-5mm/h。
2.一种如权利要求1所述的制备方法制备得到的橄榄石型钒酸铁锂单晶正极材料,其特征在于,将所述橄榄石型钒酸铁锂材料在制备锂离子电池正极中的应用。
CN202011354502.6A 2020-11-27 2020-11-27 一种钒酸铁锂正极单晶材料的制备方法及其应用 Expired - Fee Related CN112538656B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011354502.6A CN112538656B (zh) 2020-11-27 2020-11-27 一种钒酸铁锂正极单晶材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011354502.6A CN112538656B (zh) 2020-11-27 2020-11-27 一种钒酸铁锂正极单晶材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN112538656A CN112538656A (zh) 2021-03-23
CN112538656B true CN112538656B (zh) 2022-03-01

Family

ID=75016966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011354502.6A Expired - Fee Related CN112538656B (zh) 2020-11-27 2020-11-27 一种钒酸铁锂正极单晶材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112538656B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966669A (zh) * 2014-05-23 2014-08-06 新疆维吾尔自治区产品质量监督检验研究院 一种区熔法生长硼酸铋锌单晶的方法
CN104313690A (zh) * 2014-10-10 2015-01-28 北京工业大学 一种生长GZO(ZnO:Ga)晶体的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966669A (zh) * 2014-05-23 2014-08-06 新疆维吾尔自治区产品质量监督检验研究院 一种区熔法生长硼酸铋锌单晶的方法
CN104313690A (zh) * 2014-10-10 2015-01-28 北京工业大学 一种生长GZO(ZnO:Ga)晶体的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Electrical relaxation in the compound:LiFeVO4;Moti Ram;《Materials chenmistry and physical》;20081231;465-468 *
LiFeVO4 – cathode material for litium chemical power sources;Ya. Kovalyshyn;《Вісник Львівського університету. Серія хімічна》;20180411;第486页和第487页第2段 *
on the existence of LiFeVO4-tales and imagination;oliver clemens;《Article》;20111231;1036-1044 *
Optical floating-zone growth of single crystals of Li-ion battery material LiCoO2;A. Jain;《Journal of crystal Growth》;20200227;第2页右栏至第3页左栏实验部分和第4页右栏至第5页右栏第1段 *

Also Published As

Publication number Publication date
CN112538656A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
KR101767848B1 (ko) 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지
EP3410529B1 (en) Solid electrolyte material and all solid lithium ion secondary battery
Wang et al. Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-Ion batteries
JP5347031B2 (ja) リチウム電池用ナノ正極材料及びその製造方法
CN103794777B (zh) 一种表面包覆的镍锰酸锂正极材料的制备方法
Lou et al. Mg-doped Li1. 2Mn0. 54Ni0. 13Co0. 13O2 nano flakes with improved electrochemical performance for lithium-ion battery application
CN113659141B (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
CN102306772A (zh) 一种混合离子电池氟磷酸亚铁钠正极材料的制备方法
CN113066978B (zh) 一种Ta表面掺杂的高镍单晶正极材料及制备方法
CN114335681B (zh) 无机卤化物固态电解质、其制备方法、锂离子电池及应用
CN110589793A (zh) 一种金属掺杂和Mxene包覆双重改性磷酸铁锂复合材料及制备方法与应用
CN113363569B (zh) 一种高稳定性无机硫化物固体电解质及其制备方法
CN105576237A (zh) 一种添加Zn的锂离子电池正极材料及其制备方法
Liang et al. Preparation, characterization and lithium-intercalation performance of different morphological molybdenum dioxide
CN114655984A (zh) 一种锂离子电池铟铌氧化物负极材料及其制备方法
CN112538656B (zh) 一种钒酸铁锂正极单晶材料的制备方法及其应用
CN114142010B (zh) 氧化镁、氟化铈复合包覆的锂离子电池正极材料及其制备方法
CN105958043B (zh) 一种掺杂Ti4+、Cr3+的三氟化铁复合材料及其制备方法、锂离子电池
CN115010189A (zh) 一种多晶三元正极材料的单晶化方法
CN112018340B (zh) 一种碳包覆氟磷酸钒钛钠复合材料及其制备和在钠电中的应用
Crouzet et al. A novel route for FePO4 olivine synthesis from sarcopside oxidation
CN113104845B (zh) 采用电极接头粉为原料制备多孔人造石墨负极材料的方法
WO2016192382A1 (zh) 一种钛酸锂/锡复合负极材料的制备方法
CN102324518B (zh) 一种用于锂离子电池的负极材料及制备方法
CN114620775B (zh) 一种双阴离子共掺杂的富锂锰基复合材料、制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220301