CN112522256B - CRISPR/Cas9 system and application thereof in construction of dystrophin gene-deficient porcine recombinant cells - Google Patents

CRISPR/Cas9 system and application thereof in construction of dystrophin gene-deficient porcine recombinant cells Download PDF

Info

Publication number
CN112522256B
CN112522256B CN202010835848.1A CN202010835848A CN112522256B CN 112522256 B CN112522256 B CN 112522256B CN 202010835848 A CN202010835848 A CN 202010835848A CN 112522256 B CN112522256 B CN 112522256B
Authority
CN
China
Prior art keywords
leu
glu
gln
dmd
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010835848.1A
Other languages
Chinese (zh)
Other versions
CN112522256A (en
Inventor
牛冬
汪滔
马翔
曾为俊
王磊
程锐
赵泽英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Qizhen Genetic Engineering Co Ltd
Original Assignee
Nanjing Qizhen Genetic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Qizhen Genetic Engineering Co Ltd filed Critical Nanjing Qizhen Genetic Engineering Co Ltd
Priority to CN202010835848.1A priority Critical patent/CN112522256B/en
Publication of CN112522256A publication Critical patent/CN112522256A/en
Application granted granted Critical
Publication of CN112522256B publication Critical patent/CN112522256B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4707Muscular dystrophy
    • C07K14/4708Duchenne dystrophy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Environmental Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The application discloses a CRISPR/Cas9 system and application thereof in construction of a pig source recombinant cell with dystrophin gene defects. The application provides a combination of sgRNAs, from which DMD‑Ug3 (target sequence binding region is shown as nucleotide 1-20 in SEQ ID NO: 8) and sgRNA DMD‑Dg3 (the binding region of the target sequence is shown as 1-20 nucleotides in SEQ ID NO: 11). The application provides a kit for obtaining sgRNA by transcription DMD‑Ug3 Plasmid pKG-U6gRNA (DMD-Ug 3), transcribed to give sgRNA DMD‑Dg3 Is composed of plasmid pKG-U6gRNA (DMD-Dg 3) and plasmid pKG-GE3. The sgRNA combination or the kit can be used for the preparation of recombinant cells or for the preparation of an animal model of duchenne muscular dystrophy. The recombinant cells are cells defective in dystrophin genes and can be used for preparing animal disease models by somatic cell cloning. The application lays a solid foundation for the preparation of the Dunaliella muscular dystrophy pig model and has great application value for the research and development of Dunaliella muscular dystrophy medicines.

Description

CRISPR/Cas9 system and application thereof in construction of dystrophin gene-deficient porcine recombinant cells
Technical Field
The application relates to a CRISPR/Cas9 system and application thereof in construction of a pig-derived recombinant cell defective in dystrophin genes.
Background
Du's muscular dystrophy (Duchenne muscular dystrophy, DMD) is an X-chromosome recessive genetic disease. Since the disease is an X-linked recessive genetic disease, the primary patient of the disease is male, the incidence of male is about 1/3500-1/5000, and 1/3 of the patients are caused by autologous gene mutation. Women are mostly carriers and are not usually ill. Dunaliella muscular dystrophy is pathologically caused by the change of structure and function of dystrophin (also called dystrophin, english is dystophin), which causes progressive degeneration, necrosis and calf muscle pseudohypertrophy of skeletal muscle at the proximal extremity, thereby causing muscle necrosis and cell death; although the surrounding satellite cells activate to regenerate the muscle cells, the satellite cells eventually age to stop the regeneration of the muscle cells, so that the muscle tissue is finally infiltrated by the fiber fat to lose the function of the muscle tissue. Currently, there are over 30 tens of thousands of male patients worldwide.
The gene encoding dystrophin (called dystrophin gene, dystrobin gene or DMD gene) is currently the only causative gene known for duchenne muscular dystrophy.
Construction of an animal model of duchenne muscular dystrophy, particularly a large animal model, would provide a powerful experimental tool for the study and treatment of this disease. Pig is a main meat animal for human, is easy to breed and raise in large scale, has low requirement in ethical moral and animal protection, has size and organ function similar to human, and is ideal human disease model animal. At present, the report of a DMD large animal model is not yet seen.
Disclosure of Invention
The application aims to provide a CRISPR/Cas9 system and application thereof in construction of a pig-derived recombinant cell defective in dystrophin gene.
The application provides a combination of sgRNAs, from which DMD-Ug3 And sgRNA DMD-Dg3 Composition is prepared.
The application provides a plasmid combination, which consists of plasmid pKG-U6gRNA (DMD-Ug 3) and plasmid pKG-U6gRNA (DMD-Dg 3). In the plasmid combination, the molar ratio of the plasmid pKG-U6gRNA (DMD-Ug 3) to the plasmid pKG-U6gRNA (DMD-Dg 3) can be 1:1.
The application also provides a kit comprising the sgRNA combination.
The application also provides a kit comprising the plasmid combination. The kit also comprises plasmid pKG-GE3. The ratio of the total mole number of the plasmids of the plasmid combination to the mole number of the plasmids pKG-GE3 can be specifically 3:1.
the application also protects the application of the sgRNA combination in preparing a kit.
The application also protects the application of the plasmid combination in preparing a kit.
The application also protects the plasmid combination and the application of the plasmid pKG-GE3 in the preparation of the kit. The ratio of the total mole number of the plasmids of the plasmid combination to the mole number of the plasmids pKG-GE3 can be specifically 3:1.
the use of any of the above kits is as follows (a) or (b): (a) preparing a recombinant cell; (b) preparing an animal model of duchenne muscular dystrophy. The transformed recipient cell of the recombinant cell is a porcine cell. The porcine cells may be porcine fibroblasts. The porcine cells may specifically be porcine primary fibroblasts. The pig may be a river fragrant pig. When the Dunaliella muscular dystrophy animal model is prepared, the recombinant cells are prepared first, and then the recombinant cells are used as donor cells to obtain cloned pigs by adopting a somatic cell cloning technology, namely the Dunaliella muscular dystrophy animal model. The Du's muscular dystrophy cell model can also be prepared by the Du's muscular dystrophy animal model, namely, the corresponding cells of the Du's muscular dystrophy animal model are isolated and used as the Du's muscular dystrophy cell model.
The application also protects the application of any one of the sgRNA combinations or any one of the plasmid combinations or any one of the kits in preparing recombinant cells. When the preparation method is applied, the ratio of the total mole number of the sgRNA plasmid to the mole number of the Cas plasmid (specifically, the plasmid pKG-GE 3) can be specifically 3:1. the sgRNA plasmids were plasmid pKG-U6gRNA (DMD-Ug 3) and plasmid pKG-U6gRNA (DMD-Dg 3). When in use, the molar ratio of plasmid pKG-U6gRNA (DMD-Ug 3) to plasmid pKG-U6gRNA (DMD-Dg 3) can be 1:1. The transformed recipient cell of the recombinant cell is a porcine cell. The porcine cells may be porcine fibroblasts. The porcine cells may specifically be porcine primary fibroblasts. The pig may be a river fragrant pig.
The application also protects the application of any one of the sgRNA combinations or any one of the plasmid combinations or any one of the kits in preparing Du's muscular dystrophy animal models. When the method is applied, the recombinant cells are prepared first, and then the recombinant cells are used as donor cells to obtain cloned pigs by adopting a somatic cell cloning technology, namely the Dunaliella muscular dystrophy animal model. When preparing the recombinant cell, the ratio of the total mole number of the sgRNA plasmid to the mole number of the Cas plasmid (specifically, the plasmid pKG-GE 3) may specifically be 3:1. the sgRNA plasmids were plasmid pKG-U6gRNA (DMD-Ug 3) and plasmid pKG-U6gRNA (DMD-Dg 3). When in use, the molar ratio of plasmid pKG-U6gRNA (DMD-Ug 3) to plasmid pKG-U6gRNA (DMD-Dg 3) can be 1:1. The transformed recipient cell of the recombinant cell is a porcine cell. The porcine cells may be porcine fibroblasts. The porcine cells may specifically be porcine primary fibroblasts. The pig may be a river fragrant pig. The Du's muscular dystrophy cell model can also be prepared by the Du's muscular dystrophy animal model, namely, the corresponding cells of the Du's muscular dystrophy animal model are isolated and used as the Du's muscular dystrophy cell model.
Any of the above recombinant cells are dystrophin gene-deficient cells.
Any of the above recombinant cells is a recombinant cell in which the dystrophin gene is mutated. The mutation may be a heterozygous mutation (corresponding genotype is heterozygous mutant) or a homozygous mutation (corresponding genotype is biallelic identical mutant or biallelic different mutant).
The application also provides a method for preparing recombinant cells, comprising the steps of: the plasmid pKG-U6gRNA (DMD-Ug 3), the plasmid pKG-U6gRNA (DMD-Dg 3) and the plasmid pKG-GE3 are co-transfected into pig cells to obtain recombinant cells with the dystrophin gene mutated. The ratio of the total mole number of plasmid pKG-U6gRNA (DMD-Ug 3) and plasmid pKG-U6gRNA (DMD-Dg 3) to the mole number of plasmid pKG-GE3 was 3:1. the molar ratio of plasmid pKG-U6gRNA (DMD-Ug 3) to plasmid pKG-U6gRNA (DMD-Dg 3) may be 1:1. The porcine cells may be porcine fibroblasts. The porcine cells may specifically be porcine primary fibroblasts. The pig may be a river fragrant pig. The mutation may be a heterozygous mutation (corresponding genotype is heterozygous mutant) or a homozygous mutation (corresponding genotype is biallelic identical mutant or biallelic different mutant).
The application also protects the recombinant cells prepared by any one of the methods. In particular, the recombinant cell may be a recombinant cell as described in any one of table 3. Specifically, the recombinant cell may be any one of the following cell lines: monoclonal cell lines numbered 3, 6, 9, 15, 19, 26, 29, 30, 33, 5, 11, 17, 32, 37, 4, 8, 10, 12, 18, 22, 27, 28, 35, 36, 38, or 39 in table 3.
The application also protects the application of the recombinant cells in preparing the Du's muscular dystrophy animal model. When the Dunaliella muscular dystrophy animal model is prepared, the recombinant cells are used as donor cells to obtain cloned pigs by adopting a somatic cell cloning technology, and the Dunaliella muscular dystrophy animal model is obtained. The Du's muscular dystrophy cell model can also be prepared by the Du's muscular dystrophy animal model, namely, the corresponding cells of the Du's muscular dystrophy animal model are isolated and used as the Du's muscular dystrophy cell model.
sgRNA DMD-Ug3 Target point: 5'-AAAATAAGCAATATAAAACA-3'.
sgRNA DMD-Dg3 Target point: 5'-CATATACTCTTTATACAAGT-3'.
The sgRNA DMD-Ug3 The target sequence binding region of (a) is as set forth in SEQ ID NO:8 from nucleotide 1 to nucleotide 20. The sgRNA DMD-Ug3 Specifically shown as SEQ ID NO: shown at 8.
The sgRNA DMD-Dg3 The target sequence binding region of (a) is as set forth in SEQ ID NO:11 from nucleotide 1 to nucleotide 20. The sgRNA DMD-Dg3 Specifically shown as SEQ ID NO: 11.
The plasmid pKG-U6gRNA (DMD-Ug 3) was transcribed to give sgRNA DMD-Ug3
The plasmid pKG-U6gRNA (DMD-Dg 3) was transcribed to give sgRNA DMD-Dg3
Specifically, the plasmid pKG-U6gRNA (DMD-Ug 3) is obtained by introducing the sgRNA with the aid of the restriction enzyme BbsI DMD-Ug3 Is inserted into a pKG-U6gRNA vector.
Specifically, the plasmid pKG-U6gRNA (DMD-Dg 3) is obtained by introducing the sgRNA with the aid of the restriction enzyme BbsI DMD-Dg3 Is inserted into a pKG-U6gRNA vector.
The plasmid pKG-GE3 has a specific fusion gene; the specific fusion gene codes for a specific fusion protein;
the specific fusion protein sequentially comprises the following elements from the N end to the C end: two Nuclear Localization Signals (NLS), cas9 protein, two nuclear localization signals, self-cleaving polypeptide P2A, fluorescent reporter protein, self-cleaving polypeptide T2A, resistance selection marker protein;
in the plasmid pKG-GE3, the EF1a promoter is used for promoting the expression of the specific fusion gene;
in plasmid pKG-GE3, the specific fusion gene has downstream a WPRE sequence element, a 3' LTR sequence element and a bGH poly (A) signal sequence element.
The plasmid pKG-GE3 has the following elements in this order: CMV enhancer, EF1a promoter, the specific fusion gene, WPRE sequence element, 3' LTR sequence element, bGH poly (A) signal sequence element.
In the specific fusion protein, two nuclear localization signals at the upstream of the Cas9 protein are SV40 nuclear localization signals, and two nuclear localization signals at the downstream of the Cas9 protein are nucleoplasin nuclear localization signals.
In the specific fusion protein, the fluorescent reporter protein can be EGFP protein.
In the specific fusion protein, the resistance screening marker protein can be a Puromycin protein.
The amino acid sequence of the self-cleaving polypeptide P2A is "ATNFSLLKQAGDVEENPGP" (the cleavage site where self-cleavage occurs is between the first amino acid residue and the second amino acid residue from the C-terminus).
The amino acid sequence of the self-cleaving polypeptide T2A is "EGRGSLLTCGDVEENPGP" (the cleavage site where self-cleavage occurs is between the first amino acid residue and the second amino acid residue from the C-terminus).
Specific fusion genes are specifically shown as SEQ ID NO:2 from nucleotide numbers 911-6706.
CMV enhancer as set forth in SEQ ID NO:2 from nucleotide 395 to 680.
The EF1a promoter is shown in SEQ ID NO:2 from nucleotide 682 to nucleotide 890.
WPRE sequence element is shown as SEQ ID NO:2 from nucleotide 6722 to nucleotide 7310.
The 3' LTR sequence element is shown in SEQ ID NO:2 from nucleotide 7382 to nucleotide 7615.
The bGH poly (A) signal sequence element is shown as SEQ ID NO:2 from nucleotide 7647 to nucleotide 7871.
Plasmid pKG-GE3 is specifically shown in SEQ ID NO: 2.
Plasmid pKG-U6gRNA has the sequence of SEQ ID NO:3 from nucleotide 2280 to nucleotide 2637.
The plasmid pKG-U6gRNA is specifically shown as SEQ ID NO: 3.
The dystrophin gene is the porcine DMD gene.
Porcine DMD gene information: coding dystraphin; located on the X chromosome;
GeneID 1756, sus scrofa. The protein coded by the pig DMD gene is shown as SEQ ID NO: 4. In the genome DNA, the pig DMD gene has 89 exons, wherein the 46 th exon and 500bp sequences respectively at the upstream and downstream thereof are shown in SEQ ID NO: shown at 5.
The application can be used for obtaining the Dunaliella muscular dystrophy pig model by a gene editing means, is used for carrying out researches such as drug screening, drug effect detection, disease pathology, gene therapy and cell therapy, can provide effective experimental data for further clinical application, and lays a solid foundation for curing human Dunaliella muscular dystrophy in future.
Compared with the prior art, the application has at least the following beneficial effects:
(1) Compared with single gRNA, the application can effectively reduce the generation of non-frameshift mutation and can directly detect the gene editing efficiency by PCR. If a single gRNA is used to mutate a target gene, in non-homologous end joining (NHEJ) random repair of DNA, there is a 1/3 probability that a non-frameshift mutation of the base will occur, and it is highly probable that the non-frameshift mutation will not disrupt the function of the target gene, failing to achieve the intended goal of inactivating the target gene. When the double gRNA is used for cutting and mutating the target gene, one fragment of the target gene can be removed, and the fragment deletion frame shift mutation of the target gene can be effectively generated by designing to remove base fragments which are not multiple of 3. Meanwhile, the gene editing product of the deletion fragment can be directly detected by a PCR method, and the efficiency of gene editing can be directly estimated by the ratio of the gene editing product to the wild type product (namely, the unedited product). In addition, double gRNAs can cause theoretical fragment deletion, and separate individual cutting situations of single gRNAs exist, so that the efficiency of gene mutation is greatly improved.
(2) The gRNA vector and cas9 vector are not as conventional 1:1 molar ratio, but in 3:1 molar ratio. The optimal amount of the two gRNA plasmids to Cas9 plasmid is 1.5:1.5:1, the actual amount of plasmid was 0.46. Mu.g+0.46. Mu.g+1.08. Mu.g. For the final acting gRNA: for cas9 protein complexes, the time for transcription of the gRNA vector to form gRNA is earlier than the time for formation of cas9 protein, and the degradation rate of transcribed gRNA is very fast, so if at the DNA vector level, the molar ratio is 1:1, the molar number of cas9 protein is eventually greater than that of undegraded gRNA due to early transcription and degradation of gRNA. Through experimental comparison, the molar ratio editing efficiency of the gRNA:cas9 vector is higher than that of the gRNA:cas9 vector of which the ratio is 1:1 or 1:1. Therefore, the present application preferably employs a vector molar ratio of gRNA to cas9 of 3:1.
(3) The subject (pig) of the application has better applicability than other animals (rats, mice, primates). No model of Dunaliella muscular dystrophy disease is currently being successfully developed in any large animal. Rodents such as rats and mice have great differences from humans in terms of body type, organ size, physiology, pathology and the like, and cannot truly simulate normal physiological and pathological states of humans. Studies have shown that more than 95% of drugs that are validated in mice are ineffective in human clinical trials. In the case of large animals, primates are animals with the closest relationship to humans, but are small in size, late in sexual maturity (mating begins at 6-7 years old), and single animals, the population expansion rate is extremely slow, and the raising cost is also high. In addition, primate cloning is inefficient, difficult and costly. The pig is an animal which has the closest relationship with human except primate, and has the similar body shape, weight, organ size and the like as human, and has the similar anatomy, physiology, nutrition metabolism, disease pathogenesis and the like as human. Meanwhile, the pig has early sexual maturity (4-6 months), high fertility and multiple fetuses in one litter, and can form a larger group within 2-3 years. In addition, the cloning technology of pigs is very mature, and the cloning and feeding cost is much lower than that of primates; and pigs are taken as meat animals of human beings for a long time, and the resistance of the pigs taken as disease model animals in animal protection, ethics and the like is relatively small.
(4) The cas9 high-efficiency expression vector modified by the application is adopted for gene editing, and the editing efficiency is obviously improved compared with the original vector.
The application lays a solid foundation for the preparation of the Dunaliella muscular dystrophy pig model and has great application value for the research and development of Dunaliella muscular dystrophy medicines.
Drawings
FIG. 1 is a schematic diagram of the structure of plasmid pX330.
FIG. 2 is a schematic diagram of the structure of plasmid pKG-GE3.
FIG. 3 is a schematic diagram of the structure of plasmid pKG-U6 gRNA.
FIG. 4 is a schematic representation of the insertion of a DNA molecule of about 20bp (target sequence binding region for transcription to form gRNA) into plasmid pKG-U6 gRNA.
FIG. 5 is an electrophoretogram of example 2 after PCR amplification using genomic DNA as a template and primer sets composed of MSTN-F896 and MSTN-R1351.
FIG. 6 is an electrophoretogram of three groups of MSTN in step three of example 2.
FIG. 7 is an electrophoretogram of three sets of FNDC5 in step three of example 2.
FIG. 8 is an electrophoretogram of example 3 after PCR amplification using 8 pig genomic DNA as a template and a primer set of DMD-E46-F1/DMD-E46-R796.
FIG. 9 shows various double-stranded DNA molecules having cohesive ends in step three of example 3.
FIG. 10 is an electrophoretogram of example 3 after PCR amplification using the primer set consisting of DMD-E46-F1 and DMD-E46-R796 using genomic DNA as a template.
FIG. 11 is an electrophoresis chart of target gene PCR products of monoclonal cells obtained in example 4 (using a primer set composed of DMD-E46-F1 and DMD-E46-R796).
FIG. 12 is a diagram showing the sequencing peaks of the target gene of DMD-4.
Detailed Description
The following detailed description of the application is provided in connection with the accompanying drawings that are presented to illustrate the application and not to limit the scope thereof. The examples provided below are intended as guidelines for further modifications by one of ordinary skill in the art and are not to be construed as limiting the application in any way.
The experimental methods in the following examples, unless otherwise specified, are conventional methods, and are carried out according to techniques or conditions described in the literature in the field or according to the product specifications. Materials, reagents and the like used in the examples described below are commercially available unless otherwise specified. Unless otherwise indicated, the quantitative tests in the examples below were all performed in triplicate, and the results averaged. Complete culture solution (% by volume): 15% fetal bovine serum (Gibco) +83% DMEM medium (Gibco) +1% Penicillin-Streptomycin (Gibco) +1% HEPES (Solarbio). Cell culture conditions: 37 ℃,5% CO 2 、5%O 2 Is a constant temperature incubator.
The 8 pigs in the examples are all from the river of birth, wherein 4 females (named 1, 2, 3, 4 respectively) and 4 males (named A, B, C, D respectively) are female.
A method of preparing porcine primary fibroblasts: (1) taking 0.5g of pig ear tissue, removing hair, soaking in 75% alcohol for 30-40s, washing with PBS buffer solution containing 5% (volume ratio) Penicillin-Streptomycin (Gibco) for 5 times, and washing with PBS buffer solution for one time; (2) shearing the tissue with scissors, digesting with 5mL 1% collagenase solution (Sigma) at 37deg.C for 1h, centrifuging 500g for 5min, and discarding the supernatant; (3) the pellet was resuspended in 1mL of complete medium, then plated into a 9cm diameter cell culture dish containing 10mL of complete medium and capped with 0.2% gelatin (VWR), and cultured until the cells grew to about 60% of the bottom of the dish; (4) after step (3) is completed, cells are digested with trypsin and collected, and frozen using cell frozen stock (90% complete medium+10% dmso, volume ratio).
The porcine primary fibroblasts used in examples 2 to 4 were obtained from the above-described swine designated 2 (female, blood group AO).
Example 1 preparation of plasmids
Preparing a plasmid pX330-U6-Chimeric_BB-CBh-hSpCas9, as shown in SEQ ID NO: 1. Plasmid pX330-U6-Chimeric_BB-CBh-hSpCas9, abbreviated as plasmid pX330.
Preparing a plasmid pU6gRNA eEF1a-mNLS-hSpCas9-EGFP-PURO, and performing the following steps: 2. Plasmid pU6gRNA eEF1a-mNLS-hSpCas9-EGFP-PURO, abbreviated as plasmid pKG-GE3.
Plasmid pKG-U6gRNA was prepared as shown in SEQ ID NO: 3.
Plasmid pX330, plasmid pKG-GE3, plasmid pKG-U6gRNA are all circular plasmids.
The schematic structure of plasmid pX330 is shown in fig. 1.SEQ ID NO:1, nucleotides 440-725 constitute the CMV enhancer, nucleotides 727-1208 constitute the chicken β -actin promoter, nucleotides 1304-1324 encode the SV40 Nuclear Localization Signal (NLS), nucleotides 1325-5449 encode the Cas9 protein, and nucleotides 5450-5497 encode the nucleoplasin Nuclear Localization Signal (NLS).
The schematic structure of plasmid pKG-GE3 is shown in FIG. 2.SEQ ID NO:2, nucleotides 395 to 680 comprising the CMV enhancer, nucleotides 682 to 890 comprising the EF1a promoter, nucleotides 986 to 1006 comprising the Nuclear Localization Signal (NLS), nucleotides 1016 to 1036 comprising the Nuclear Localization Signal (NLS), nucleotides 1037 to 5161 comprising the Cas9 protein, nucleotides 5162 to 5209 comprising the Nuclear Localization Signal (NLS), nucleotides 5219 to 5266 comprising the Nuclear Localization Signal (NLS), nucleotides 5276 to 5332 comprising the self-cleaving polypeptide P2A (the amino acid sequence of the self-cleaving polypeptide P2A is "ATNFSLLKQAGDVEENPGP", the cleavage site for the self-cleaving is between the first amino acid residue and the second amino acid residue from the C-terminus), nucleotide numbers 5333-6046 encode EGFP protein, nucleotide numbers 6056-6109 encode self-cleaving polypeptide T2A (the amino acid sequence of self-cleaving polypeptide T2A is EGRGSLLTCGDVEENPGP, the cleavage site where self-cleavage occurs is between the first amino acid residue and the second amino acid residue from the C-terminus), nucleotide numbers 6110-6703 encode Puromycin protein (called Puro protein for short), nucleotide numbers 6722-7310 constitute WPRE sequence element, nucleotide numbers 7382-7615 constitute 3' LTR sequence element, and nucleotide numbers 7647-7871 constitute bGH poly (A) signal sequence element. SEQ ID NO:2, 911-6706 form a fusion gene, expressing a fusion protein. Due to the presence of self-cleaving polypeptide P2A and self-cleaving polypeptide T2A, the fusion protein spontaneously forms three proteins: proteins with Cas9 protein, proteins with EGFP protein, and proteins with Puro protein.
Compared with plasmid pX330, plasmid pKG-GE3 was mainly modified as follows: (1) removing residual gRNA backbone sequences (GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTTT), reducing interference; (2) the original chicken beta-actin promoter is modified into an EF1a promoter with higher expression activity, so that the protein expression capacity of the Cas9 gene is increased; (3) adding nuclear localization signal coding genes (NLS) at the upstream and downstream of the Cas9 gene, and increasing the nuclear localization capability of the Cas9 protein; (4) the original plasmid has no eukaryotic cell screening mark, is not beneficial to screening and enrichment of positive transformed cells, and is sequentially inserted with P2A-EGFP-T2A-PURO coding genes at the downstream of Cas9 genes, so that the carrier fluorescence and eukaryotic cell resistance screening capability are endowed; (5) the insertion of the WPRE element and the 3' ltr sequence element enhances the protein translation capacity of the Cas9 gene.
The schematic structure of plasmid pKG-U6gRNA is shown in FIG. 3.SEQ ID NO:3, nucleotides 2280 to 2539 constitute the hU6 promoter and nucleotides 2558 to 2637 are used for transcription to form the gRNA backbone. When in use, a DNA molecule (target sequence binding region for transcription to form gRNA) of about 20bp is inserted into plasmid pKG-U6gRNA to form a recombinant plasmid, the schematic diagram is shown in FIG. 4, and the recombinant plasmid is transcribed in cells to obtain gRNA.
Example 2, plasmid proportion optimization, comparison of the Effect of plasmid pX330 and plasmid pKG-GE3
Two gRNA targets located at the MSTN gene were selected:
target of MSTN-gRNA 1: 5'-GCTGATTGTTGCTGGTCCCG-3';
target of MSTN-gRNA 2: 5'-TTTCCAGGCGAAGTTTACTG-3'.
Two gRNA targets located at the FNDC5 gene were selected:
target for FNDC5-gRNA 1: 5'-TGTACTCAGTGTCCTCCTCC-3';
target for FNDC5-gRNA 2: 5'-GCTCTTCAAGACGCCTCGCG-3'.
Primers used to amplify fragments containing the target were:
MSTN-F896:5’-TCTCTCAGACAGTGCAGGCATTA-3’;
MSTN-R1351:5’-CGTTTCCGTCGTAGCGTGATAAT-3’。
FNDC5-F209:5’-CAGTTCTCACTTGATGGCCTTGG-3’;
FNDC5-R718:5’-AGGGGTCTGGGGAGGAATGG-3’。
1. preparation of recombinant plasmids
Plasmid pKG-U6gRNA was taken and digested with restriction enzyme BbsI, and the vector backbone (about 3kb linear fragment) was recovered.
MSTN-1S and MSTN-1A were synthesized separately, and then mixed and annealed to obtain double-stranded DNA molecules having cohesive ends. The double-stranded DNA molecule having a cohesive end was ligated to the vector backbone to give plasmid pKG-U6gRNA (MSTN-1).
MSTN-2S and MSTN-2A were synthesized separately, and then mixed and annealed to obtain double-stranded DNA molecules having cohesive ends. The double-stranded DNA molecule having a cohesive end was ligated to the vector backbone to give plasmid pKG-U6gRNA (MSTN-2).
FNDC5-1S and FNDC5-1A were synthesized separately, and then mixed and annealed to obtain double-stranded DNA molecules having cohesive ends. The double-stranded DNA molecule having a cohesive end was ligated to the vector backbone to give plasmid pKG-U6gRNA (FNDC 5-1).
FNDC5-2S and FNDC5-2A were synthesized separately, and then mixed and annealed to obtain double-stranded DNA molecules having cohesive ends. The double-stranded DNA molecule having a cohesive end was ligated to the vector backbone to give plasmid pKG-U6gRNA (FNDC 5-2).
MSTN-1S:5’-caccGCTGATTGTTGCTGGTCCCG-3’;
MSTN-1A:5’-aaacCGGGACCAGCAACAATCAGC-3’。
MSTN-2S:5’-caccgTTTCCAGGCGAAGTTTACTG-3’;
MSTN-2A:5’-aaacCAGTAAACTTCGCCTGGAAAc-3’。
FNDC5-1S:5’-caccgTGTACTCAGTGTCCTCCTCC-3’;
FNDC5-1A:5’-aaacGGAGGAGGACACTGAGTACAc-3’。
FNDC5-2S:5’-caccGCTCTTCAAGACGCCTCGCG-3’;
FNDC5-2A:5’-aaacCGCGAGGCGTCTTGAAGAGC-3’。
2. Plasmid proportioning optimization
A first group: the plasmid pKG-U6gRNA (MSTN-1), plasmid pKG-U6gRNA (MSTN-2) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.22. Mu.g plasmid pKG-U6gRNA (MSTN-1): 0.22. Mu.g plasmid pKG-U6gRNA (MSTN-2): 1.56. Mu.g of plasmid pKG-GE3. Namely, the molar ratio of the plasmid pKG-U6gRNA (MSTN-1), the plasmid pKG-U6gRNA (MSTN-2) and the plasmid pKG-GE3 is as follows: 0.5:0.5:1.
second group: the plasmid pKG-U6gRNA (MSTN-1), plasmid pKG-U6gRNA (MSTN-2) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.36. Mu.g of plasmid pKG-U6gRNA (MSTN-1): 0.36. Mu.g of plasmid pKG-U6gRNA (MSTN-2): 1.27. Mu.g of plasmid pKG-GE3. Namely, the molar ratio of the plasmid pKG-U6gRNA (MSTN-1), the plasmid pKG-U6gRNA (MSTN-2) and the plasmid pKG-GE3 is as follows: 1:1:1.
third group: the plasmid pKG-U6gRNA (MSTN-1), plasmid pKG-U6gRNA (MSTN-2) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g of plasmid pKG-U6gRNA (MSTN-1): 0.46. Mu.g of plasmid pKG-U6gRNA (MSTN-2): 1.08 μg of plasmid pKG-GE3. Namely, the molar ratio of plasmid pKG-U6gRNA (MSTN-1), plasmid pKG-U6gRNA (MSTN-2) and plasmid pKG-GE3 is 1.5 in sequence: 1.5:1.
fourth group: the plasmid pKG-U6gRNA (MSTN-1), plasmid pKG-U6gRNA (MSTN-2) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.53 μg plasmid pKG-U6gRNA (MSTN-1): 0.53 μg plasmid pKG-U6gRNA (MSTN-2): 0.93 μg of plasmid pKG-GE3. Namely, the molar ratio of the plasmid pKG-U6gRNA (MSTN-1), the plasmid pKG-U6gRNA (MSTN-2) and the plasmid pKG-GE3 is as follows: 2:2:1.
fifth group: plasmid pKG-U6gRNA (MSTN-1) and plasmid pKG-U6gRNA (MSTN-2) were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 1 μg plasmid pKG-U6gRNA (MSTN-1): mu.g of plasmid pKG-U6gRNA (MSTN-2).
Co-transfection was performed by electric shock transfection using a mammalian nuclear transfection kit (Neon kit, thermofiser) and a Neon TM transfection system electrotransfection apparatus (parameters set to 1450V, 10ms, 3 pulses).
2. After the step 1 is completed, the culture is carried out for 16 to 18 hours by adopting the complete culture solution, and then the culture is carried out by replacing the new complete culture solution. The total incubation time was 48 hours.
3. After step 2 is completed, cells are digested and collected by trypsin, genomic DNA is extracted, PCR amplification is performed by using a primer pair consisting of MSTN-F896 and MSTN-R1351, and then electrophoresis is performed.
The result of electrophoresis is shown in FIG. 5. The 456bp band is a wild-type band (WT), and the 329bp band (the 127bp theoretical deletion of the 456bp band) is a deletion mutant band (MT).
Gene deletion mutation efficiency = (MT gray scale/MT band bp number)/(WT gray scale/WT band bp number + MT gray scale/MT band bp number) ×100%. The first group of genes had 28.6% deletion mutation efficiency, the second group of genes had 77.8% deletion mutation efficiency, the third group of genes had 86.8% deletion mutation efficiency, and the fourth group of genes had 81.5% deletion mutation efficiency. The gene editing efficiency of the third group is highest, and the optimal amount of the two gRNA plasmids and the Cas9 plasmid is determined to be 1.5:1.5:1, the actual amount of plasmid was 0.46. Mu.g: 0.46 μg:1.08 μg.
3. Comparison of the effects of plasmid pX330 and plasmid pKG-GE3
1. Co-transfection
MSTN-B group: plasmid pKG-U6gRNA (MSTN-1) and plasmid pKG-U6gRNA (MSTN-2) were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g of plasmid pKG-U6gRNA (MSTN-1): 0.46. Mu.g of plasmid pKG-U6gRNA (MSTN-2).
MSTN-330 group: plasmid pKG-U6gRNA (MSTN-1), plasmid pKG-U6gRNA (MSTN-2) and plasmid pX330 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g of plasmid pKG-U6gRNA (MSTN-1): 0.46. Mu.g of plasmid pKG-U6gRNA (MSTN-2): 1.08 μg of plasmid pX330.
MSTN-KG group: the plasmid pKG-U6gRNA (MSTN-1), plasmid pKG-U6gRNA (MSTN-2) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g of plasmid pKG-U6gRNA (MSTN-1): plasmid 0.46. Mu.g pKG-U6gRNA (MSTN-2): 1.08 μg of plasmid pKG-GE3.
FNDC5-B group: the plasmid pKG-U6gRNA (FNDC 5-1) and the plasmid pKG-U6gRNA (FNDC 5-2) were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g of plasmid pKG-U6gRNA (FNDC 5-1): 0.46. Mu.g of plasmid pKG-U6gRNA (FNDC 5-2).
FNDC5-330 group: the plasmid pKG-U6gRNA (FNDC 5-1), plasmid pKG-U6gRNA (FNDC 5-2) and plasmid pX330 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g of plasmid pKG-U6gRNA (FNDC 5-1): 0.46. Mu.g of plasmid pKG-U6gRNA (FNDC 5-2): 1.08 μg of plasmid pX330.
FNDC5-KG group: the plasmid pKG-U6gRNA (FNDC 5-1), plasmid pKG-U6gRNA (FNDC 5-2) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g of plasmid pKG-U6gRNA (FNDC 5-1): 0.46. Mu.g of plasmid pKG-U6gRNA (FNDC 5-2): 1.08 μg of plasmid pKG-GE3.
Co-transfection was performed by electric shock transfection using a mammalian nuclear transfection kit (Neon kit, thermofiser) and a Neon TM transfection system electrotransfection apparatus (parameters set to 1450V, 10ms, 3 pulses).
2. After the step 1 is completed, the culture is carried out for 16 to 18 hours by adopting the complete culture solution, and then the culture is carried out by replacing the new complete culture solution. The total incubation time was 48 hours.
3. After step 2 was completed, cells were digested with trypsin and collected, genomic DNA was extracted, PCR amplification was performed using a primer pair (three sets of MSTN) composed of MSTN-F896 and MSTN-R1351, or PCR amplification was performed using a primer pair (three sets of FNDC 5) composed of FNDC5-F209 and FNDC5-R718, followed by electrophoresis.
The results of three groups of MSTNs are shown in FIG. 6.
The results of three groups of FNDC5 are shown in FIG. 7.
The deletion mutation efficiency of the MSTN-330 group gene is 27.6%, and the deletion mutation efficiency of the MSTN-KG group gene is 86.5%. The deletion mutation efficiency of the gene of the FNDC5-330 group is 18.6%, and the deletion mutation efficiency of the gene of the FNDC5-KG group is 81.7%. The results show that the use of plasmid pKG-GE3 results in a significant increase in gene editing efficiency compared to the use of plasmid pX330.
Example 3 screening of target combinations for DMD Gene knockout
1. DMD gene knockout preset target spot and adjacent genome sequence conservation analysis
Porcine DMD gene information: coding dystraphin; located on the X chromosome; geneID 1756, sus scrofa. The protein coded by the pig DMD gene is shown as SEQ ID NO: 4. In the genome DNA, the pig DMD gene has 89 exons, wherein the 46 th exon and 500bp sequences respectively at the upstream and downstream thereof are shown in SEQ ID NO: shown at 5.
The genomic DNA of 8 pigs was used as a template, and PCR amplification was performed using a primer pair (the target sequence of the primer pair includes exon 46 of the pig DMD gene), followed by electrophoresis. And (3) recovering PCR amplification products, sequencing, and comparing the sequencing results with DMD gene sequences in a public database for analysis. Based on the results of the alignment, primers for detecting the mutation (the primers themselves avoid possible mutation sites) were designed. The primers designed for mutation detection were: DMD-E46-F1/DMD-E46-R796. The electrophoresis chart of 8 pigs after PCR amplification of genomic DNA using the primer pair consisting of DMD-E46-F1/DMD-E46-R796 is shown in FIG. 8.
DMD-E46-F1:5’-GAATGCCAGGGATACCATTCAAC-3’;
DMD-E46-R796:5’-GCAATAATTTGGAGCTGTGG-3’。
2. Screening target
Several targets were initially screened by screening NGG (avoiding possible mutation sites), from which 6 targets were further screened by pre-experiments.
The 6 targets were as follows:
sgRNA DMD-Ug1 target point: 5'-TATTTCATTCTTCTATCTCC-3';
sgRNA DMD-Ug2 target point: 5'-TAAAACATGGTAACGATATA-3';
sgRNA DMD-Ug3 target point: 5'-AAAATAAGCAATATAAAACA-3';
sgRNA DMD-Dg1 target point: 5'-TCTTTATACAAGTAGGCCCT-3';
sgRNA DMD-Dg2 target point: 5'-CTCTTTATACAAGTAGGCCC-3';
sgRNA DMD-Dg3 target point: 5'-CATATACTCTTTATACAAGT-3'.
The combination of each target and the resulting theoretical absence are shown in Table 1.
Table 1 target combinations and resulting theoretical deletions
5' terminal target sequence Direction Numbering device 3' terminal target sequence Direction Numbering device Deletion length bp
TATTTCATTCTTCTATCTCC + Ug1 TCTTTATACAAGTAGGCCCT - Dg1 181
TATTTCATTCTTCTATCTCC + Ug1 CTCTTTATACAAGTAGGCCC - Dg2 182
TATTTCATTCTTCTATCTCC + Ug1 CATATACTCTTTATACAAGT - Dg3 188
TAAAACATGGTAACGATATA - Ug2 TCTTTATACAAGTAGGCCCT - Dg1 297
TAAAACATGGTAACGATATA - Ug2 CTCTTTATACAAGTAGGCCC - Dg2 298
TAAAACATGGTAACGATATA - Ug2 CATATACTCTTTATACAAGT - Dg3 304
AAAATAAGCAATATAAAACA - Ug3 TCTTTATACAAGTAGGCCCT - Dg1 284
AAAATAAGCAATATAAAACA - Ug3 CTCTTTATACAAGTAGGCCC - Dg2 285
AAAATAAGCAATATAAAACA - Ug3 CATATACTCTTTATACAAGT - Dg3 291
3. Preparation of recombinant plasmids
Plasmid pKG-U6gRNA was taken and digested with restriction enzyme BbsI, and the vector backbone (about 3kb linear fragment) was recovered.
DMD-Ug1S and DMD-Ug1A were synthesized separately, and then mixed and annealed to give double-stranded DNA molecules having cohesive ends (FIG. 9A). The double-stranded DNA molecule having a cohesive end was ligated to the vector backbone to give plasmid pKG-U6gRNA (DMD-Ug 1). Plasmid pKG-U6gRNA (DMD-Ug 1) expresses the sequence of SEQ ID NO: 6. SgRNA as shown in FIG. 6 DMD-Ug1
SEQ ID NO:6:
UAUUUCAUUCUUCUAUCUCCguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu
DMD-Ug2S and DMD-Ug2A were synthesized separately, and then mixed and annealed to give double-stranded DNA molecules having cohesive ends (FIG. 9B). The double-stranded DNA molecule having a cohesive end was ligated to the vector backbone to give plasmid pKG-U6gRNA (DMD-Ug 2). Plasmid pKG-U6gRNA (DMD-Ug 2) expresses the sequence of SEQ ID NO: 7. SgRNA DMD-Ug2
SEQ ID NO:7:
UAAAACAUGGUAACGAUAUAguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu
DMD-Ug3S and DMD-Ug3A were synthesized separately, and then mixed and annealed to give double-stranded DNA molecules having cohesive ends (FIG. 9C). The double-stranded DNA molecule having a cohesive end was ligated to the vector backbone to give plasmid pKG-U6gRNA (DMD-Ug 3). Plasmid pKG-U6gRNA (DMD-Ug 3) expresses the sequence of SEQ ID NO:8, sgRNA shown in FIG. 8 DMD-Ug3
SEQ ID NO:8:
AAAAUAAGCAAUAUAAAACAguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu
Synthesis of DMD-Dg1S and respectivelyDMD-Dg1A, followed by mixing and annealing, gives a double-stranded DNA molecule with cohesive ends (FIG. 9D). The double-stranded DNA molecule having a cohesive end was ligated to the vector backbone to give plasmid pKG-U6gRNA (DMD-Dg 1). Plasmid pKG-U6gRNA (DMD-Dg 1) expresses the sequence of SEQ ID NO: 9. SgRNA as shown in FIG. 9 DMD-Dg1
SEQ ID NO:9:
UCUUUAUACAAGUAGGCCCUguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu
DMD-Dg2S and DMD-Dg2A were synthesized separately, and then mixed and annealed to obtain double-stranded DNA molecules having cohesive ends (FIG. 9E). The double-stranded DNA molecule having a cohesive end was ligated to the vector backbone to give plasmid pKG-U6gRNA (DMD-Dg 2). Plasmid pKG-U6gRNA (DMD-Dg 2) expresses the sequence of SEQ ID NO:10, sgRNA shown in FIG. 10 DMD-Dg2
SEQ ID NO:10:
CUCUUUAUACAAGUAGGCCCguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu
DMD-Dg3S and DMD-Dg3A were synthesized separately, and then mixed and annealed to obtain double-stranded DNA molecules having cohesive ends (FIG. 9F). The double-stranded DNA molecule having a cohesive end was ligated to the vector backbone to give plasmid pKG-U6gRNA (DMD-Dg 3). Plasmid pKG-U6gRNA (DMD-Dg 3) expresses the sequence of SEQ ID NO:11, sgRNA shown in FIG. 11 DMD-Dg3
SEQ ID NO:11:
CAUAUACUCUUUAUACAAGUguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu
DMD-Ug1S:5’-caccgTATTTCATTCTTCTATCTCC-3’;
DMD-Ug1A:5’-aaacGGAGATAGAAGAATGAAATAc-3’。
DMD-Ug2S:5’-caccgTAAAACATGGTAACGATATA-3’;
DMD-Ug2A:5’-aaacTATATCGTTACCATGTTTTAc-3’。
DMD-Ug3S:5’-caccgAAAATAAGCAATATAAAACA-3’;
DMD-Ug3A:5’-aaacTGTTTTATATTGCTTATTTTc-3’。
DMD-Dg1S:5’-caccgTCTTTATACAAGTAGGCCCT-3’;
DMD-Dg1A:5’-aaacAGGGCCTACTTGTATAAAGAc-3’。
DMD-Dg2S:5’-caccgCTCTTTATACAAGTAGGCCC-3’;
DMD-Dg2A:5’-aaacGGGCCTACTTGTATAAAGAGc-3’。
DMD-Dg3S:5’-caccgCATATACTCTTTATACAAGT-3’;
DMD-Dg3A:5’-aaacACTTGTATAAAGAGTATATGc-3’。
DMD-Ug1S, DMD-Ug1A, DMD-Ug2S, DMD-Ug2A, DMD-Ug3S, DMD-Ug3A, DMD-Dg1S, DMD-Dg1A, DMD-Dg2S, DMD-Dg2A, DMD-Dg3S, DMD-Dg3A are single stranded DNA molecules.
4. Editing efficiency comparison of different target combinations
1. Co-transfection
Group 1: the plasmid pKG-U6gRNA (DMD-Ug 1), plasmid pKG-U6gRNA (DMD-Dg 1) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Ug 1): 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Dg 1): 1.08 μg of plasmid pKG-GE3.
Group 2: plasmid pKG-U6gRNA (DMD-Ug 1), plasmid pKG-U6gRNA (DMD-Dg 2) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Ug 1): 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Dg 2): 1.08 μg of plasmid pKG-GE3.
Group 3: plasmid pKG-U6gRNA (DMD-Ug 1), plasmid pKG-U6gRNA (DMD-Dg 3) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Ug 1): 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Dg 3): 1.08 μg of plasmid pKG-GE3.
Group 4: plasmid pKG-U6gRNA (DMD-Ug 2), plasmid pKG-U6gRNA (DMD-Dg 1) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Ug 2): 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Dg 1): 1.08 μg of plasmid pKG-GE3.
Group 5: plasmid pKG-U6gRNA (DMD-Ug 2), plasmid pKG-U6gRNA (DMD-Dg 2) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Ug 2): 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Dg 2): 1.08 μg of plasmid pKG-GE3.
Group 6: plasmid pKG-U6gRNA (DMD-Ug 2), plasmid pKG-U6gRNA (DMD-Dg 3) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Ug 2): 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Dg 3): 1.08 μg of plasmid pKG-GE3.
Group 7: plasmid pKG-U6gRNA (DMD-Ug 3), plasmid pKG-U6gRNA (DMD-Dg 1) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Ug 3): 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Dg 1): 1.08 μg of plasmid pKG-GE3.
Group 8: plasmid pKG-U6gRNA (DMD-Ug 3), plasmid pKG-U6gRNA (DMD-Dg 2) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Ug 3): 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Dg 2): 1.08 μg of plasmid pKG-GE3.
Group 9: plasmid pKG-U6gRNA (DMD-Ug 3), plasmid pKG-U6gRNA (DMD-Dg 3) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Ug 3): 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Dg 3): 1.08 μg of plasmid pKG-GE3.
Group 10: pig primary fibroblasts were not subjected to any transfection procedure.
Co-transfection was performed by electric shock transfection using a mammalian nuclear transfection kit (Neon kit, thermofiser) and a Neon TM transfection system electrotransfection apparatus (parameters set to 1450V, 10ms, 3 pulses).
2. After the step 1 is completed, the culture is carried out for 16 to 18 hours by adopting the complete culture solution, and then the culture is carried out by replacing the new complete culture solution. The total incubation time was 48 hours.
3. After step 2 is completed, cells are digested and collected by trypsin, genomic DNA is extracted, PCR amplification is performed by using a primer pair consisting of DMD-E46-F1 and DMD-E46-R796, and then electrophoresis is performed. The results are shown in FIG. 10. The larger band is the wild-type band (WT), the smaller band is the mutant band (MT), and the brighter the mutant band is relative to the wild-type band, the higher the mutation efficiency.
The gene deletion mutation efficiency= (MT gray/MT band bp number)/(WT gray/WT band bp number+mt gray/MT band bp number) ×100% was shown in table 2.
TABLE 2
The deletion mutation efficiency of group 10 genes was 0%.
The results show that group 9 has the best effect, sgRNA DMD-Ug3 And sgRNA DMD-Dg3 Is the optimal combination.
EXAMPLE 4 preparation of DMD Gene-editing monoclonal cells
1. Co-transfection
Plasmid pKG-U6gRNA (DMD-Ug 3), plasmid pKG-U6gRNA (DMD-Dg 3) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Ug 3): 0.46. Mu.g plasmid pKG-U6gRNA (DMD-Dg 3): 1.08 μg of plasmid pKG-GE3.
Co-transfection was performed by electric shock transfection using a mammalian nuclear transfection kit (Neon kit, thermofiser) and a Neon TM transfection system electrotransfection apparatus (parameters set to 1450V, 10ms, 3 pulses).
2. After the step 1 is completed, the culture is carried out for 16 to 18 hours by adopting the complete culture solution, and then the culture is carried out by replacing the new complete culture solution. The total incubation time was 48 hours.
3. After completion of step 2, the cells were digested with trypsin and collected, then washed with complete medium, then resuspended with complete medium, and then each individual monoclonal was individually picked and transferred to 96-well plates (1 cell per well, 200. Mu.l of complete medium per well) and cultured for 2 weeks (new complete medium was changed every 2-3 days).
4. After completion of step 3, cells were digested with trypsin and collected (about 2/3 of the resulting cells per well were inoculated into 6-well plates filled with complete culture medium, and the remaining 1/3 were collected in 1.5mL centrifuge tubes).
5. Taking the 6-hole plate in the step 4, culturing until the cells grow to 50% plumpness, digesting and collecting the cells by trypsin, and freezing the cells by using cell freezing solution (90% complete culture medium+10% DMSO, volume ratio).
6. Taking the centrifuge tube in the step 4, taking cells, extracting genome DNA, performing PCR amplification by adopting a primer pair consisting of DMD-E46-F1 and DMD-E46-R796, and then performing electrophoresis. Porcine primary fibroblasts were used as wild-type controls.
The electrophoretogram of the resulting cells is shown in FIG. 11, with lane numbers consistent with the numbers of the monoclonal cells.
7. After step 6 is completed, the PCR amplification product is recovered and sequenced.
The sequencing result of the primary fibroblast of the pig is only one, and the genotype of the primary fibroblast is homozygous wild type. If there are two kinds of sequencing results of a certain monoclonal cell, one kind is consistent with the sequencing result of the primary fibroblast of the pig, the other kind is mutated (mutation comprises deletion, insertion or substitution of one or more nucleotides) compared with the sequencing result of the primary fibroblast of the pig, the genotype of the monoclonal cell is heterozygous; if the sequencing result of a certain monoclonal cell is two, compared with the sequencing result of a primary fibroblast of a pig, the mutation (the mutation comprises deletion, insertion or replacement of one or more nucleotides) is generated, and the genotype of the monoclonal cell is a double-allele different mutant type; if the sequencing result of a monoclonal cell is one and a mutation (mutation includes deletion, insertion or substitution of one or more nucleotides) is generated compared with the sequencing result of a swine primary fibroblast, the genotype of the monoclonal cell is the same mutant type of the double allele; if the sequencing result of a certain monoclonal cell is one and is consistent with the sequencing result of a primary fibroblast of a pig, the genotype of the monoclonal cell is homozygous wild type.
The results are shown in Table 3. The genotypes of the monoclonal cells numbered 3, 6, 9, 15, 19, 26, 29, 30, 33 are identical mutants of the double alleles. The genotypes of the monoclonal cells numbered 5, 11, 17, 32, 37 are the different mutants of the bi-allele. The genotypes of the monoclonal cells numbered 4, 8, 10, 12, 18, 22, 27, 28, 35, 36, 38, 39 are heterozygous. The ratio of DMD gene editing monoclonal cells was 26/40. Exemplary, the target gene sequencing peak pattern of DMD-4 is shown in FIG. 12, the upper pattern is the target gene sequencing peak pattern of DMD-4, and the lower pattern is the target gene sequencing peak pattern of the wild-type control.
TABLE 3 Table 3
/>
The present application is described in detail above. It will be apparent to those skilled in the art that the present application can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the application and without undue experimentation. While the application has been described with respect to specific embodiments, it will be appreciated that the application may be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the application following, in general, the principles of the application and including such departures from the present disclosure as come within known or customary practice within the art to which the application pertains. The application of some of the basic features may be done in accordance with the scope of the claims that follow.
SEQUENCE LISTING
<110> Nanjing Kidney Gene engineering Co., ltd
<120> CRISPR/Cas9 system and application thereof in construction of dystrophin gene-deficient porcine recombinant cells
<130> GNCYX201920
<160> 11
<170> PatentIn version 3.5
<210> 1
<211> 8484
<212> DNA
<213> Artificial sequence
<400> 1
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag ttaaaataag 300
gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttg ttttagagct 360
agaaatagca agttaaaata aggctagtcc gtttttagcg cgtgcgccaa ttctgcagac 420
aaatggctct agaggtaccc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 480
ccaacgaccc ccgcccattg acgtcaatag taacgccaat agggactttc cattgacgtc 540
aatgggtgga gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc 600
caagtacgcc ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tgtgcccagt 660
acatgacctt atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta 720
ccatggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac 780
ccccaatttt gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg 840
ggggggggcg gggcgagggg cggggcgggg cgaggcggag aggtgcggcg gcagccaatc 900
agagcggcgc gctccgaaag tttcctttta tggcgaggcg gcggcggcgg cggccctata 960
aaaagcgaag cgcgcggcgg gcgggagtcg ctgcgcgctg ccttcgcccc gtgccccgct 1020
ccgccgccgc ctcgcgccgc ccgccccggc tctgactgac cgcgttactc ccacaggtga 1080
gcgggcggga cggcccttct cctccgggct gtaattagct gagcaagagg taagggttta 1140
agggatggtt ggttggtggg gtattaatgt ttaattacct ggagcacctg cctgaaatca 1200
ctttttttca ggttggaccg gtgccaccat ggactataag gaccacgacg gagactacaa 1260
ggatcatgat attgattaca aagacgatga cgataagatg gccccaaaga agaagcggaa 1320
ggtcggtatc cacggagtcc cagcagccga caagaagtac agcatcggcc tggacatcgg 1380
caccaactct gtgggctggg ccgtgatcac cgacgagtac aaggtgccca gcaagaaatt 1440
caaggtgctg ggcaacaccg accggcacag catcaagaag aacctgatcg gagccctgct 1500
gttcgacagc ggcgaaacag ccgaggccac ccggctgaag agaaccgcca gaagaagata 1560
caccagacgg aagaaccgga tctgctatct gcaagagatc ttcagcaacg agatggccaa 1620
ggtggacgac agcttcttcc acagactgga agagtccttc ctggtggaag aggataagaa 1680
gcacgagcgg caccccatct tcggcaacat cgtggacgag gtggcctacc acgagaagta 1740
ccccaccatc taccacctga gaaagaaact ggtggacagc accgacaagg ccgacctgcg 1800
gctgatctat ctggccctgg cccacatgat caagttccgg ggccacttcc tgatcgaggg 1860
cgacctgaac cccgacaaca gcgacgtgga caagctgttc atccagctgg tgcagaccta 1920
caaccagctg ttcgaggaaa accccatcaa cgccagcggc gtggacgcca aggccatcct 1980
gtctgccaga ctgagcaaga gcagacggct ggaaaatctg atcgcccagc tgcccggcga 2040
gaagaagaat ggcctgttcg gaaacctgat tgccctgagc ctgggcctga cccccaactt 2100
caagagcaac ttcgacctgg ccgaggatgc caaactgcag ctgagcaagg acacctacga 2160
cgacgacctg gacaacctgc tggcccagat cggcgaccag tacgccgacc tgtttctggc 2220
cgccaagaac ctgtccgacg ccatcctgct gagcgacatc ctgagagtga acaccgagat 2280
caccaaggcc cccctgagcg cctctatgat caagagatac gacgagcacc accaggacct 2340
gaccctgctg aaagctctcg tgcggcagca gctgcctgag aagtacaaag agattttctt 2400
cgaccagagc aagaacggct acgccggcta cattgacggc ggagccagcc aggaagagtt 2460
ctacaagttc atcaagccca tcctggaaaa gatggacggc accgaggaac tgctcgtgaa 2520
gctgaacaga gaggacctgc tgcggaagca gcggaccttc gacaacggca gcatccccca 2580
ccagatccac ctgggagagc tgcacgccat tctgcggcgg caggaagatt tttacccatt 2640
cctgaaggac aaccgggaaa agatcgagaa gatcctgacc ttccgcatcc cctactacgt 2700
gggccctctg gccaggggaa acagcagatt cgcctggatg accagaaaga gcgaggaaac 2760
catcaccccc tggaacttcg aggaagtggt ggacaagggc gcttccgccc agagcttcat 2820
cgagcggatg accaacttcg ataagaacct gcccaacgag aaggtgctgc ccaagcacag 2880
cctgctgtac gagtacttca ccgtgtataa cgagctgacc aaagtgaaat acgtgaccga 2940
gggaatgaga aagcccgcct tcctgagcgg cgagcagaaa aaggccatcg tggacctgct 3000
gttcaagacc aaccggaaag tgaccgtgaa gcagctgaaa gaggactact tcaagaaaat 3060
cgagtgcttc gactccgtgg aaatctccgg cgtggaagat cggttcaacg cctccctggg 3120
cacataccac gatctgctga aaattatcaa ggacaaggac ttcctggaca atgaggaaaa 3180
cgaggacatt ctggaagata tcgtgctgac cctgacactg tttgaggaca gagagatgat 3240
cgaggaacgg ctgaaaacct atgcccacct gttcgacgac aaagtgatga agcagctgaa 3300
gcggcggaga tacaccggct ggggcaggct gagccggaag ctgatcaacg gcatccggga 3360
caagcagtcc ggcaagacaa tcctggattt cctgaagtcc gacggcttcg ccaacagaaa 3420
cttcatgcag ctgatccacg acgacagcct gacctttaaa gaggacatcc agaaagccca 3480
ggtgtccggc cagggcgata gcctgcacga gcacattgcc aatctggccg gcagccccgc 3540
cattaagaag ggcatcctgc agacagtgaa ggtggtggac gagctcgtga aagtgatggg 3600
ccggcacaag cccgagaaca tcgtgatcga aatggccaga gagaaccaga ccacccagaa 3660
gggacagaag aacagccgcg agagaatgaa gcggatcgaa gagggcatca aagagctggg 3720
cagccagatc ctgaaagaac accccgtgga aaacacccag ctgcagaacg agaagctgta 3780
cctgtactac ctgcagaatg ggcgggatat gtacgtggac caggaactgg acatcaaccg 3840
gctgtccgac tacgatgtgg accatatcgt gcctcagagc tttctgaagg acgactccat 3900
cgacaacaag gtgctgacca gaagcgacaa gaaccggggc aagagcgaca acgtgccctc 3960
cgaagaggtc gtgaagaaga tgaagaacta ctggcggcag ctgctgaacg ccaagctgat 4020
tacccagaga aagttcgaca atctgaccaa ggccgagaga ggcggcctga gcgaactgga 4080
taaggccggc ttcatcaaga gacagctggt ggaaacccgg cagatcacaa agcacgtggc 4140
acagatcctg gactcccgga tgaacactaa gtacgacgag aatgacaagc tgatccggga 4200
agtgaaagtg atcaccctga agtccaagct ggtgtccgat ttccggaagg atttccagtt 4260
ttacaaagtg cgcgagatca acaactacca ccacgcccac gacgcctacc tgaacgccgt 4320
cgtgggaacc gccctgatca aaaagtaccc taagctggaa agcgagttcg tgtacggcga 4380
ctacaaggtg tacgacgtgc ggaagatgat cgccaagagc gagcaggaaa tcggcaaggc 4440
taccgccaag tacttcttct acagcaacat catgaacttt ttcaagaccg agattaccct 4500
ggccaacggc gagatccgga agcggcctct gatcgagaca aacggcgaaa ccggggagat 4560
cgtgtgggat aagggccggg attttgccac cgtgcggaaa gtgctgagca tgccccaagt 4620
gaatatcgtg aaaaagaccg aggtgcagac aggcggcttc agcaaagagt ctatcctgcc 4680
caagaggaac agcgataagc tgatcgccag aaagaaggac tgggacccta agaagtacgg 4740
cggcttcgac agccccaccg tggcctattc tgtgctggtg gtggccaaag tggaaaaggg 4800
caagtccaag aaactgaaga gtgtgaaaga gctgctgggg atcaccatca tggaaagaag 4860
cagcttcgag aagaatccca tcgactttct ggaagccaag ggctacaaag aagtgaaaaa 4920
ggacctgatc atcaagctgc ctaagtactc cctgttcgag ctggaaaacg gccggaagag 4980
aatgctggcc tctgccggcg aactgcagaa gggaaacgaa ctggccctgc cctccaaata 5040
tgtgaacttc ctgtacctgg ccagccacta tgagaagctg aagggctccc ccgaggataa 5100
tgagcagaaa cagctgtttg tggaacagca caagcactac ctggacgaga tcatcgagca 5160
gatcagcgag ttctccaaga gagtgatcct ggccgacgct aatctggaca aagtgctgtc 5220
cgcctacaac aagcaccggg ataagcccat cagagagcag gccgagaata tcatccacct 5280
gtttaccctg accaatctgg gagcccctgc cgccttcaag tactttgaca ccaccatcga 5340
ccggaagagg tacaccagca ccaaagaggt gctggacgcc accctgatcc accagagcat 5400
caccggcctg tacgagacac ggatcgacct gtctcagctg ggaggcgaca aaaggccggc 5460
ggccacgaaa aaggccggcc aggcaaaaaa gaaaaagtaa gaattcctag agctcgctga 5520
tcagcctcga ctgtgccttc tagttgccag ccatctgttg tttgcccctc ccccgtgcct 5580
tccttgaccc tggaaggtgc cactcccact gtcctttcct aataaaatga ggaaattgca 5640
tcgcattgtc tgagtaggtg tcattctatt ctggggggtg gggtggggca ggacagcaag 5700
ggggaggatt gggaagagaa tagcaggcat gctggggagc ggccgcagga acccctagtg 5760
atggagttgg ccactccctc tctgcgcgct cgctcgctca ctgaggccgg gcgaccaaag 5820
gtcgcccgac gcccgggctt tgcccgggcg gcctcagtga gcgagcgagc gcgcagctgc 5880
ctgcaggggc gcctgatgcg gtattttctc cttacgcatc tgtgcggtat ttcacaccgc 5940
atacgtcaaa gcaaccatag tacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg 6000
tggttacgcg cagcgtgacc gctacacttg ccagcgcctt agcgcccgct cctttcgctt 6060
tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc 6120
tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgatttgg 6180
gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg 6240
agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc aactctatct 6300
cgggctattc ttttgattta taagggattt tgccgatttc ggtctattgg ttaaaaaatg 6360
agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaattttat 6420
ggtgcactct cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc 6480
caacacccgc tgacgcgccc tgacgggctt gtctgctccc ggcatccgct tacagacaag 6540
ctgtgaccgt ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg 6600
cgagacgaaa gggcctcgtg atacgcctat ttttataggt taatgtcatg ataataatgg 6660
tttcttagac gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat 6720
ttttctaaat acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc 6780
aataatattg aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct 6840
tttttgcggc attttgcctt cctgtttttg ctcacccaga aacgctggtg aaagtaaaag 6900
atgctgaaga tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta 6960
agatccttga gagttttcgc cccgaagaac gttttccaat gatgagcact tttaaagttc 7020
tgctatgtgg cgcggtatta tcccgtattg acgccgggca agagcaactc ggtcgccgca 7080
tacactattc tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg 7140
atggcatgac agtaagagaa ttatgcagtg ctgccataac catgagtgat aacactgcgg 7200
ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca 7260
tgggggatca tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa gccataccaa 7320
acgacgagcg tgacaccacg atgcctgtag caatggcaac aacgttgcgc aaactattaa 7380
ctggcgaact acttactcta gcttcccggc aacaattaat agactggatg gaggcggata 7440
aagttgcagg accacttctg cgctcggccc ttccggctgg ctggtttatt gctgataaat 7500
ctggagccgg tgagcgtgga agccgcggta tcattgcagc actggggcca gatggtaagc 7560
cctcccgtat cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata 7620
gacagatcgc tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt 7680
actcatatat actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga 7740
agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag 7800
cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa 7860
tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag 7920
agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg 7980
ttcttctagt gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat 8040
acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta 8100
ccgggttgga ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg 8160
gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc 8220
gtgagctatg agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa 8280
gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc 8340
tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt 8400
caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct 8460
tttgctggcc ttttgctcac atgt 8484
<210> 2
<211> 10476
<212> DNA
<213> Artificial sequence
<400> 2
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag ttaaaataag 300
gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttc tagcgcgtgc 360
gccaattctg cagacaaatg gctctagagg tacccgttac ataacttacg gtaaatggcc 420
cgcctggctg accgcccaac gacccccgcc cattgacgtc aatagtaacg ccaataggga 480
ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc 540
aagtgtatca tatgccaagt acgcccccta ttgacgtcaa tgacggtaaa tggcccgcct 600
ggcattgtgc ccagtacatg accttatggg actttcctac ttggcagtac atctacgtat 660
tagtcatcgc tattaccatg ggggcagagc gcacatcgcc cacagtcccc gagaagttgg 720
ggggaggggt cggcaattga tccggtgcct agagaaggtg gcgcggggta aactgggaaa 780
gtgatgtcgt gtactggctc cgcctttttc ccgagggtgg gggagaaccg tatataagtg 840
cagtagtcgc cgtgaacgtt ctttttcgca acgggtttgc cgccagaaca caggttggac 900
cggtgccacc atggactata aggaccacga cggagactac aaggatcatg atattgatta 960
caaagacgat gacgataaga tggcccccaa aaagaaacga aaggtgggtg ggtccccaaa 1020
gaagaagcgg aaggtcggta tccacggagt cccagcagcc gacaagaagt acagcatcgg 1080
cctggacatc ggcaccaact ctgtgggctg ggccgtgatc accgacgagt acaaggtgcc 1140
cagcaagaaa ttcaaggtgc tgggcaacac cgaccggcac agcatcaaga agaacctgat 1200
cggagccctg ctgttcgaca gcggcgaaac agccgaggcc acccggctga agagaaccgc 1260
cagaagaaga tacaccagac ggaagaaccg gatctgctat ctgcaagaga tcttcagcaa 1320
cgagatggcc aaggtggacg acagcttctt ccacagactg gaagagtcct tcctggtgga 1380
agaggataag aagcacgagc ggcaccccat cttcggcaac atcgtggacg aggtggccta 1440
ccacgagaag taccccacca tctaccacct gagaaagaaa ctggtggaca gcaccgacaa 1500
ggccgacctg cggctgatct atctggccct ggcccacatg atcaagttcc ggggccactt 1560
cctgatcgag ggcgacctga accccgacaa cagcgacgtg gacaagctgt tcatccagct 1620
ggtgcagacc tacaaccagc tgttcgagga aaaccccatc aacgccagcg gcgtggacgc 1680
caaggccatc ctgtctgcca gactgagcaa gagcagacgg ctggaaaatc tgatcgccca 1740
gctgcccggc gagaagaaga atggcctgtt cggaaacctg attgccctga gcctgggcct 1800
gacccccaac ttcaagagca acttcgacct ggccgaggat gccaaactgc agctgagcaa 1860
ggacacctac gacgacgacc tggacaacct gctggcccag atcggcgacc agtacgccga 1920
cctgtttctg gccgccaaga acctgtccga cgccatcctg ctgagcgaca tcctgagagt 1980
gaacaccgag atcaccaagg cccccctgag cgcctctatg atcaagagat acgacgagca 2040
ccaccaggac ctgaccctgc tgaaagctct cgtgcggcag cagctgcctg agaagtacaa 2100
agagattttc ttcgaccaga gcaagaacgg ctacgccggc tacattgacg gcggagccag 2160
ccaggaagag ttctacaagt tcatcaagcc catcctggaa aagatggacg gcaccgagga 2220
actgctcgtg aagctgaaca gagaggacct gctgcggaag cagcggacct tcgacaacgg 2280
cagcatcccc caccagatcc acctgggaga gctgcacgcc attctgcggc ggcaggaaga 2340
tttttaccca ttcctgaagg acaaccggga aaagatcgag aagatcctga ccttccgcat 2400
cccctactac gtgggccctc tggccagggg aaacagcaga ttcgcctgga tgaccagaaa 2460
gagcgaggaa accatcaccc cctggaactt cgaggaagtg gtggacaagg gcgcttccgc 2520
ccagagcttc atcgagcgga tgaccaactt cgataagaac ctgcccaacg agaaggtgct 2580
gcccaagcac agcctgctgt acgagtactt caccgtgtat aacgagctga ccaaagtgaa 2640
atacgtgacc gagggaatga gaaagcccgc cttcctgagc ggcgagcaga aaaaggccat 2700
cgtggacctg ctgttcaaga ccaaccggaa agtgaccgtg aagcagctga aagaggacta 2760
cttcaagaaa atcgagtgct tcgactccgt ggaaatctcc ggcgtggaag atcggttcaa 2820
cgcctccctg ggcacatacc acgatctgct gaaaattatc aaggacaagg acttcctgga 2880
caatgaggaa aacgaggaca ttctggaaga tatcgtgctg accctgacac tgtttgagga 2940
cagagagatg atcgaggaac ggctgaaaac ctatgcccac ctgttcgacg acaaagtgat 3000
gaagcagctg aagcggcgga gatacaccgg ctggggcagg ctgagccgga agctgatcaa 3060
cggcatccgg gacaagcagt ccggcaagac aatcctggat ttcctgaagt ccgacggctt 3120
cgccaacaga aacttcatgc agctgatcca cgacgacagc ctgaccttta aagaggacat 3180
ccagaaagcc caggtgtccg gccagggcga tagcctgcac gagcacattg ccaatctggc 3240
cggcagcccc gccattaaga agggcatcct gcagacagtg aaggtggtgg acgagctcgt 3300
gaaagtgatg ggccggcaca agcccgagaa catcgtgatc gaaatggcca gagagaacca 3360
gaccacccag aagggacaga agaacagccg cgagagaatg aagcggatcg aagagggcat 3420
caaagagctg ggcagccaga tcctgaaaga acaccccgtg gaaaacaccc agctgcagaa 3480
cgagaagctg tacctgtact acctgcagaa tgggcgggat atgtacgtgg accaggaact 3540
ggacatcaac cggctgtccg actacgatgt ggaccatatc gtgcctcaga gctttctgaa 3600
ggacgactcc atcgacaaca aggtgctgac cagaagcgac aagaaccggg gcaagagcga 3660
caacgtgccc tccgaagagg tcgtgaagaa gatgaagaac tactggcggc agctgctgaa 3720
cgccaagctg attacccaga gaaagttcga caatctgacc aaggccgaga gaggcggcct 3780
gagcgaactg gataaggccg gcttcatcaa gagacagctg gtggaaaccc ggcagatcac 3840
aaagcacgtg gcacagatcc tggactcccg gatgaacact aagtacgacg agaatgacaa 3900
gctgatccgg gaagtgaaag tgatcaccct gaagtccaag ctggtgtccg atttccggaa 3960
ggatttccag ttttacaaag tgcgcgagat caacaactac caccacgccc acgacgccta 4020
cctgaacgcc gtcgtgggaa ccgccctgat caaaaagtac cctaagctgg aaagcgagtt 4080
cgtgtacggc gactacaagg tgtacgacgt gcggaagatg atcgccaaga gcgagcagga 4140
aatcggcaag gctaccgcca agtacttctt ctacagcaac atcatgaact ttttcaagac 4200
cgagattacc ctggccaacg gcgagatccg gaagcggcct ctgatcgaga caaacggcga 4260
aaccggggag atcgtgtggg ataagggccg ggattttgcc accgtgcgga aagtgctgag 4320
catgccccaa gtgaatatcg tgaaaaagac cgaggtgcag acaggcggct tcagcaaaga 4380
gtctatcctg cccaagagga acagcgataa gctgatcgcc agaaagaagg actgggaccc 4440
taagaagtac ggcggcttcg acagccccac cgtggcctat tctgtgctgg tggtggccaa 4500
agtggaaaag ggcaagtcca agaaactgaa gagtgtgaaa gagctgctgg ggatcaccat 4560
catggaaaga agcagcttcg agaagaatcc catcgacttt ctggaagcca agggctacaa 4620
agaagtgaaa aaggacctga tcatcaagct gcctaagtac tccctgttcg agctggaaaa 4680
cggccggaag agaatgctgg cctctgccgg cgaactgcag aagggaaacg aactggccct 4740
gccctccaaa tatgtgaact tcctgtacct ggccagccac tatgagaagc tgaagggctc 4800
ccccgaggat aatgagcaga aacagctgtt tgtggaacag cacaagcact acctggacga 4860
gatcatcgag cagatcagcg agttctccaa gagagtgatc ctggccgacg ctaatctgga 4920
caaagtgctg tccgcctaca acaagcaccg ggataagccc atcagagagc aggccgagaa 4980
tatcatccac ctgtttaccc tgaccaatct gggagcccct gccgccttca agtactttga 5040
caccaccatc gaccggaaga ggtacaccag caccaaagag gtgctggacg ccaccctgat 5100
ccaccagagc atcaccggcc tgtacgagac acggatcgac ctgtctcagc tgggaggcga 5160
caaaaggccg gcggccacga aaaaggccgg ccaggcaaaa aagaaaaagg gcggctccaa 5220
gcggcctgcc gcgacgaaga aagcgggaca ggccaagaaa aagaaaggat ccggcgcaac 5280
aaacttctct ctgctgaaac aagccggaga tgtcgaagag aatcctggac cggtgagcaa 5340
gggcgaggag ctgttcaccg gggtggtgcc catcctggtc gagctggacg gcgacgtaaa 5400
cggccacaag ttcagcgtgt ccggcgaggg cgagggcgat gccacctacg gcaagctgac 5460
cctgaagttc atctgcacca ccggcaagct gcccgtgccc tggcccaccc tcgtgaccac 5520
cctgacctac ggcgtgcagt gcttcagccg ctaccccgac cacatgaagc agcacgactt 5580
cttcaagtcc gccatgcccg aaggctacgt ccaggagcgc accatcttct tcaaggacga 5640
cggcaactac aagacccgcg ccgaggtgaa gttcgagggc gacaccctgg tgaaccgcat 5700
cgagctgaag ggcatcgact tcaaggagga cggcaacatc ctggggcaca agctggagta 5760
caactacaac agccacaacg tctatatcat ggccgacaag cagaagaacg gcatcaaggt 5820
gaacttcaag atccgccaca acatcgagga cggcagcgtg cagctcgccg accactacca 5880
gcagaacacc cccatcggcg acggccccgt gctgctgccc gacaaccact acctgagcac 5940
ccagtccgcc ctgagcaaag accccaacga gaagcgcgat cacatggtcc tgctggagtt 6000
cgtgaccgcc gccgggatca ctctcggcat ggacgagctg tacaagggct ccggcgaggg 6060
caggggaagt cttctaacat gcggggacgt ggaggaaaat cccggcccaa ccgagtacaa 6120
gcccacggtg cgcctcgcca cccgcgacga cgtccccagg gccgtacgca ccctcgccgc 6180
cgcgttcgcc gactaccccg ccacgcgcca caccgtcgat ccggaccgcc acatcgagcg 6240
ggtcaccgag ctgcaagaac tcttcctcac gcgcgtcggg ctcgacatcg gcaaggtgtg 6300
ggtcgcggac gacggcgccg cggtggcggt ctggaccacg ccggagagcg tcgaagcggg 6360
ggcggtgttc gccgagatcg gcccgcgcat ggccgagttg agcggttccc ggctggccgc 6420
gcagcaacag atggaaggcc tcctggcgcc gcaccggccc aaggagcccg cgtggttcct 6480
ggccaccgtc ggagtctcgc ccgaccacca gggcaagggt ctgggcagcg ccgtcgtgct 6540
ccccggagtg gaggcggccg agcgcgccgg ggtgcccgcc ttcctggaga cctccgcgcc 6600
ccgcaacctc cccttctacg agcggctcgg cttcaccgtc accgccgacg tcgaggtgcc 6660
cgaaggaccg cgcacctggt gcatgacccg caagcccggt gcctgaacgc gttaagtcga 6720
caatcaacct ctggattaca aaatttgtga aagattgact ggtattctta actatgttgc 6780
tccttttacg ctatgtggat acgctgcttt aatgcctttg tatcatgcta ttgcttcccg 6840
tatggctttc attttctcct ccttgtataa atcctggttg ctgtctcttt atgaggagtt 6900
gtggcccgtt gtcaggcaac gtggcgtggt gtgcactgtg tttgctgacg caacccccac 6960
tggttggggc attgccacca cctgtcagct cctttccggg actttcgctt tccccctccc 7020
tattgccacg gcggaactca tcgccgcctg ccttgcccgc tgctggacag gggctcggct 7080
gttgggcact gacaattccg tggtgttgtc ggggaaatca tcgtcctttc cttggctgct 7140
cgcctgtgtt gccacctgga ttctgcgcgg gacgtccttc tgctacgtcc cttcggccct 7200
caatccagcg gaccttcctt cccgcggcct gctgccggct ctgcggcctc ttccgcgtct 7260
tcgccttcgc cctcagacga gtcggatctc cctttgggcc gcctccccgc gtcgacttta 7320
agaccaatga cttacaaggc agctgtagat cttagccact ttttaaaaga aaagggggga 7380
ctggaagggc taattcactc ccaacgaaga caagatctgc tttttgcttg tactgggtct 7440
ctctggttag accagatctg agcctgggag ctctctggct aactagggaa cccactgctt 7500
aagcctcaat aaagcttgcc ttgagtgctt caagtagtgt gtgcccgtct gttgtgtgac 7560
tctggtaact agagatccct cagacccttt tagtcagtgt ggaaaatctc tagcagggcc 7620
cgtttaaacc cgctgatcag cctcgactgt gccttctagt tgccagccat ctgttgtttg 7680
cccctccccc gtgccttcct tgaccctgga aggtgccact cccactgtcc tttcctaata 7740
aaatgaggaa attgcatcgc attgtctgag taggtgtcat tctattctgg ggggtggggt 7800
ggggcaggac agcaaggggg aggattggga agacaatagc aggcatgctg gggatgcggt 7860
gggctctatg gcctgcaggg gcgcctgatg cggtattttc tccttacgca tctgtgcggt 7920
atttcacacc gcatacgtca aagcaaccat agtacgcgcc ctgtagcggc gcattaagcg 7980
cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc ttagcgcccg 8040
ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc cgtcaagctc 8100
taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa 8160
aacttgattt gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc 8220
ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact ggaacaacac 8280
tcaactctat ctcgggctat tcttttgatt tataagggat tttgccgatt tcggtctatt 8340
ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa atattaacgt 8400
ttacaatttt atggtgcact ctcagtacaa tctgctctga tgccgcatag ttaagccagc 8460
cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc ccggcatccg 8520
cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt tcaccgtcat 8580
caccgaaacg cgcgagacga aagggcctcg tgatacgcct atttttatag gttaatgtca 8640
tgataataat ggtttcttag acgtcaggtg gcacttttcg gggaaatgtg cgcggaaccc 8700
ctatttgttt atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct 8760
gataaatgct tcaataatat tgaaaaagga agagtatgag tattcaacat ttccgtgtcg 8820
cccttattcc cttttttgcg gcattttgcc ttcctgtttt tgctcaccca gaaacgctgg 8880
tgaaagtaaa agatgctgaa gatcagttgg gtgcacgagt gggttacatc gaactggatc 8940
tcaacagcgg taagatcctt gagagttttc gccccgaaga acgttttcca atgatgagca 9000
cttttaaagt tctgctatgt ggcgcggtat tatcccgtat tgacgccggg caagagcaac 9060
tcggtcgccg catacactat tctcagaatg acttggttga gtactcacca gtcacagaaa 9120
agcatcttac ggatggcatg acagtaagag aattatgcag tgctgccata accatgagtg 9180
ataacactgc ggccaactta cttctgacaa cgatcggagg accgaaggag ctaaccgctt 9240
ttttgcacaa catgggggat catgtaactc gccttgatcg ttgggaaccg gagctgaatg 9300
aagccatacc aaacgacgag cgtgacacca cgatgcctgt agcaatggca acaacgttgc 9360
gcaaactatt aactggcgaa ctacttactc tagcttcccg gcaacaatta atagactgga 9420
tggaggcgga taaagttgca ggaccacttc tgcgctcggc ccttccggct ggctggttta 9480
ttgctgataa atctggagcc ggtgagcgtg gaagccgcgg tatcattgca gcactggggc 9540
cagatggtaa gccctcccgt atcgtagtta tctacacgac ggggagtcag gcaactatgg 9600
atgaacgaaa tagacagatc gctgagatag gtgcctcact gattaagcat tggtaactgt 9660
cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa 9720
ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa cgtgagtttt 9780
cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt 9840
ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt 9900
tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc agagcgcaga 9960
taccaaatac tgttcttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag 10020
caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata 10080
agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg 10140
gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga 10200
gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca 10260
ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa 10320
acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt 10380
tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac 10440
ggttcctggc cttttgctgg ccttttgctc acatgt 10476
<210> 3
<211> 3120
<212> DNA
<213> Artificial sequence
<400> 3
gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60
cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 120
tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 180
aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 240
ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg 300
ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 360
tccttgagag ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc 420
tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 480
actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 540
gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca 600
acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg 660
gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg 720
acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg 780
gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 840
ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg 900
gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct 960
cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac 1020
agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac caagtttact 1080
catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 1140
tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 1200
cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 1260
gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 1320
taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 1380
ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 1440
tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 1500
ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 1560
cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 1620
agctatgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 1680
gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 1740
atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 1800
gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 1860
gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 1920
ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1980
cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 2040
cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca 2100
acgcaattaa tgtgagttag ctcactcatt aggcacccca ggctttacac tttatgcttc 2160
cggctcgtat gttgtgtgga attgtgagcg gataacaatt tcacacagga aacagctatg 2220
accatgatta cgccaagctt gcatgcaggc ctctgcagtc gacgggcccg ggatccgatg 2280
ataaacatgt gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc 2340
tgttagagag ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac 2400
gtgacgtaga aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat 2460
ggactatcat atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt 2520
gtggaaagga cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag 2580
ttaaaataag gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttc 2640
tagcgcgtgc gccaattctg cagacaaatg gctctagagg tacccataga tctagatgca 2700
ttcgcgaggt accgagctcg aattcactgg ccgtcgtttt acaacgtcgt gactgggaaa 2760
accctggcgt tacccaactt aatcgccttg cagcacatcc ccctttcgcc agctggcgta 2820
atagcgaaga ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg aatggcgaat 2880
ggcgcctgat gcggtatttt ctccttacgc atctgtgcgg tatttcacac cgcatatggt 2940
gcactctcag tacaatctgc tctgatgccg catagttaag ccagccccga cacccgccaa 3000
cacccgctga cgcgccctga cgggcttgtc tgctcccggc atccgcttac agacaagctg 3060
tgaccgtctc cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga 3120
<210> 4
<211> 3674
<212> PRT
<213> Sus scrofa
<400> 4
Met Ser Glu Val Ser Ser Asp Glu Arg Glu Asp Val Gln Lys Lys Thr
1 5 10 15
Phe Thr Lys Trp Ile Asn Ala Gln Phe Ser Lys Phe Gly Lys Gln His
20 25 30
Ile Glu Asn Leu Phe Asn Asp Leu Gln Asp Gly Arg Arg Leu Leu Asp
35 40 45
Leu Leu Glu Gly Leu Thr Gly Gln Lys Leu Pro Lys Glu Lys Gly Ser
50 55 60
Thr Arg Val His Ala Leu Asn Asn Val Asn Lys Ala Leu Gln Val Leu
65 70 75 80
Gln Lys Asn Asn Val Asp Leu Val Asn Ile Gly Ser Thr Asp Ile Val
85 90 95
Asp Gly Asn His Lys Leu Thr Leu Gly Leu Ile Trp Asn Ile Ile Leu
100 105 110
His Trp Gln Val Lys Asn Val Met Lys Asn Ile Met Ala Gly Leu Gln
115 120 125
Gln Thr Asn Ser Glu Lys Ile Leu Leu Ser Trp Val Arg Gln Ser Thr
130 135 140
Arg Asn Tyr Pro Gln Val Asn Val Ile Asn Phe Thr Thr Ser Trp Ser
145 150 155 160
Asp Gly Leu Ala Leu Asn Ala Leu Ile His Ser His Arg Pro Asp Leu
165 170 175
Phe Asp Trp Asn Ser Val Val Cys Gln Gln Ser Ala Thr Gln Arg Leu
180 185 190
Glu His Ala Phe Asn Ile Ala Lys Tyr Gln Leu Gly Ile Glu Lys Leu
195 200 205
Leu Asp Pro Glu Asp Val Ala Thr Thr Tyr Pro Asp Lys Lys Ser Ile
210 215 220
Leu Met Tyr Val Thr Ser Leu Phe Gln Val Leu Pro Gln Gln Val Ser
225 230 235 240
Ile Glu Ala Ile Gln Glu Val Glu Met Leu Pro Arg Pro Ser Lys Val
245 250 255
Thr Arg Glu Glu His Phe Gln Leu His His Gln Met His Tyr Ser Gln
260 265 270
Gln Ile Thr Val Cys Leu Ala Gln Gly Tyr Glu Arg Thr Pro Ser Pro
275 280 285
Lys Pro Arg Phe Lys Ser Tyr Ala Tyr Thr Gln Ala Ala Tyr Val Thr
290 295 300
Thr Ser Asp Pro Thr Arg Ser Pro Phe Pro Ser Gln Arg Leu Glu Ser
305 310 315 320
Pro Glu Asp Lys Ser Phe Gly Ser Ser Leu Leu Glu Thr Glu Val Asn
325 330 335
Leu Asp Ser Tyr Gln Thr Ala Leu Glu Glu Val Leu Ser Trp Leu Leu
340 345 350
Ser Ala Glu Asp Thr Leu Gln Ala Gln Gly Glu Ile Ser Asn Asp Val
355 360 365
Glu Glu Val Lys Glu Gln Phe His Thr His Glu Gly Tyr Met Met Asp
370 375 380
Leu Thr Ser His Gln Gly Arg Ile Gly Ser Val Leu Gln Leu Gly Ser
385 390 395 400
Gln Leu Ile Gly Lys Gly Lys Leu Ser Glu Asp Glu Glu Thr Glu Val
405 410 415
Gln Glu Gln Met Asn Leu Leu Asn Ser Arg Trp Glu Cys Leu Arg Val
420 425 430
Ala Ser Val Glu Lys Gln Ser Asn Leu His Lys Val Leu Met Asp Leu
435 440 445
Gln Asn Gln Gln Leu Lys Glu Leu Asn Asp Trp Leu Thr Lys Thr Glu
450 455 460
Glu Lys Thr Arg Lys Met Glu Lys Glu Pro Leu Gly Pro Asp Leu Glu
465 470 475 480
Asp Leu Lys His Gln Ile Gln Gln His Lys Val Leu Gln Glu Asp Leu
485 490 495
Glu Gln Glu Gln Val Arg Val Asn Ser Leu Thr His Met Val Val Val
500 505 510
Val Asp Glu Ser Ser Gly Asp His Ala Thr Ala Ala Leu Glu Glu Gln
515 520 525
Leu Lys Val Leu Gly Asp Arg Trp Ala Asn Ile Cys Arg Trp Thr Glu
530 535 540
Asp Arg Trp Val Leu Leu Gln Asp Ile Leu Leu Lys Trp Gln Arg Phe
545 550 555 560
Thr Glu Glu Gln Cys Leu Phe Ser Thr Trp Leu Ser Glu Lys Glu Asp
565 570 575
Ala Leu Asn Lys Ile His Thr Thr Gly Phe Lys Asp Gln Gly Glu Met
580 585 590
Leu Ser Ser Leu Gln Lys Leu Ala Val Leu Lys Thr Asp Leu Glu Lys
595 600 605
Lys Lys Gln Thr Met Asp Lys Leu Ser Ser Leu Asn Gln Asp Leu Leu
610 615 620
Ser Thr Leu Lys Asn Thr Leu Val Ala Gln Lys Met Glu Ala Trp Leu
625 630 635 640
Asp Asn Phe Ala Gln Arg Trp Asp Asn Leu Val Gln Lys Leu Glu Lys
645 650 655
Ser Ser Thr Gln Ile Ser Gln Ala Val Thr Thr Thr Gln Pro Ser Leu
660 665 670
Thr Gln Thr Thr Val Met Glu Thr Val Thr Met Val Thr Thr Arg Glu
675 680 685
Gln Ile Leu Val Lys His Ala Gln Glu Glu Leu Pro Pro Pro Pro Pro
690 695 700
Gln Lys Lys Arg Gln Ile Ile Val Asp Ser Glu Ile Arg Lys Arg Leu
705 710 715 720
Asp Val Asp Ile Thr Glu Leu His Ser Trp Ile Thr Arg Ser Glu Ala
725 730 735
Val Leu Gln Ser Pro Glu Phe Ala Ile Tyr Arg Lys Glu Gly Asn Phe
740 745 750
Ser Asp Leu Lys Glu Lys Val Asn Ala Ile Glu Arg Glu Lys Ala Glu
755 760 765
Lys Phe Arg Lys Leu Gln Asp Ala Ser Arg Ser Ala Gln Ala Leu Val
770 775 780
Glu Gln Met Val Asn Glu Gly Val Asn Ala Asp Ser Ile Lys Gln Ala
785 790 795 800
Ala Glu Gln Leu Asn Ser Arg Trp Ile Glu Phe Cys Gln Leu Leu Ser
805 810 815
Glu Arg Leu Asn Trp Leu Glu Tyr Gln Asn Arg Ile Ile Thr Phe Tyr
820 825 830
Asn Gln Leu Gln Gln Leu Glu Gln Ile Thr Thr Ala Ala Glu Asn Trp
835 840 845
Leu Lys Thr Gln Pro Ile Thr Thr Ser Glu Pro Thr Ala Val Lys Ser
850 855 860
Gln Leu Lys Ile Cys Lys Asp Glu Val Asn Arg Leu Ser Ala Leu Gln
865 870 875 880
Pro Gln Ile Glu Arg Leu Lys Ile Glu Ser Ile Ala Leu Lys Glu Lys
885 890 895
Gly Gln Gly Pro Met Phe Leu Asp Ala Asp Ser Val Ala Phe Thr Asn
900 905 910
His Phe Asn Gln Val Phe Ala Asp Met Gln Ala Lys Glu Lys Glu Leu
915 920 925
Gln Ile Ile Phe Asp Thr Leu Pro Pro Met Arg Tyr Gln Glu Thr Met
930 935 940
Ser Thr Ile Leu Thr Trp Ile Gln His Ser Glu Ala Lys Leu Ser Ile
945 950 955 960
Pro Gln Ala Thr Val Thr Glu Tyr Glu Ile Met Glu Gln Arg Leu Gly
965 970 975
Glu Leu Gln Ala Leu Gln Ser Ser Leu Gln Glu Gln Gln Asn Gly Leu
980 985 990
Asn Tyr Leu Ser Thr Thr Val Lys Glu Met Ser Lys Lys Ala Pro Ser
995 1000 1005
Asn Ile Ser Arg Lys Tyr Gln Ser Glu Phe Glu Glu Ile Glu Gly
1010 1015 1020
Arg Trp Lys Lys Leu Ser Ala Gln Leu Met Glu His Cys Gln Lys
1025 1030 1035
Leu Glu Glu Gln Ile Ala Lys Leu Arg Lys Leu Gln Asn His Ile
1040 1045 1050
Lys Thr Leu Lys Asn Trp Met Ala Glu Val Asp Ile Phe Leu Lys
1055 1060 1065
Glu Glu Trp Pro Ala Leu Gly Asp Ser Glu Ile Leu Arg Lys Gln
1070 1075 1080
Leu Lys Gln Cys Arg Leu Leu Val Ser Asp Ile Gln Thr Ile Gln
1085 1090 1095
Pro Ser Leu Asn Ser Val Asn Glu Gly Gly Gln Lys Ile Lys Lys
1100 1105 1110
Glu Ala Glu Pro Glu Phe Ala Ser Arg Leu Glu Thr Glu Leu Arg
1115 1120 1125
Glu Leu Asn Thr Gln Trp Asp Tyr Ile Cys Arg Gln Val Tyr Ala
1130 1135 1140
Arg Lys Glu Ala Leu Lys Gly Gly Leu Asp Lys Thr Ile Ser Leu
1145 1150 1155
Gln Lys Asp Leu Ser Glu Met His Glu Trp Met Thr Gln Ala Glu
1160 1165 1170
Glu Glu Tyr Leu Glu Arg Asp Phe Glu Tyr Lys Thr Pro Asp Glu
1175 1180 1185
Leu Gln Thr Ala Val Glu Glu Met Lys Arg Ala Lys Glu Glu Ala
1190 1195 1200
Gln Gln Lys Glu Ala Lys Val Lys Leu Leu Thr Glu Ser Val Asn
1205 1210 1215
Ser Val Ile Ala Gln Ala Pro Pro Ala Ala Gln Glu Ala Leu Lys
1220 1225 1230
Lys Glu Leu Asp Thr Leu Thr Thr Asn Tyr Gln Trp Leu Cys Thr
1235 1240 1245
Arg Leu Asn Gly Lys Cys Lys Thr Leu Glu Glu Val Trp Ala Cys
1250 1255 1260
Trp His Glu Leu Leu Ser Tyr Leu Glu Lys Ala Asn Lys Trp Leu
1265 1270 1275
Ser Glu Val Glu Phe Lys Leu Lys Thr Thr Glu Asn Ile Pro Gly
1280 1285 1290
Gly Ala Glu Glu Ile Ser Glu Val Leu Glu Ser Leu Glu Asn Leu
1295 1300 1305
Met Gln His Ser Glu Asp Asn Pro Asn Gln Ile Arg Ile Leu Ala
1310 1315 1320
Gln Thr Leu Thr Asp Gly Gly Val Met Asp Glu Leu Ile Asn Glu
1325 1330 1335
Glu Leu Glu Thr Phe Asn Ser Arg Trp Arg Glu Leu His Glu Glu
1340 1345 1350
Ala Val Arg Arg Gln Lys Leu Leu Glu Gln Ser Ile Gln Ser Ala
1355 1360 1365
Gln Glu Ile Glu Lys Ser Leu His Leu Ile Gln Asp Ser Leu Ser
1370 1375 1380
Ser Ile Asp His Gln Leu Ala Val Tyr Ile Ala Asp Lys Val Asp
1385 1390 1395
Ala Ala Gln Met Pro Gln Glu Ala Gln Lys Ile Gln Ser Asp Leu
1400 1405 1410
Thr Ser His Glu Ile Ser Leu Glu Glu Met Lys Lys His Tyr Gln
1415 1420 1425
Gly Lys Glu Ala Ala Pro Arg Val Leu Ser Gln Ile Glu Leu Ala
1430 1435 1440
Gln Lys Lys Leu Gln Asp Val Ser Met Lys Phe Arg Leu Phe Gln
1445 1450 1455
Lys Pro Ala Asn Phe Glu Gln Arg Leu Gln Glu Ser Lys Met Ile
1460 1465 1470
Leu Asp Glu Val Lys Met His Leu Pro Ala Leu Glu Ile Lys Ser
1475 1480 1485
Val Glu Gln Glu Val Val Gln Ser Gln Leu Asn His Cys Val Asn
1490 1495 1500
Leu Tyr Lys Ser Leu Ser Glu Val Lys Ser Glu Val Glu Met Val
1505 1510 1515
Ile Lys Thr Gly Arg Gln Ile Val Gln Lys Lys Gln Thr Glu Asn
1520 1525 1530
Pro Lys Glu Leu Asp Glu Arg Val Thr Ala Leu Lys Leu His Tyr
1535 1540 1545
Asn Glu Leu Gly Ala Lys Val Thr Glu Arg Lys Gln Gln Leu Glu
1550 1555 1560
Lys Cys Leu Lys Leu Ser Arg Lys Met Arg Lys Glu Met Asn Val
1565 1570 1575
Leu Thr Glu Trp Leu Ala Ala Thr Asp Thr Glu Leu Thr Lys Arg
1580 1585 1590
Ser Ala Val Glu Gly Met Pro Ser Asn Leu Asp Ser Glu Val Val
1595 1600 1605
Trp Gly Lys Ala Thr Gln Lys Glu Ile Glu Lys Gln Lys Phe His
1610 1615 1620
Leu Lys Ser Ile Ser Glu Ile Gly Glu Ala Leu Lys Met Val Leu
1625 1630 1635
Gly Lys Lys Glu Thr Leu Val Glu Asp Lys Leu Ser Leu Leu Asn
1640 1645 1650
Ser Asn Trp Ile Ala Val Thr Ser Arg Ala Glu Glu Trp Leu Asn
1655 1660 1665
Leu Leu Leu Glu Tyr Gln Lys His Met Glu Asn Phe Asp Gln Asn
1670 1675 1680
Val Asp His Ile Thr Lys Trp Ile Ile Gln Ala Asp Thr Leu Leu
1685 1690 1695
Asp Glu Ser Glu Lys Lys Lys Pro Gln Gln Lys Glu Asp Val Leu
1700 1705 1710
Lys Arg Leu Lys Ala Glu Met Asn Asp Met Arg Pro Lys Val Asp
1715 1720 1725
Ser Thr Arg Asp Gln Ala Ala Asn Leu Met Ala Asn Arg Gly Asp
1730 1735 1740
His Cys Arg Lys Val Ile Glu Pro Lys Ile Ser Glu Leu Asn His
1745 1750 1755
Arg Phe Ala Ala Ile Ser His Arg Ile Lys Thr Gly Lys Ala Ser
1760 1765 1770
Ile Pro Leu Lys Glu Leu Glu Gln Phe Asn Ser Asp Ile Gln Lys
1775 1780 1785
Leu Leu Glu Pro Leu Glu Ala Glu Ile Gln Gln Gly Val Asn Leu
1790 1795 1800
Lys Glu Glu Asp Phe Asn Lys Asp Met Ser Glu Asp Asn Glu Gly
1805 1810 1815
Thr Val Lys Glu Leu Leu Gln Arg Gly Asp Asn Leu Gln Gln Arg
1820 1825 1830
Ile Thr Asp Glu Arg Lys Arg Glu Glu Ile Lys Ile Lys Gln Gln
1835 1840 1845
Leu Leu Gln Thr Lys His Asn Ala Leu Lys Asp Leu Arg Ser Gln
1850 1855 1860
Arg Arg Lys Lys Ala Leu Glu Ile Ser His Gln Trp Tyr Gln Tyr
1865 1870 1875
Lys Arg Gln Ala Asp Asp Leu Leu Lys Cys Leu Asp Asp Ile Glu
1880 1885 1890
Lys Lys Leu Ala Ser Leu Pro Glu Pro Gln Asp Glu Lys Lys Ile
1895 1900 1905
Lys Glu Ile Asp Arg Glu Leu Gln Lys Lys Lys Glu Glu Leu Asp
1910 1915 1920
Ala Val Arg Arg Gln Ala Glu Gly Leu Ser Glu Asp Gly Ala Ala
1925 1930 1935
Met Ala Val Glu Pro Thr Gln Ile Gln Leu Ser Lys Arg Trp Arg
1940 1945 1950
Glu Ile Glu Ser Lys Phe Ala His Phe Arg Arg Leu Asn Phe Ala
1955 1960 1965
Gln Ile His Thr Val His Glu Glu Ser Val Met Val Met Thr Glu
1970 1975 1980
Asp Met Pro Leu Glu Ile Ser Tyr Val Pro Ser Ala Tyr Leu Thr
1985 1990 1995
Glu Ile Thr His Val Ser Gln Ala Leu Ser Glu Val Glu Gln Leu
2000 2005 2010
Leu Asn Ala Pro Asp Leu Cys Ala Lys Asp Phe Glu Asp Leu Phe
2015 2020 2025
Lys Gln Glu Glu Ser Leu Lys Asn Ile Lys Asp Ser Leu Gln Gln
2030 2035 2040
Ile Ser Gly Arg Val Asp Ile Ile His Asn Lys Lys Thr Ala Gly
2045 2050 2055
Leu Gln Ser Ala Thr Pro Val Glu Arg Thr Arg Leu Gln Glu Ala
2060 2065 2070
Leu Ser Gln Leu Asp Phe Gln Trp Glu Arg Val Asn Lys Met Tyr
2075 2080 2085
Lys Asp Arg Gln Gly Lys Phe Asp Arg Ser Val Glu Lys Trp Arg
2090 2095 2100
Arg Phe His Tyr Asp Met Lys Ile Phe Asn Gln Trp Leu Thr Glu
2105 2110 2115
Ala Glu His Phe Leu Lys Lys Thr Gln Ile Pro Glu Asn Trp Glu
2120 2125 2130
His Ala Lys Tyr Lys Trp Tyr Leu Lys Glu Leu Gln Asp Gly Ile
2135 2140 2145
Gly Gln Arg Gln Thr Ile Val Arg Val Leu Asn Ala Thr Gly Glu
2150 2155 2160
Glu Val Ile Gln Gln Ser Ser Lys Thr Asp Ala Ser Ile Leu Gln
2165 2170 2175
Glu Lys Leu Gly Ser Leu Asn Leu Arg Trp Gln Glu Val Cys Lys
2180 2185 2190
Gln Leu Ala Glu Arg Lys Lys Arg Leu Glu Glu Gln Lys Asn Ile
2195 2200 2205
Leu Ser Glu Phe Gln Arg Asp Leu Asn Glu Phe Val Leu Trp Leu
2210 2215 2220
Glu Glu Ala Asp Asn Ile Thr Ser Val Ala Leu Glu Pro Gly Asn
2225 2230 2235
Glu Gln Gln Leu Lys Glu Lys Leu Glu Glu Ile Lys Leu Leu Ala
2240 2245 2250
Glu Glu Leu Pro Leu Arg Gln Gly Thr Leu Lys Gln Leu Asn Glu
2255 2260 2265
Thr Gly Gly Thr Val Leu Val Ser Ala Pro Ile Ser Pro Glu Glu
2270 2275 2280
Gln Asp Lys Ile Glu Asn Lys Leu Lys Gln Thr Asn Leu Gln Trp
2285 2290 2295
Ile Lys Val Ser Arg Ile Leu Pro Glu Lys Gln Gly Glu Ile Glu
2300 2305 2310
Ala His Ile Lys Asp Leu Gly Gln Phe Glu Glu Gln Leu Asn His
2315 2320 2325
Leu Leu Val Trp Leu Ser Pro Ile Lys Asn Gln Leu Glu Ile Tyr
2330 2335 2340
Asn Gln Pro Asn Gln Thr Gly Pro Phe Asp Ile Lys Glu Thr Glu
2345 2350 2355
Val Ala Val Gln Ala Lys Gln Leu Asp Val Glu Gly Ile Leu Ser
2360 2365 2370
Lys Gly Gln His Leu Tyr Lys Glu Lys Pro Ala Thr Gln Pro Val
2375 2380 2385
Lys Arg Lys Leu Glu Asp Leu Ser Ser Glu Trp Lys Ala Val Thr
2390 2395 2400
His Leu Leu Gln Glu Leu Arg Ala Lys Trp Pro Gly Pro Thr Pro
2405 2410 2415
Gly Leu Thr Thr Ile Glu Ala Pro Thr Ser Gln Thr Val Thr Leu
2420 2425 2430
Val Thr Gln Pro Thr Val Thr Lys Glu Thr Ala Ile Ser Lys Pro
2435 2440 2445
Glu Met Pro Ser Ser Leu Leu Leu Glu Val Pro Ala Leu Ala Asp
2450 2455 2460
Phe Asn Arg Ala Trp Thr Glu Leu Thr Asp Trp Leu Ser Leu Leu
2465 2470 2475
Asp Arg Val Ile Lys Ser Gln Arg Val Met Val Gly Asp Leu Glu
2480 2485 2490
Asp Ile Asn Glu Met Ile Ile Lys Gln Lys Ala Thr Leu Gln Asp
2495 2500 2505
Leu Glu Gln Arg Arg Pro Gln Leu Glu Glu Leu Ile Thr Ala Ala
2510 2515 2520
Gln Asn Leu Lys Asn Lys Thr Ser Asn Gln Glu Ala Arg Thr Ile
2525 2530 2535
Ile Thr Asp Arg Ile Glu Arg Ile Gln Ser Gln Trp Asp Glu Val
2540 2545 2550
Gln Glu His Leu Gln Asn Arg Arg Gln Gln Leu Asn Glu Met Leu
2555 2560 2565
Lys Asp Ser Thr Gln Trp Leu Glu Ala Lys Glu Glu Ala Glu Gln
2570 2575 2580
Val Leu Gly Gln Ala Arg Ala Lys Leu Glu Ser Trp Lys Glu Gly
2585 2590 2595
Pro Tyr Thr Met Asp Ala Ile Gln Arg Lys Ile Thr Glu Thr Lys
2600 2605 2610
Gln Leu Ala Lys Asp Leu Arg Gln Trp Gln Ile Asn Val Asp Val
2615 2620 2625
Ala Asn Asp Leu Ala Leu Lys Leu Leu Arg Asp Tyr Ser Ala Asp
2630 2635 2640
Asp Thr Arg Lys Val His Met Ile Thr Glu Asn Ile Asn Ala Ser
2645 2650 2655
Trp Ala Asn Ile His Lys Arg Leu Ser Glu Arg Glu Thr Val Leu
2660 2665 2670
Glu Glu Thr His Arg Leu Leu Gln Gln Phe Pro Leu Asp Leu Glu
2675 2680 2685
Lys Phe Leu Ala Trp Leu Thr Glu Ala Glu Thr Thr Ala Asn Val
2690 2695 2700
Leu Gln Asp Ala Thr His Lys Glu Arg Leu Leu Glu Asp Ser Lys
2705 2710 2715
Gly Val Arg Glu Leu Met Lys Gln Trp Gln Asp Leu Gln Gly Glu
2720 2725 2730
Ile Glu Ala His Thr Asp Ile Tyr His Asn Leu Asp Glu Asn Gly
2735 2740 2745
Gln Lys Ile Leu Arg Ser Leu Glu Gly Ser Asp Asp Ala Ile Leu
2750 2755 2760
Leu Gln Arg Arg Leu Asp Asn Met Asn Phe Lys Trp Ser Glu Leu
2765 2770 2775
Arg Lys Lys Ser Leu Asn Ile Arg Ser His Leu Glu Ala Ser Ser
2780 2785 2790
Asp Gln Trp Lys Arg Leu His Leu Ser Leu Gln Glu Leu Leu Val
2795 2800 2805
Trp Leu Gln Leu Lys Asp Asp Glu Leu Ser Arg Gln Ala Pro Ile
2810 2815 2820
Gly Gly Asp Cys Pro Ala Val Gln Lys Gln Asn Asp Val His Arg
2825 2830 2835
Ala Phe Lys Arg Glu Leu Lys Thr Lys Glu Pro Val Ile Met Ser
2840 2845 2850
Thr Leu Glu Thr Val Arg Ile Phe Leu Thr Glu Gln Pro Leu Glu
2855 2860 2865
Gly Leu Glu Lys Leu Tyr Gln Glu Pro Arg Glu Leu Pro Pro Glu
2870 2875 2880
Glu Arg Ala Gln Asn Val Thr Arg Leu Leu Arg Lys Gln Ala Glu
2885 2890 2895
Glu Val Asn Thr Glu Trp Glu Lys Leu Asn Leu His Ser Ala Asp
2900 2905 2910
Trp Gln Arg Lys Ile Asp Glu Ala Leu Glu Arg Leu Gln Glu Leu
2915 2920 2925
Gln Glu Ala Thr Asp Glu Leu Asp Leu Lys Leu Arg Gln Ala Glu
2930 2935 2940
Val Ile Lys Gly Ser Trp Gln Pro Val Gly Asp Leu Leu Ile Asp
2945 2950 2955
Ser Leu Gln Asp His Leu Glu Lys Val Lys Ala Leu Arg Gly Glu
2960 2965 2970
Lys Ala Pro Leu Lys Glu Asn Val Ser His Val Asn Asp Leu Ala
2975 2980 2985
Arg Gln Leu Thr Thr Leu Gly Ile Gln Leu Ser Pro Tyr Asn Leu
2990 2995 3000
Ser Thr Leu Glu Asp Leu Asn Thr Arg Trp Lys Leu Leu Gln Val
3005 3010 3015
Ala Val Glu Asp Arg Ile Arg Gln Leu His Glu Ala His Arg Asp
3020 3025 3030
Phe Gly Pro Ala Ser Gln His Phe Leu Ser Thr Ser Val Gln Gly
3035 3040 3045
Pro Trp Glu Arg Ala Ile Ser Pro Asn Lys Val Pro Tyr Tyr Ile
3050 3055 3060
Asn His Glu Thr Gln Thr Thr Cys Trp Asp His Pro Lys Met Thr
3065 3070 3075
Glu Leu Tyr Gln Ser Leu Ala Asp Leu Asn Asn Val Arg Phe Ser
3080 3085 3090
Ala Tyr Arg Thr Ala Met Lys Leu Arg Arg Leu Gln Lys Ala Leu
3095 3100 3105
Cys Leu Asp Leu Leu Ser Leu Ser Ala Ala Cys Asp Ala Leu Asp
3110 3115 3120
Gln His Asn Leu Lys Gln Asn Asp Gln Pro Met Asp Ile Leu Gln
3125 3130 3135
Ile Ile Asn Cys Leu Thr Thr Val Tyr Asp Arg Leu Glu Gln Glu
3140 3145 3150
His Asn Asn Leu Val Asn Val Pro Leu Cys Val Asp Met Cys Leu
3155 3160 3165
Asn Trp Leu Leu Asn Val Tyr Asp Thr Gly Arg Thr Gly Arg Ile
3170 3175 3180
Arg Val Leu Ser Phe Lys Thr Gly Ile Val Ser Leu Cys Lys Ala
3185 3190 3195
His Leu Glu Asp Lys Tyr Arg Tyr Leu Phe Lys Gln Val Ala Ser
3200 3205 3210
Ser Thr Gly Phe Cys Asp Gln Arg Arg Leu Gly Leu Leu Leu His
3215 3220 3225
Asp Ser Ile Gln Ile Pro Arg Gln Leu Gly Glu Val Ala Ser Phe
3230 3235 3240
Gly Gly Ser Asn Ile Glu Pro Ser Val Arg Ser Cys Phe Gln Phe
3245 3250 3255
Ala Asn Asn Lys Pro Glu Ile Glu Ala Ala Leu Phe Leu Asp Trp
3260 3265 3270
Met Arg Leu Glu Pro Gln Ser Met Val Trp Leu Pro Val Leu His
3275 3280 3285
Arg Val Ala Ala Ala Glu Thr Ala Lys His Gln Ala Lys Cys Asn
3290 3295 3300
Ile Cys Lys Glu Cys Pro Ile Ile Gly Phe Arg Tyr Arg Ser Leu
3305 3310 3315
Lys His Phe Asn Tyr Asp Ile Cys Gln Ser Cys Phe Phe Ser Gly
3320 3325 3330
Arg Val Ala Lys Gly His Lys Met His Tyr Pro Met Val Glu Tyr
3335 3340 3345
Cys Thr Pro Thr Thr Ser Gly Glu Asp Val Arg Asp Phe Ala Lys
3350 3355 3360
Val Leu Lys Asn Lys Phe Arg Thr Lys Arg Tyr Phe Ala Lys His
3365 3370 3375
Pro Arg Met Gly Tyr Leu Pro Val Gln Thr Val Leu Glu Gly Asp
3380 3385 3390
Asn Met Glu Thr Pro Val Thr Leu Ile Asn Phe Trp Pro Val Asp
3395 3400 3405
Ser Ala Pro Ala Ser Ser Pro Gln Leu Ser His Asp Asp Thr His
3410 3415 3420
Ser Arg Ile Glu His Tyr Ala Ser Arg Leu Ala Glu Met Glu Asn
3425 3430 3435
Ser Asn Gly Ser Tyr Leu Asn Asp Ser Ile Ser Pro Asn Glu Ser
3440 3445 3450
Ile Asp Asp Glu His Leu Leu Ile Gln His Tyr Cys Gln Ser Leu
3455 3460 3465
Asn Gln Asp Ser Pro Leu Ser Gln Pro Arg Ser Pro Ala Gln Ile
3470 3475 3480
Leu Ile Ser Leu Glu Ser Glu Glu Arg Gly Glu Leu Glu Arg Ile
3485 3490 3495
Leu Ala Asp Leu Glu Glu Glu Asn Arg Asn Leu Gln Ala Glu Tyr
3500 3505 3510
Asp Arg Leu Lys Gln Gln His Glu His Lys Gly Leu Ser Pro Leu
3515 3520 3525
Pro Ser Pro Pro Glu Met Met Pro Thr Ser Pro Gln Ser Pro Arg
3530 3535 3540
Asp Ala Glu Leu Ile Ala Glu Ala Lys Leu Leu Arg Gln His Lys
3545 3550 3555
Gly Arg Leu Glu Ala Arg Met Gln Thr Leu Glu Asp His Asn Lys
3560 3565 3570
Gln Leu Glu Ser Gln Leu His Arg Leu Arg Gln Leu Leu Glu Gln
3575 3580 3585
Pro Gln Ala Glu Ala Lys Val Asn Gly Thr Thr Val Ser Ser Pro
3590 3595 3600
Ser Thr Ser Leu Gln Arg Ser Asp Ser Ser Gln Pro Met Leu Leu
3605 3610 3615
Arg Val Val Gly Ser Gln Thr Ser Glu Ser Met Gly Glu Glu Asp
3620 3625 3630
Leu Leu Ser Pro Pro Gln Asp Thr Ser Thr Gly Leu Glu Glu Val
3635 3640 3645
Met Glu Gln Leu Asn Asn Ser Phe Pro Ser Ser Arg Gly Arg Asn
3650 3655 3660
Thr Pro Gly Lys Pro Val Arg Glu Asp Thr Met
3665 3670
<210> 5
<211> 1158
<212> DNA
<213> Sus scrofa
<400> 5
taaaacacgc aacttcatat tatacactta ttctagtgaa gttgtgctca cctggggata 60
gtttttttct tcaaggtatt atttgacagt gcttcaaggc atttttgttt ggcacaactg 120
ggtggaggct actggcatac tagtggggga atgccaggga taccattcaa cctcctacaa 180
tgcccagagt agcccatcgc agctaagaat tacccaacct taaatgtcag tggtgctgag 240
gttgagaaat actgctctag tttaataaca taatattgtt ggaattttaa aattggaatt 300
ttttctggac taattttaat atcttctttt agagattttt gatattgaaa tgatctgtga 360
acaaattttc tttcaaaacc gtatatcgtt accatgtttt atattgctta ttttttgaaa 420
gcatgtgcct ttttttagtt ttctttttaa aaagttacag aaaaattttg tttataaaag 480
tattatttca ttcttctatc tccaggctag aagaacaaaa aaatatcttg tcagaatttc 540
aaagagattt aaatgaattt gttttatggc tggaagaagc agacaacatt actagtgttg 600
cacttgagcc tggaaatgag cagcaactaa aagaaaaact tgaagaaatc aaggtaattt 660
tattttctaa aatcacccag ggcctacttg tataaagagt atatgaacct attttttaat 720
gtattaatca ttggttttct gcccattagg ttatttatag ttcctcagta gttttcctca 780
caactttatt ttgtcttaat cccagtgttt cttaatgagt atatatacat ttttaaaagt 840
gtgtatggga tgtgtatgtg tgtaaaatgc atagtagtat ttcttaaatt aatttgaaat 900
taattttaga gttaatggag gattccacag ctccaaatta ttgcaaaaac tgatgagaat 960
tctttataga aatgaatctc atttcttagg gaagatctta attgctaaat caatctcact 1020
acttcagcct ctaattaaag gcattcaatt tgcctgaagc aatgttttgg tttggtttgt 1080
ttttttttgc agggtgggga gtggtggttc actttcaata gtgattgaat cgacttcagt 1140
ttattcaagt gtcttttc 1158
<210> 6
<211> 100
<212> RNA
<213> Artificial sequence
<400> 6
uauuucauuc uucuaucucc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100
<210> 7
<211> 100
<212> RNA
<213> Artificial sequence
<400> 7
uaaaacaugg uaacgauaua guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100
<210> 8
<211> 100
<212> RNA
<213> Artificial sequence
<400> 8
aaaauaagca auauaaaaca guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100
<210> 9
<211> 100
<212> RNA
<213> Artificial sequence
<400> 9
ucuuuauaca aguaggcccu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100
<210> 10
<211> 100
<212> RNA
<213> Artificial sequence
<400> 10
cucuuuauac aaguaggccc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100
<210> 11
<211> 100
<212> RNA
<213> Artificial sequence
<400> 11
cauauacucu uuauacaagu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

Claims (10)

  1. Combination of sgrnas, consisting of sgrnas DMD-Ug3 And sgRNA DMD-Dg3 Composition;
    the sgRNA DMD-Ug3 The target sequence binding region of (a) is as set forth in SEQ ID NO:8 from nucleotide 1 to nucleotide 20;
    the sgRNA DMD-Dg3 The target sequence binding region of (a) is as set forth in SEQ ID NO:11 from nucleotide 1 to nucleotide 20.
  2. 2. Plasmid combination consisting of plasmid pKG-U6gRNA (DMD-Ug 3) and plasmid pKG-U6gRNA (DMD-Dg 3);
    the plasmid pKG-U6gRNA (DMD-Ug 3) was obtained by introducing the sgRNA with the aid of the restriction enzyme BbsI DMD-Ug3 The target sequence binding region of (a) is inserted into a pKG-U6gRNA vector;
    the plasmid pKG-U6gRNA (DMD-Dg 3) was obtained by introducing the sgRNA with the aid of the restriction enzyme BbsI DMD-Dg3 The target sequence binding region of (a) is inserted into a pKG-U6gRNA vector;
    the sgRNA DMD-Ug3 The target sequence binding region of (a) is as set forth in SEQ ID NO:8 from nucleotide 1 to nucleotide 20;
    the sgRNA DMD-Dg3 The target sequence binding region of (a) is as set forth in SEQ ID NO:11 from nucleotide 1 to nucleotide 20;
    the plasmid pKG-U6gRNA is shown as SEQ ID NO: 3.
  3. 3. A kit comprising the sgRNA combination of claim 1 or the plasmid combination of claim 2; the kit is used as follows (a) or (b): (a) preparing a recombinant cell; (b) preparing an animal model of duchenne muscular dystrophy.
  4. 4. A kit according to claim 3, wherein: the kit also comprises a plasmid pKG-GE3; the plasmid pKG-GE3 is shown as SEQ ID NO: 2.
  5. 5. Use of the sgRNA combination of claim 1 or the plasmid combination of claim 2 in the preparation of a kit; the kit is used as follows (a) or (b): (a) preparing a recombinant cell; (b) preparing an animal model of duchenne muscular dystrophy.
  6. 6. Use of the plasmid combination according to claim 2 and the plasmid pKG-GE3 according to claim 4 in the co-preparation of a kit; the kit is used as follows (a) or (b): (a) preparing a recombinant cell; (b) preparing an animal model of duchenne muscular dystrophy.
  7. 7. Use of the sgRNA combination of claim 1 or the plasmid combination of claim 2 or the kit of claim 3 or the kit of claim 4, said use being as follows (a) or (b): (a) preparing a recombinant cell; (b) preparing an animal model of duchenne muscular dystrophy.
  8. 8. A method of preparing a recombinant cell comprising the steps of: cotransfecting a pig cell with the plasmid pKG-U6gRNA (DMD-Ug 3) of claim 2, the plasmid pKG-U6gRNA (DMD-Dg 3) of claim 2 and the plasmid pKG-GE3 of claim 4 to obtain a recombinant cell with a mutation in the dystrophin gene.
  9. 9. The recombinant cell prepared by the method of claim 8.
  10. 10. Use of the recombinant cell of claim 9 in the preparation of an animal model of duchenne muscular dystrophy.
CN202010835848.1A 2020-08-19 2020-08-19 CRISPR/Cas9 system and application thereof in construction of dystrophin gene-deficient porcine recombinant cells Active CN112522256B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010835848.1A CN112522256B (en) 2020-08-19 2020-08-19 CRISPR/Cas9 system and application thereof in construction of dystrophin gene-deficient porcine recombinant cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010835848.1A CN112522256B (en) 2020-08-19 2020-08-19 CRISPR/Cas9 system and application thereof in construction of dystrophin gene-deficient porcine recombinant cells

Publications (2)

Publication Number Publication Date
CN112522256A CN112522256A (en) 2021-03-19
CN112522256B true CN112522256B (en) 2023-08-22

Family

ID=74978748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010835848.1A Active CN112522256B (en) 2020-08-19 2020-08-19 CRISPR/Cas9 system and application thereof in construction of dystrophin gene-deficient porcine recombinant cells

Country Status (1)

Country Link
CN (1) CN112522256B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779466A (en) * 2015-11-30 2018-11-09 杜克大学 Therapeutic targets and application method for correcting people's dystrophin gene by gene editing
CN112063621A (en) * 2020-09-02 2020-12-11 西湖大学 Duchenne muscular dystrophy related exon splicing enhancer, sgRNA, gene editing tool and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3332008A4 (en) * 2015-09-23 2019-01-16 Université Laval Modification of the dystrophin gene and uses thereof
JP2019533440A (en) * 2016-09-23 2019-11-21 ユニヴェルシテ ラヴァル Method for modifying dystrophin gene to restore dystrophin expression and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779466A (en) * 2015-11-30 2018-11-09 杜克大学 Therapeutic targets and application method for correcting people's dystrophin gene by gene editing
CN112063621A (en) * 2020-09-02 2020-12-11 西湖大学 Duchenne muscular dystrophy related exon splicing enhancer, sgRNA, gene editing tool and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CRISPR/Cas9基因编辑技术在动物疾病模型构CRISPR/Cas9基因编辑技术在动物疾病模型构建的应用建的应用;冷烨;《中国畜禽种业》;45-46 *

Also Published As

Publication number Publication date
CN112522256A (en) 2021-03-19

Similar Documents

Publication Publication Date Title
CN112779292B (en) Method for constructing high-quality pig nuclear transplantation donor cells with high lean meat percentage and rapid growth and capable of resisting blue ear diseases and serial diarrhea diseases and application of donor cells
CN112779291B (en) Method for constructing high-quality pig nuclear transplantation donor cells with high lean meat percentage, fast growth, high reproductive capacity and resistance to series epidemic diseases and application thereof
US20040072352A1 (en) Expression vector for animal cell containing nuclear matrix attachment region of interferon beta
CN112522260B (en) CRISPR system and application thereof in preparing TTN gene mutation dilated cardiomyopathy clone pig nuclear donor cells
CN112877362A (en) Gene editing system for constructing high-quality porcine nuclear transplantation donor cells with high fertility and capability of resisting porcine reproductive and respiratory syndrome and serial diarrhea diseases and application of gene editing system
CN112522309B (en) Severe immunodeficiency pig source recombinant cell, preparation method and kit thereof
CN112522261B (en) CRISPR system for preparing LMNA gene mutation dilated cardiomyopathy clone pig nuclear donor cell and application thereof
CN113046388B (en) CRISPR system for constructing atherosclerosis pig nuclear transfer donor cells with double genes in combined knockout mode and application of CRISPR system
CN112522264B (en) CRISPR/Cas9 system causing congenital deafness and application thereof in preparation of model pig nuclear donor cells
CN112522313B (en) CRISPR/Cas9 system for constructing depression cloned pig nuclear donor cells with TPH2 gene mutation
CN114958762B (en) Method for constructing nerve tissue specific overexpression humanized SNCA parkinsonism model pig and application
CN112522256B (en) CRISPR/Cas9 system and application thereof in construction of dystrophin gene-deficient porcine recombinant cells
CN112522258B (en) Recombinant cell with IL2RG gene and ADA gene knocked out in combined mode and application of recombinant cell in preparation of immunodeficiency pig model
CN112522202B (en) Method for preparing ADDI four-gene combined knockout severe immunodeficiency swine-derived recombinant cell and special kit thereof
CN112522257B (en) System for preparing severe immunodeficiency pig source recombinant cells with RRIP four genes knocked out in combined mode
CN112522255B (en) CRISPR/Cas9 system and application thereof in construction of porcine recombinant cell with insulin receptor substrate gene defect
CN112522311B (en) CRISPR system for ADCY3 gene editing and application thereof in construction of obese pig nuclear transfer donor cells
CN112608941B (en) CRISPR system for constructing obese pig nuclear transplantation donor cells with MC4R gene mutation and application of CRISPR system
CN112795566B (en) OPG gene editing system for constructing osteoporosis clone pig nuclear donor cell line and application thereof
CN112813101B (en) Gene editing system for constructing high-quality pig nuclear transplantation donor cells with high lean meat percentage and rapid growth and application thereof
CN112575033B (en) CRISPR system and application thereof in construction of SCN1A gene mutated epileptic encephalopathy clone pig nuclear donor cell
CN112680453B (en) CRISPR system and application thereof in construction of STXBP1 mutant epileptic encephalopathy clone pig nuclear donor cell
CN112899306B (en) CRISPR system and application thereof in construction of GABRG2 gene mutation cloned pig nuclear donor cells
CN113584078B (en) CRISPR system for double-target gene editing and application thereof in construction of depressive pig nuclear transfer donor cells
CN112680444B (en) CRISPR system for OCA2 gene mutation and application thereof in construction of albino clone pig nuclear donor cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant