CN112531050B - 具有改善的横向sam型apd边缘电场聚集效应的器件及其制备方法 - Google Patents

具有改善的横向sam型apd边缘电场聚集效应的器件及其制备方法 Download PDF

Info

Publication number
CN112531050B
CN112531050B CN202011393697.5A CN202011393697A CN112531050B CN 112531050 B CN112531050 B CN 112531050B CN 202011393697 A CN202011393697 A CN 202011393697A CN 112531050 B CN112531050 B CN 112531050B
Authority
CN
China
Prior art keywords
type
layer
algan layer
electric field
sam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011393697.5A
Other languages
English (en)
Other versions
CN112531050A (zh
Inventor
陈敦军
杨天
张�荣
郑有炓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202011393697.5A priority Critical patent/CN112531050B/zh
Publication of CN112531050A publication Critical patent/CN112531050A/zh
Application granted granted Critical
Publication of CN112531050B publication Critical patent/CN112531050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种具有改善的横向SAM型APD边缘电场聚集效应的器件。该器件是先在p型AlGaN衬底上同质外延一层一定厚度的非故意掺杂的AlGaN,再在AlGaN上异质外延一层GaN,然后通过离子注入的方式在AlGaN层形成横向的p‑i‑n‑i‑n结构,上面形成p‑GaN覆盖层。刻蚀掉不需要的部分p‑GaN后,进行p型欧姆接触与n型欧姆接触的制备,形成横向SAM型APD器件。通过调节p‑GaN覆盖层的掺杂浓度与覆盖长度等参数,可以实现对横向SAM型APD器件边缘电场的调节。在合适的覆盖长度下,可以实现不具有显著的边缘电场聚集效应的GaN基横向SAM型APD器件。同时,p‑GaN覆盖层降低了掺杂与欧姆接触的难度,而极化场的引入,也会带来正的器件效益。

Description

具有改善的横向SAM型APD边缘电场聚集效应的器件及其制备 方法
技术领域
本发明涉及一种横向GaN基SAM型APD。尤其是一种具有改善的横向SAM型APD边缘电场聚集效应的器件。
背景技术
相较于纵向APD,横向APD结构具有对外延厚度依赖小,器件互联简单,无需刻蚀台阶就能形成欧姆接触等优点。然而,与纵向结构一样,GaN基SAM型APD同样存在反向偏压下,边缘电场大量聚集,而导致器件被提前击穿的缺点。
发明内容
本发明的目的在于缓解横向SAM型APD边缘电场聚集效应,实现了具有改善的横向SAM型APD边缘电场聚集效应的器件。
本发明的目的通过以下技术方案实现:
一种具有改善的横向SAM型APD边缘电场聚集效应的器件,其结构包括:
一衬底层;
一生长于衬底层上的p-型AlGaN层;
一生长于p-型AlGaN层上同组分的夹心式横向p-i-n-i-n结AlGaN层;
一生长于夹心式横向p-i-n-i-n结AlGaN层上方的p型GaN层;
p型电极,位于p型GaN层的上方;
n型电极,位于夹心式p-i-n-i-n结AlGaN层中最外侧的n型AlGaN层的上方。
优选的,所述p型GaN层覆盖夹心式横向p-i-n-i-n结AlGaN层的p型和i型AlGaN层,同时覆盖夹心式p-i-n-i-n结AlGaN层中间的n型AlGaN层的部分区域,但不至于超过该区,从而改善器件的边缘电场聚集效应。
优选的,所述衬底层为蓝宝石衬底、Si衬底或SiC衬底。
优选的,所述p-型AlGaN层的掺杂浓度为1*1015-1*1016cm-3,高度为0.5-1μm。
优选的,所述横向的p-i-n-i-n AlGaN层高度为0.3-0.8μm;p型AlGaN宽度为0.49-0.98μm,i型AlGaN宽度为0.18-0.36μm,n型AlGaN宽度为0.06-0.12μm,i型AlGaN宽度为0.18-0.36μm,n型AlGaN宽度为0.49-0.98μm,p型GaN层宽度为0.6926-1.4μm。
优选的,所述p型GaN层的高度为0.01-0.02μm,左端点与下方p型AlGaN左端点对齐,右端覆盖至中间的n型AlGaN区域内,而不超出n型区。
优选的,所述p型GaN层的掺杂浓度为7*1016-1*1018cm-3,p型AlGaN的掺杂浓度为1*1018-2*1018cm-3,n型AlGaN的掺杂浓度为2*1018-8*1018cm-3
优选的,所述n型电极为Ti/Al/Ni/Au多层金属,p型电极为Ni/Au多层金属。
本发明公开了上述的具有改善的横向SAM型APD边缘电场聚集效应的器件的制备方法,其步骤包括:
(1)MOCVD法在衬底表面沉积p-型AlGaN层,非故意掺杂的AlGaN层与GaN层;
(2)用离子注入的方法,将非故意掺杂的AlGaN层与GaN层掺杂成横向的多片夹心式p-i-n-i-n结构与p型GaN层;
(3)使用ICP刻蚀掉一部分p型GaN层,露出一端的i型和n型AlGaN层,以及部分中间的n型AlGaN层;
(4)用电子束蒸镀的方法在n型AlGaN层上蒸镀n型电极,在p-GaN层上蒸镀p型电极。
优选的,步骤(1)中生长p-型AlGaN层的方法:三甲基镓三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1000-1100℃,Mg的掺杂浓度为1*1015-1*1016cm-3;非故意掺杂的AlGaN层的生长方法:三甲基镓、三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1000-1100℃;非故意掺杂的GaN层的生长方法:三甲基镓和NH3分别作为Ga源和N源,载气为H2或者N2,生长温度为1000-1100℃,生长时间2-5min;
步骤(2)中采用掩模选区工艺进行离子注入,p型GaN层使用Mg+注入,注入剂量为7*1016cm-3-1*1018cm-3;p型AlGaN层使用Mg+注入,注入剂量为1*1018-2*1018cm-3;n型AlGaN层使用Si+注入,注入剂量为2*1018-8*1018cm-3
步骤(4)中用电子束蒸镀的方法在n型AlGaN层顶表面两端制作Ti/Al/Ni/Au多层金属作为n型电极,然后快速热退火,最后在p-GaN顶表面制作Ni/Au p型金属电极。
本发明还公开了上述的具有改善的横向SAM型APD边缘电场聚集效应的器件的另一种制备方法,其步骤包括:
(1)MOCVD法在蓝宝石衬底表面沉积p-型AlGaN层,非故意掺杂的AlGaN层;生长p-型AlGaN层的方法:三甲基镓、三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1000-1100℃,Mg的掺杂浓度为1*1015-1*1016cm-3;非故意掺杂的AlGaN层的生长方法:三甲基镓、三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1000-1100℃;
(2)用离子注入的方法,采用掩模选区工艺,将非故意掺杂的AlGaN层掺杂形成横向的多片夹心式p-i-n-i-n结构。p型AlGaN层使用Mg+注入,能量较高,注入剂量均为1*1018-2*1018cm-3;n型AlGaN层使用Si+注入能量较高,注入剂量为2*1018-8*1018cm-3
(3)MOCVD或者MBE直接在掺杂完毕的AlGaN层上面生长p-GaN。P型GaN层的生长方法:三甲基镓和NH3分别作为Ga源和N源,载气为H2或者N2,生长温度为1000-1100℃,生长时间2-5min,Mg的掺杂浓度为7*1016-1*1018cm-3
(4)使用ICP刻蚀掉一部分p型GaN层;
(5)用电子束蒸镀的方法在p-GaN层上蒸镀p型电极,在n型AlGaN层上蒸镀n型电极,在n型AlGaN层顶表面两端制作Ti/Al/Ni/Au多层金属作为n型电极,在p-GaN顶表面制作Ni/Au的p型金属电极,前者需要快速热退火,制得具有改善的横向SAM型APD边缘电场聚集效应的器件。
本发明的有益效果是在横向SAM型APD结构上外延一层具有一定长度的p型GaN,通过调节p型GaN的覆盖长度,使得器件具有非显著的边缘电场聚集效应。而传统的横向APD,包括纵向APD在内,边缘电场聚集效应非常明显。所以在外加电压下,边缘处的场强往往最高。而雪崩器件要求器件工作在雪崩状态下,这需要材料内部达到所需的极高的电场要求。而边缘电场聚集处往往在材料达到所需电场之前就已经累计了更高的场强,所以往往使得器件尚未到达所需场强前,边缘处就已经被提前击穿,使得器件不能正常工作。本发明器件可以很好的改善这一问题,最高场强不在边缘处而在体内,除了能够避免提前击穿的风险外,还可以使得器件的雪崩电压降低,大大提高器件的可靠性。
附图说明
图1是实施例1步骤(1)中得到的p-型Al0.2Ga0.8N,非故意掺杂的Al0.2Ga0.8N与GaN外延片结构示意图。
图2是实施例1步骤(2)中得到的形成横向的夹心式p-i-n-i-n结构示意图。
图3是实施例1步骤(3)中得到的刻蚀掉部分p型GaN后的结构示意图。
图4是实施例1步骤(4)中得到的具有改善的横向SAM型APD边缘电场聚集效应的器件结构示意图。
图5为对比例1普通的横向APD反向25V偏压下用Silvaco仿真得到的器件场强分布图。
图6为实施例1的本发明在反向25V偏压下用Silvaco仿真得到的器件场强场强分布图。
图7为实施例4的本发明在反向25V偏压下用Silvaco仿真得到的器件场强分布图。
图8为实施例5的本发明在反向25V偏压下用Silvaco仿真得到的器件场强分布图。
图9为实施例6的本发明在反向25V偏压下用Silvaco仿真得到的器件场强分布图。
图10为实施例7的本发明在反向25V偏压下用Silvaco仿真得到的器件场强分布图。
图11是对比例1的普通横向SAM型APD器件结构示意图。
具体实施方式
以下是结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1-4所示,具有改善的横向SAM型APD边缘电场聚集效应的器件的制备方法,其步骤包括:
(1)MOCVD法在蓝宝石衬底表面沉积p-型Al0.2Ga0.8N层,非故意掺杂的Al0.2Ga0.8N层与GaN层,如图1所示;生长p-型Al0.2Ga0.8N层的方法:三甲基镓三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1000℃,生长厚度为0.5μm,Mg的掺杂浓度为1*1016cm-3;非故意掺杂的Al0.2Ga0.8N层的生长方法:三甲基镓三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1000℃,生长厚度为0.5μm;非故意掺杂的GaN层的生长方法:三甲基镓和NH3分别作为Ga源和N源,载气为H2或者N2,生长温度为1000℃,生长厚度为0.01μm;
(2)用离子注入的方法,将非故意掺杂的Al0.2Ga0.8N层与GaN层掺杂形成横向的多片夹心式p-i-n-i-n结构与p型GaN层,p型Al0.2Ga0.8N宽度为0.49μm,i型Al0.2Ga0.8N为0.18μm,n型Al0.2Ga0.8N为0.06μm,i型Al0.2Ga0.8N为0.18μm,n型Al0.2Ga0.8N为0.49μm,p型GaN层的掺杂浓度为1*1018cm-3,p型Al0.2Ga0.8N的掺杂浓度为1*1018cm-3,n型Al0.2Ga0.8N的掺杂浓度为2*1018cm-3,如图2所示;
(3)使用ICP刻蚀掉一部分p型GaN层,留下p型GaN层宽度为0.6926μm,如图3所示;
(4)用电子束蒸镀的方法在p-GaN层上蒸镀p型电极,在n型Al0.2Ga0.8N层上蒸镀n型电极,在n型Al0.2Ga0.8N层顶表面两端制作Ti/Al/Ni/Au:30/150/50/150nm多层金属作为n型电极,在p-GaN顶表面制作Ni/Au:50/100nm的p型金属电极,前者需在快速热退火炉中850℃30s。制得如图4所示的具有改善的横向SAM型APD边缘电场聚集效应的器件。
选定反向偏压为25V,用silvaco进行仿真,得到的电场分布图如图6所示,可以发现,在n型Al0.2Ga0.8N区处仍有尖峰电场存在。
实施例2
具有改善的横向SAM型APD边缘电场聚集效应的器件的制备方法,其步骤包括:
(1)MOCVD法在Si衬底表面沉积p-型Al0.4Ga0.6N层,非故意掺杂的Al0.4Ga0.6N层;生长p-型Al0.4Ga0.6N层的方法:三甲基镓三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1100℃,生长厚度为1μm,Mg的掺杂浓度为1*1015cm-3;非故意掺杂的Al0.4Ga0.6N层的生长方法:三甲基镓三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1100℃,生长厚度为0.8μm;
(2)用离子注入的方法,采用掩模选区工艺,将非故意掺杂的Al0.4Ga0.6N层掺杂形成横向的多片夹心式p-i-n-i-n结构。p型Al0.4Ga0.6N层使用Mg+注入,能量较高,注入剂量为2*1018cm-3;n型Al0.4Ga0.6N层使用Mg+注入能量较高,注入剂量为3*1018cm-3,p型Al0.4Ga0.6N宽度为0.98μm,i型Al0.4Ga0.6N宽度为0.36μm,n型Al0.4Ga0.6N宽度为0.12μm,i型Al0.4Ga0.6N宽度为0.36μm,n型Al0.4Ga0.6N宽度为0.98μm;
(3)MOCVD或者MBE直接在掺杂完毕的Al0.4Ga0.6N层上面生长p-GaN。P型GaN层的生长方法:三甲基镓和NH3分别作为Ga源和N源,载气为H2或者N2,生长温度为1100℃,生长厚度为0.02μm,Mg+的掺杂浓度为2*1017cm-3
(4)使用ICP刻蚀掉一部分p型GaN层,保留的p型GaN层宽度为1.4μm;
(5)用电子束蒸镀的方法在p-GaN层上蒸镀p型电极,在n型Al0.4Ga0.6N层上蒸镀n型电极,在n型Al0.4Ga0.6N层顶表面两端制作Ti/Al/Ni/Au:30/150/50/150nm多层金属作为n型电极,在p-GaN顶表面制作Ni/Au:50/100nm的p型金属电极,前者需在快速热退火炉中850℃30s。制得如图4所示的具有改善的横向SAM型APD边缘电场聚集效应的器件。
实施例3
具有改善的横向SAM型APD边缘电场聚集效应的器件的制备方法,其步骤包括:
(1)MOCVD法在Si衬底表面沉积p-型Al0.2Ga0.8N层,非故意掺杂的Al0.2Ga0.8N层;生长p-型Al0.2Ga0.8N层的方法:三甲基镓三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1100℃,生长厚度为0.8μm,Mg的掺杂浓度为6*1015cm-3;非故意掺杂的Al0.2Ga0.8N层的生长方法:三甲基镓、三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1050℃,生长厚度为0.3μm;
(2)用离子注入的方法,采用掩模选区工艺,将非故意掺杂的Al0.2Ga0.8N层掺杂形成横向的多片夹心式p-i-n-i-n结构。p型Al0.2Ga0.8N层使用Mg+注入,能量较高,注入剂量为2*1018cm-3;n型Al0.2Ga0.8N层使用Mg+注入能量较高,注入剂量为8*1018cm-3,p型AlGaN宽度为0.62μm,i型AlGaN宽度为0.24μm,n型AlGaN宽度为0.09μm,i型AlGaN宽度为0.24μm,n型AlGaN宽度为0.62μm;
(3)MOCVD或者MBE直接在掺杂完毕的Al0.2Ga0.8N层上面生长p-GaN。P型GaN层的生长方法:三甲基镓和NH3分别作为Ga源和N源,载气为H2或者N2,生长温度为1050℃,生长厚度为0.01μm,Mg的掺杂浓度为7*1016cm-3,采用选择性生长方式,直接生长一层覆盖左侧p型、i型及部分中间n型Al0.2Ga0.8N层的p型GaN层,p型GaN层宽度为0.903μm;
(4)用电子束蒸镀的方法在p-GaN层上蒸镀p型电极,在n型Al0.2Ga0.8N层上蒸镀n型电极,在n型Al0.2Ga0.8N层顶表面两端制作Ti/Al/Ni/Au:30/150/50/150nm多层金属作为n型电极,在p-GaN顶表面制作Ni/Au:50/100nm的p型金属电极,前者需在快速热退火炉中850℃30s。制得如图4所示的具有改善的横向SAM型APD边缘电场聚集效应的器件。
实施例4
本例的有改善的横向SAM型APD边缘电场聚集效应的器件与实施例1制得的器件结构基本一致,区别在于p型GaN层宽度为0.6927μm;
选定反向偏压为25V,用silvaco进行仿真,得到的电场分布图如图7所示,可以发现,在n型Al0.2Ga0.8N区表面处已经没有尖峰电场存在,最强电场处于体内。
实施例5
本例的具有改善的横向SAM型APD边缘电场聚集效应的器件与实施例1制得的器件结构基本一致,区别在于p型GaN层宽度为0.705μm;
选定反向偏压为25V,用silvaco进行仿真,得到的电场分布图如图8所示,可以发现,表面处已经有尖峰电场存在。
实施例6
本例的具有改善的横向SAM型APD边缘电场聚集效应的器件与实施例1制得的器件结构基本一致,区别在于p型GaN宽度为0.704μm;
选定反向偏压为25V,用silvaco进行仿真,得到的电场分布图如图9所示,可以发现,表面处已经没有尖峰电场存在,最强电场处于体内。
实施例7
本例的具有改善的横向SAM型APD边缘电场聚集效应的器件与实施例1制得的器件结构基本一致,区别在于p型GaN层宽度为0.70μm,Mg+的掺杂浓度变为1*1017cm-3
选定反向偏压为25V,用silvaco进行仿真,得到的电场分布图如图10所示,可以发现,表面处已经没有尖峰电场存在,最强电场完全处于体内,实现了良好的边缘电场的调控。
对比例1
一种普通横向SAM型APD器件,其结构包括:
一衬底层;
一生长于衬底层上的p-型Al0.2Ga0.8N层,高度为0.5μm;
一生长于p-型Al0.2Ga0.8N层上的夹心式横向p-i-n-i-n结Al0.2Ga0.8N层,高度为0.5μm;Al0.2Ga0.8N层为横向的p-i-n-i-n横向SAM型APD结构,即分别为p型,i型,n型,i型与n型Al0.2Ga0.8N,p型Al0.2Ga0.8N宽度为0.49μm,i型Al0.2Ga0.8N为0.18μm,n型Al0.2Ga0.8N为0.06μm,i型Al0.2Ga0.8N为0.18μm,n型Al0.2Ga0.8N为0.49μm,形成横向的多片夹心式的p-n结;
p型电极,位于p型Al0.2Ga0.8N层的上方,为Ni/Au多层金属,厚度为50/100nm;
n型电极,位于夹心式p-i-n-i-n结Al0.2Ga0.8N层中最右侧n型Al0.2Ga0.8N层的右上方,为Ti/Al/Ni/Au多层金属,厚度为30/150/50/150nm。
最终的结构图如图11所示。
选定反向偏压为25V,用silvaco进行仿真,得到的电场分布图如图5所示,可以看出,最大场强聚集在上表面处。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种具有改善的横向SAM型APD边缘电场聚集效应的器件,其结构包括:
一衬底层;
一生长于衬底层上的p-型AlGaN层;
一生长于p-型AlGaN层上同组分的夹心式横向p-i-n-i-n结AlGaN层;
一生长于夹心式横向p-i-n-i-n结AlGaN层上方的p型GaN层;
p型电极,位于p型GaN层的上方;
n型电极,位于夹心式p-i-n-i-n结AlGaN层中最外侧的n型AlGaN层的上方;其特征在于:所述p型GaN层覆盖夹心式横向p-i-n-i-n结AlGaN层的p型和i型AlGaN层,同时覆盖夹心式p-i-n-i-n结AlGaN层中间的n型AlGaN层的部分区域,而不超过中间的n型AlGaN层。
2.根据权利要求1所述的具有改善的横向SAM型APD边缘电场聚集效应的器件,其特征在于:所述衬底层为蓝宝石衬底、Si衬底或SiC衬底。
3. 根据权利要求1所述的具有改善的横向SAM型APD边缘电场聚集效应的器件,其特征在于:所述p-型AlGaN层的掺杂浓度为1*1015-1*1016 cm-3,高度为0.5-1 μm。
4.根据权利要求1所述的具有改善的横向SAM型APD边缘电场聚集效应的器件,其特征在于:所述横向的p-i-n-i-n AlGaN层高度为0.3-0.8 μm;p型AlGaN宽度为0.49-0.98 μm,i型AlGaN宽度为0.18-0.36 μm,n型AlGaN宽度为0.06-0.12 μm,i型AlGaN宽度为0.18-0.36μm,n型AlGaN宽度为0.49-0.98 μm,p型GaN层宽度为0.6926-1.4μm。
5. 根据权利要求1所述的具有改善的横向SAM型APD边缘电场聚集效应的器件,其特征在于:所述p型GaN层的高度为0.01-0.02 μm。
6.根据权利要求1-5中任一项所述的具有改善的横向SAM型APD边缘电场聚集效应的器件,其特征在于: p型GaN层使用Mg+注入,注入剂量为7*1016-1*1018 cm-3; p型AlGaN层使用Mg+注入,注入剂量为1*1018-2*1018 cm-3;n型AlGaN层使用Si+注入,注入剂量为2*1018-8*1018 cm-3
7.根据权利要求6所述的具有改善的横向SAM型APD边缘电场聚集效应的器件,其特征在于:所述n型电极为Ti/Al/Ni/Au多层金属,p型电极为Ni/Au多层金属。
8.权利要求1-7中任一项所述的具有改善的横向SAM型APD边缘电场聚集效应的器件的制备方法,其步骤包括:
(1)MOCVD法在衬底表面沉积p-型AlGaN层,非故意掺杂的AlGaN层与GaN层;
(2)用离子注入的方法,将非故意掺杂的AlGaN层与GaN层掺杂形成横向的多片夹心式p-i-n-i-n结构与p型GaN层;
(3)使用ICP刻蚀掉一部分p型GaN层,露出一端的i型和n型AlGaN层,以及部分中间的n型AlGaN层;
(4)用电子束蒸镀的方法在n型AlGaN层上蒸镀n型电极,在p-GaN层上蒸镀p型电极。
9.根据权利要求8所述的具有改善的横向SAM型APD边缘电场聚集效应的器件的制备方法,其特征在于:步骤(1)中生长p-型AlGaN层的方法:三甲基镓三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1000-1100 ℃,Mg的掺杂浓度为1*1015-1*1016cm-3;非故意掺杂的AlGaN层的生长方法:三甲基镓、三甲基铝和NH3分别作为Ga源、Al源和N源,载气为H2或者N2,生长温度为1000-1100 ℃;非故意掺杂的GaN层的生长方法:三甲基镓和NH3分别作为Ga源和N源,载气为H2或者N2,生长温度为1000-1100 ℃;
步骤(2)中采用掩模选区工艺进行离子注入,p型GaN层使用Mg+注入,注入剂量为7*1016-1*1018 cm-3;p型AlGaN层使用Mg+注入,注入剂量为1*1018-2*1018 cm-3;n型AlGaN层使用Si+注入,注入剂量为2*1018-8*1018 cm-3
步骤(4)中用电子束蒸镀的方法在n型AlGaN层顶表面两端制作Ti/Al/Ni/Au多层金属作为n型电极,然后在快速热退火炉中热退火,最后在p-GaN顶表面制作Ni/Au的p型金属电极。
10.权利要求1-7中任一项所述的具有改善的横向SAM型APD边缘电场聚集效应的器件的制备方法,其步骤包括:
(1)MOCVD法在衬底表面沉积p-型AlGaN层,非故意掺杂的AlGaN层;
(2)用离子注入的方法,将非故意掺杂的AlGaN层掺杂形成横向的多片夹心式p-i-n-i-n结构;
(3)MOCVD或者MBE直接在掺杂完毕的AlGaN层上面生长p-GaN层,
(4)使用ICP刻蚀掉一部分p型GaN层,露出一端的i型和n型AlGaN层,以及部分中间的n型AlGaN层;
(5)用电子束蒸镀的方法在n型AlGaN层上蒸镀n型电极,在p-GaN层上蒸镀p型电极。
CN202011393697.5A 2020-12-03 2020-12-03 具有改善的横向sam型apd边缘电场聚集效应的器件及其制备方法 Active CN112531050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011393697.5A CN112531050B (zh) 2020-12-03 2020-12-03 具有改善的横向sam型apd边缘电场聚集效应的器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011393697.5A CN112531050B (zh) 2020-12-03 2020-12-03 具有改善的横向sam型apd边缘电场聚集效应的器件及其制备方法

Publications (2)

Publication Number Publication Date
CN112531050A CN112531050A (zh) 2021-03-19
CN112531050B true CN112531050B (zh) 2022-03-25

Family

ID=74996561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011393697.5A Active CN112531050B (zh) 2020-12-03 2020-12-03 具有改善的横向sam型apd边缘电场聚集效应的器件及其制备方法

Country Status (1)

Country Link
CN (1) CN112531050B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9391225B1 (en) * 2013-06-11 2016-07-12 Sandia Corporation Two-dimensional APDs and SPADs and related methods
US9755096B2 (en) * 2014-03-10 2017-09-05 Elenion Technologies, Llc Lateral Ge/Si avalanche photodetector
CN205542845U (zh) * 2016-01-25 2016-08-31 武汉光电工业技术研究院有限公司 低噪声雪崩光电探测器
US11101400B2 (en) * 2017-11-28 2021-08-24 Luxtera Llc Method and system for a focused field avalanche photodiode

Also Published As

Publication number Publication date
CN112531050A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
JP5164319B2 (ja) 半導体素子のための非活性化保護リング
US8502192B2 (en) LED with uniform current spreading and method of fabrication
US8604461B2 (en) Semiconductor device structures with modulated doping and related methods
US7728348B2 (en) Substrate having thin film of GaN joined thereon and method of fabricating the same, and a GaN-based semiconductor device and method of fabricating the same
US8536615B1 (en) Semiconductor device structures with modulated and delta doping and related methods
JP4730422B2 (ja) Iii族窒化物半導体電子デバイス、iii族窒化物半導体電子デバイスを作製する方法、及びiii族窒化物半導体エピタキシャルウエハ
US6995398B2 (en) Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices
JP6269368B2 (ja) 窒化ガリウム基板
CN111180527A (zh) 一种GaN基PN二极管及其制备方法
CN112531050B (zh) 具有改善的横向sam型apd边缘电场聚集效应的器件及其制备方法
KR20130017154A (ko) 반도체 발광소자
CN110634747A (zh) 利用MBE再生长p-GaN的单栅结构GaN-JFET器件的方法
KR101068863B1 (ko) 수직구조 반도체 발광소자 및 그 제조방법
JP4846981B2 (ja) 改良エピタキシャル堆積のために炭化珪素基板を処理する方法、及びその方法によって得られる構造とデバイス
CN212434643U (zh) 一种可改善n型欧姆接触的深紫外led外延片
KR20050035325A (ko) 질화물 반도체 발광소자 및 그 제조방법
KR101669638B1 (ko) n형 질화물 반도체층의 성장 방법, 발광 다이오드 및 그 제조 방법
CN111244234A (zh) 一种可改善n型欧姆接触的深紫外LED外延片
CN110634943B (zh) 利用MBE再生长的横向结构GaN基JFET器件及其制备方法
CN111415996B (zh) 核壳式结构GaN结型场效应管器件及其制备方法
KR101171250B1 (ko) 인듐갈륨나이트라이드 양자점을 형성하는 방법
CN109037322B (zh) 一种GaN基绝缘栅双极型晶体管及其加工方法
KR20030066957A (ko) Ⅲ-ⅴ족 화합물 반도체 발광 소자의 제조 방법
CN114927578A (zh) p-NiO或p-LiNiO/n-GaN异质结共振隧穿二极管及制备方法
CN116266618A (zh) 高光效深紫外发光二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant