CN112528426A - 基于坐标点位转换建立三维凸轮实体化模型的方法 - Google Patents
基于坐标点位转换建立三维凸轮实体化模型的方法 Download PDFInfo
- Publication number
- CN112528426A CN112528426A CN202011280648.0A CN202011280648A CN112528426A CN 112528426 A CN112528426 A CN 112528426A CN 202011280648 A CN202011280648 A CN 202011280648A CN 112528426 A CN112528426 A CN 112528426A
- Authority
- CN
- China
- Prior art keywords
- dimensional cam
- working roller
- dimensional
- cam profile
- coordinate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims 1
- 238000003754 machining Methods 0.000 abstract description 5
- 238000003801 milling Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Numerical Control (AREA)
Abstract
本发明提出了基于坐标点位转换建立三维凸轮实体化模型的方法,属于机械加工技术领域,其步骤为:1)建立三维凸轮工作滚子中心轨迹模型;2)对步骤1)中的三维凸轮工作滚子中心轨迹模型进行扫描,获取三维凸轮工作滚子中心轨迹点位信息;3)将扫描的三维凸轮工作滚子中心轨迹点位信息转换为三维凸轮型面的实体点位信息;4)根据步骤3)得到的三维凸轮型面实体点位信息建立三维凸轮型面的实体化模型。通过本发明的方法摆脱了传统加工方式中对刀具的限制,实现了各种凸轮型面均可行的加工目的,提高了凸轮型面曲的加工质量。
Description
技术领域
本发明属于机械加工技术领域,涉及零件加工过程中的建模技术,具体为基于坐标点位转换建立三维凸轮实体化模型的方法。
背景技术
三维建模技术是通过三维制作软件虚拟三维空间构建出具有三维数据的模型。三维凸轮建模技术,是基于三维凸轮工作滚子中心轨迹点位建立滚子中心轨迹模型(即利用从动件的运动规律来求解得到主动件的虚拟中心轨迹三维模型)。此模型为设计、应用原理模型,不允许改变,故现有技术中在加工三维凸轮型面时,需采用与工作滚子直径相同的球头刀具进行铣削,利用球头刀具主要存在以下问题:
1、三维凸轮型面曲率变化大于球头刀具自身曲率的位置时,其无法加工到位。
2、三维凸轮型面加工质量受球头刀具磨损的影响较大,且刀具无法进行半径补偿等因素导致三维凸轮型面加工质量不稳定。
3、如遇到工作滚子直径过大,超过现有的球头刀具直径时,会导致凸轮型面无法加工。
因此,现有技术中利用球头刀具进行凸轮型面加工时会存在加工质量差和可行性差的问题。
发明内容
针对上述现有技术中在凸轮型面切削时,三维凸轮型面曲率变化大于球头刀具自身曲率的位置无法加工到位的问题,本发明提出了基于坐标点位转换建立三维凸轮实体化模型的方法。
本发明是依据实体化模型的数控加工,可实现使用直径小于工作滚子直径的球头刀具或可进行半径补偿的平底铣刀以及圆鼻刀对凸轮型面进行加工,其具体技术方案如下:
基于坐标点位转换建立三维凸轮实体化模型的方法,包括以下步骤:
1)建立三维凸轮工作滚子中心轨迹模型;
2)对步骤1)中的三维凸轮工作滚子中心轨迹模型进行扫描,获取三维凸轮工作滚子中心轨迹点位信息;
3)将扫描的三维凸轮工作滚子中心轨迹点位信息转换为三维凸轮型面的实体点位信息;
4)根据步骤3)得到的三维凸轮型面实体点位信息建立三维凸轮型面的实体化模型。
进一步限定,所述步骤1)具体为:
1.1)将极坐标形式的三维凸轮型面工作滚子中心轨迹点位转换为直角坐标形式的三维凸轮型面工作滚子中心轨迹点位;
1.2)利用三维建模软件将直角坐标形式的三维凸轮型面工作滚子中心轨迹点位生成凸轮型面各层高度对应的分层曲线;
1.3)利用凸轮型面各层高度对应的分层曲线生成三维凸轮型面工作滚子中心轨迹模型。
进一步限定,所述步骤2)具体为:
2.1)将三维凸轮工作滚子中心轨迹模型导入三坐标测量机,选择“闭线扫描”,并设置工作滚子中心坐标、扫描方向点、Z轴高度和扫描一周的点位密度,开始脱机扫描,扫描生成凸轮型面各层高度对应的扫描线及点位信息;
2.2)将扫描数据生成表格并导出。
进一步限定,所述步骤3)具体为:将表格中的数据代入下列公式:
Z新=Z±Rsin(γ-90°)
γ=arc cosK
式中R为工作滚子半径值,正负号与模型坐标系Z轴正方向和曲面矢量相关联,γ为该点矢量方向与Z轴正方向夹角;
通过计算将三维凸轮工作滚子中心轨迹点位信息转换为三维凸轮型面实体直角坐标点位信息。
进一步限定,所述步骤4)具体为:将步骤3)得到的三维凸轮型面实体直角坐标点位信息导入三维建模软件中生成三维凸轮型面构成线,将三维凸轮型面构成线各个象限交界处的交叉点进行数据处理,重复步骤1),得到三维凸轮型面的实体化模型。
与现有技术相比,本发明的有益效果在于:
1、本发明基于坐标点位转换建立三维凸轮实体化模型的方法,其通过建立三维凸轮工作滚子中心轨迹模型,再对建立三维凸轮工作滚子中心轨迹模型进行扫描,获取三维凸轮工作滚子中心轨迹点位信息,将扫描的三维凸轮工作滚子中心轨迹点位信息转换为三维凸轮型面的实体点位信息,通过三维凸轮型面实体点位信息建立三维凸轮型面的实体化模型。本发明通过三维凸轮型面的实体化模型能够有效控制工作滚子中心轨迹,使其符合设计点位及凸轮加工使用原理。同时可以使用直径小于工作滚子的球头刀具对凸轮型面曲率变化较大的位置进行铣削加工,还可通过平底铣刀或圆鼻刀进行半径补偿,摆脱了传统加工方式中对刀具的限制,实现了各种凸轮型面均可行的加工目的,提高了凸轮型面曲的加工质量。
2、本发明在三维凸轮型面实体化模型的建立过程中,形成了一套完整可靠的函数计算关系式,实现了由三维凸轮型面工作滚子中心轨迹模型到三维凸轮型面实体模型的转换,该方法可以推广至其他相同工作原理的复杂曲面类零件实体化模型的建立中。在生产中,技术人员可以通过该方法快速、准确地建立曲面类零件的实体化模型,并依据其合理选用铣削刀具,不再受工作滚子中心轨迹模型刀具选用的限制,并编制数控加工程序,提高了零件的加工质量。
附图说明
图1为坐标点位转换示意图。
具体实施方式
下面结合附图及实施例对本发明的技术方案进行进一步地解释说明,但本发明并不限于以下说明的实施方式。
本发明基于坐标点位转换建立三维凸轮实体化模型的方法,包括以下步骤:
1)建立三维凸轮工作滚子中心轨迹模型;
2)对步骤1)中的三维凸轮工作滚子中心轨迹模型进行扫描,获取三维凸轮工作滚子中心轨迹点位信息;
3)将扫描的三维凸轮工作滚子中心轨迹点位信息转换为三维凸轮型面的实体点位信息;
4)根据步骤3)得到的三维凸轮型面实体点位信息建立三维凸轮型面的实体化模型。
上述步骤1)具体为:
1.1)将极坐标形式的三维凸轮型面工作滚子中心轨迹点位转换为直角坐标形式的三维凸轮型面工作滚子中心轨迹点位;
1.2)利用三维建模软件将直角坐标形式的三维凸轮型面工作滚子中心轨迹点位生成凸轮型面各层高度对应的分层曲线;
1.3)利用凸轮型面各层高度对应的分层曲线生成三维凸轮型面工作滚子中心轨迹模型。
上述步骤2)具体为:
2.1)将三维凸轮工作滚子中心轨迹模型导入三坐标测量机,选择“闭线扫描”,并设置工作滚子中心坐标、扫描方向、Z轴高度和扫描一周的点位密度,开始脱机扫描,扫描生成凸轮型面各层高度对应的扫描线及点位信息;
2.2)将扫描数据生成表格并导出。
上述步骤3)具体为:将表格中的数据代入下列公式:
Z新=Z±Rsin(γ-90°)
γ=arc cosK
式中R为工作滚子半径值,正负号与模型坐标系Z轴正方向和曲面矢量相关联,γ为该点矢量方向与Z轴正方向夹角;
通过计算将三维凸轮工作滚子中心轨迹点位信息转换为三维凸轮型面实体直角坐标点位信息。
上述步骤4)具体为:将步骤3)得到的三维凸轮型面实体直角坐标点位信息导入三维建模软件中生成三维凸轮型面构成线,将三维凸轮型面构成线各个象限交界处的交叉点进行数据处理,重复步骤1),得到三维凸轮型面的实体化模型。
实施例1
1)将极坐标形式的三维凸轮型面工作滚子中心轨迹加密点转换为直角坐标形式(x、y、z形式)的三维凸轮型面工作滚子中心轨迹点位(参见图1);利用UG三维建模软件中建模模块的“样条曲线”功能将直角坐标形式的三维凸轮型面工作滚子中心轨迹点位生成凸轮型面各层高度对应的多个分层曲线;并通过“曲线组生成曲面”指令,建立完整的三维凸轮型面工作滚子中心轨迹模型;
2)将步骤1)中的三维凸轮型面工作滚子中心轨迹模型导入三坐标测量机,选择“闭线扫描”,并设置工作滚子中心坐标、扫描方向点沿逆时针方向设置,Z轴高度为相邻两层斜度末端点高度减去0.001mm,剖面参数为(0,0,1),控制扫描点高度一致性;通过更改“步距”“倾斜度”等参数,控制扫描一周的点位密度为400个左右,开始脱机扫描,扫描生成凸轮型面各层高度对应的扫描线及点位信息;将扫描数据生成EXCEL表格并导出;
3)将步骤2)导出的EXCEL表格中的数据代入下列公式:
Z新=Z±Rsin(γ-90°)
γ=arc cosK
式中R为工作滚子半径值,正负号与模型坐标系Z轴正方向和曲面矢量相关联,γ为该点矢量方向与Z轴正方向夹角,X、Y、Z、I、J、K分别指通过计算输出为三维凸轮型面体实体点位的直角坐标值,实现0计算误差转换;
4)将步骤3)得到的三维凸轮型面实体直角坐标点位信息导入三维建模软件中生成三维凸轮型面构成曲线,将三维凸轮型面构成线各个象限交界处的交叉点进行数据处理,具体方法是:将交叉点的X或Y乘以“-1”,并将违反变化趋势的突变点进行删除;重复步骤1),得到各层曲线,随后利用曲线形成三维凸轮型面的实体化模型。
本实施例通过三维凸轮型面的实体化模型能够有效控制工作滚子中心轨迹,使其符合设计点位及凸轮加工使用原理。同时可以使用直径小于工作滚子的球头刀具对凸轮型面曲率变化较大的位置进行铣削加工,还可通过平底铣刀或圆鼻刀进行半径补偿,摆脱了传统加工方式中对刀具的限制,实现了各种凸轮型面均可行的加工目的。该方法可以推广至其他相同工作原理的复杂曲面类零件实体化模型的建立中。在生产中,技术人员可以通过该方法快速、准确地建立曲面类零件的实体化模型,并依据其合理选用铣削刀具,不再受工作滚子中心轨迹模型刀具选用的限制,并编制数控加工程序,提高了零件的加工质量。
Claims (6)
1.基于坐标点位转换建立三维凸轮实体化模型的方法,其特征在于,包括以下步骤:
1)建立三维凸轮工作滚子中心轨迹模型;
2)对步骤1)中的三维凸轮工作滚子中心轨迹模型进行扫描,获取三维凸轮工作滚子中心轨迹点位信息;
3)将扫描的三维凸轮工作滚子中心轨迹点位信息转换为三维凸轮型面的实体点位信息;
4)根据步骤3)得到的三维凸轮型面实体点位信息建立三维凸轮型面的实体化模型。
2.如权利要求1所述的基于坐标点位转换建立三维凸轮实体化模型的方法,其特征在于,所述步骤1)具体为:
1.1)将极坐标形式的三维凸轮型面工作滚子中心轨迹点位转换为直角坐标形式的三维凸轮型面工作滚子中心轨迹点位;
1.2)利用三维建模软件将直角坐标形式的三维凸轮型面工作滚子中心轨迹点位生成凸轮型面各层高度对应的分层曲线;
1.3)利用凸轮型面各层高度对应的分层曲线生成三维凸轮型面工作滚子中心轨迹模型。
3.如权利要求1或2所述的基于坐标点位转换建立三维凸轮实体化模型的方法,其特征在于,所述步骤2)具体为:
2.1)将三维凸轮工作滚子中心轨迹模型导入三坐标测量机,选择“闭线扫描”,并设置工作滚子中心坐标、扫描方向点、Z轴高度和扫描一周的点位密度,开始脱机扫描,扫描生成凸轮型面各层高度对应的扫描线及点位信息;
2.2)将扫描数据生成表格并导出,数据信息包含点的直角坐标系中坐标位置X、Y、Z和该点所对应的三维矢量角与直角坐标系正半轴夹角的余弦值I、J、K。
5.如权利要求4所述的基于坐标点位转换建立三维凸轮实体化模型的方法,其特征在于,所述步骤4)具体为:将步骤3)得到的三维凸轮型面实体直角坐标点位信息导入三维建模软件中生成三维凸轮型面构成曲线,将三维凸轮型面构成线各个象限交界处的交叉点进行数据处理,重复步骤1),得到三维凸轮型面的实体化模型。
6.如权利要求5所述的基于坐标点位转换建立三维凸轮实体化模型的方法,其特征在于,所述将三维凸轮型面构成线各个象限交界处的交叉点进行数据处理的具体实现方式是将交叉点的X或Y乘以“-1”,并将违反变化趋势的突变点进行删除。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011280648.0A CN112528426A (zh) | 2020-11-16 | 2020-11-16 | 基于坐标点位转换建立三维凸轮实体化模型的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011280648.0A CN112528426A (zh) | 2020-11-16 | 2020-11-16 | 基于坐标点位转换建立三维凸轮实体化模型的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112528426A true CN112528426A (zh) | 2021-03-19 |
Family
ID=74980952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011280648.0A Pending CN112528426A (zh) | 2020-11-16 | 2020-11-16 | 基于坐标点位转换建立三维凸轮实体化模型的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112528426A (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104123747A (zh) * | 2014-07-17 | 2014-10-29 | 北京毛豆科技有限公司 | 多方式触控三维建模方法和系统 |
CN105291439A (zh) * | 2015-11-25 | 2016-02-03 | 陕西恒通智能机器有限公司 | 一种极坐标3d打印机 |
CN106228606A (zh) * | 2016-07-29 | 2016-12-14 | 南京航空航天大学 | 一种三维椭圆振动辅助切削微织构形貌建模方法 |
CN108230446A (zh) * | 2017-12-18 | 2018-06-29 | 中国航发贵州红林航空动力控制科技有限公司 | 一种高精度三维曲面建模方法 |
CN109583023A (zh) * | 2018-10-29 | 2019-04-05 | 兰州理工大学 | 一种风力机叶片尾缘建模方法 |
CN109855587A (zh) * | 2018-11-16 | 2019-06-07 | 中国航发西安动力控制科技有限公司 | 基于轮廓度的二维凸轮类零件型面数字化测量方法 |
JP2020027654A (ja) * | 2018-08-09 | 2020-02-20 | ニュートラル株式会社 | 三次元cad用突起解析システム、三次元cad用突起解析方法及びコンピュータプログラム |
-
2020
- 2020-11-16 CN CN202011280648.0A patent/CN112528426A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104123747A (zh) * | 2014-07-17 | 2014-10-29 | 北京毛豆科技有限公司 | 多方式触控三维建模方法和系统 |
CN105291439A (zh) * | 2015-11-25 | 2016-02-03 | 陕西恒通智能机器有限公司 | 一种极坐标3d打印机 |
CN106228606A (zh) * | 2016-07-29 | 2016-12-14 | 南京航空航天大学 | 一种三维椭圆振动辅助切削微织构形貌建模方法 |
CN108230446A (zh) * | 2017-12-18 | 2018-06-29 | 中国航发贵州红林航空动力控制科技有限公司 | 一种高精度三维曲面建模方法 |
JP2020027654A (ja) * | 2018-08-09 | 2020-02-20 | ニュートラル株式会社 | 三次元cad用突起解析システム、三次元cad用突起解析方法及びコンピュータプログラム |
CN109583023A (zh) * | 2018-10-29 | 2019-04-05 | 兰州理工大学 | 一种风力机叶片尾缘建模方法 |
CN109855587A (zh) * | 2018-11-16 | 2019-06-07 | 中国航发西安动力控制科技有限公司 | 基于轮廓度的二维凸轮类零件型面数字化测量方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111061213B (zh) | 一种基于Bezier曲线转角平滑过渡算法的加工方法 | |
WO2022027836A1 (zh) | 针对五轴加工刀尖点与刀轴方向非线性误差的控制方法 | |
Bi et al. | A general, fast and robust B-spline fitting scheme for micro-line tool path under chord error constraint | |
CN111413923A (zh) | 一种用于复杂曲面加工的高速精密加工系统及方法 | |
CN109976262B (zh) | 一种针对微线段加工的全局曲率连续光顺方法 | |
CN112036041B (zh) | 一种3dp工艺中stl模型渗透误差综合补偿方法 | |
CN108073138B (zh) | 适用于高速高精加工的椭圆弧平滑压缩插补算法 | |
CN106970589B (zh) | 一种减小多轴加工轮廓误差的进给率松弛方法 | |
CN102608952A (zh) | 对采用球头刀具的五轴联动机床平滑加工路径的方法 | |
CN115179306A (zh) | 一种复杂木模工业机器人铣削及控制方法 | |
Wei et al. | Modeling and machining of integral impeller based on NURBS curve | |
CN116400646A (zh) | 一种基于奇异补偿的五轴数控机床通用后置处理方法 | |
CN112883505B (zh) | 考虑刀具工件相对振动的超精密端面车削表面建模方法 | |
CN112528426A (zh) | 基于坐标点位转换建立三维凸轮实体化模型的方法 | |
CN108490874A (zh) | 一种双轴运动控制系统的非线性pid交叉耦合控制方法 | |
CN113836694B (zh) | 一种基于离散化点云面向增材制造的几何建模方法 | |
Hongyao et al. | A parameter zone subdivision method for rotary axes motion optimization in five-axis toolpath generation using inverse evaluation mechanism | |
Tseng et al. | Three dimensional biarc approximation of freeform surfaces for machining tool path generation | |
Lu et al. | Smooth flank milling tool path generation for blade surfaces considering geometric constraints | |
CN115237052A (zh) | 一种波浪形模具加工方法 | |
CN108776459B (zh) | 一种提升五轴数控机床加工精度的工艺方法 | |
He et al. | Tool path planning without interference for convex surfaces based on the optimal cutter orientation of the annular cutter | |
CN117193168B (zh) | 一种复杂壳体的摆线铣削轨迹生成方法 | |
CN108983704B (zh) | 基于五轴双转台在线非线性误差补偿方法 | |
CN114734079B (zh) | 一种叶片型面铣削相接处光顺过渡加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |