CN112522249B - 一种催化活性提高的纤维小体及其组装方法和应用 - Google Patents

一种催化活性提高的纤维小体及其组装方法和应用 Download PDF

Info

Publication number
CN112522249B
CN112522249B CN202011334377.2A CN202011334377A CN112522249B CN 112522249 B CN112522249 B CN 112522249B CN 202011334377 A CN202011334377 A CN 202011334377A CN 112522249 B CN112522249 B CN 112522249B
Authority
CN
China
Prior art keywords
doc2
doc1
aexynm
pcr
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011334377.2A
Other languages
English (en)
Other versions
CN112522249A (zh
Inventor
张慧敏
姜惠
沈子亮
杨章平
邬敏辰
毛永江
李明勋
陈志�
孙雨佳
徐天乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202011334377.2A priority Critical patent/CN112522249B/zh
Publication of CN112522249A publication Critical patent/CN112522249A/zh
Application granted granted Critical
Publication of CN112522249B publication Critical patent/CN112522249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/18Multi-enzyme systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/16Enzymes or microbial cells immobilised on or in a biological cell
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • C12N9/2482Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif

Abstract

本发明公开了一种催化活性提高的纤维小体及其组装方法和应用,属于生物技术领域。本发明利用大肠杆菌分别异源表达含对接模块的木聚糖酶AExynM‑Doc1以及含对接模块的葡聚糖酶EG1‑Doc2;利用酿酒酵母表面展示粘连蛋白Coh1‑Coh2,获得重组酵母EBY100/Coh1‑Coh2;将重组蛋白AExynM‑Doc1、EG1‑Doc2与重组酵母EBY100/Coh1‑Coh2混合,通过AExynM‑Doc1、EG1‑Doc2分别与Coh1、Coh2的结合,完成纤维小体的体外组装。本发明将具高催化活性的木聚糖酶、葡聚糖酶结合在纤维小体的脚手架蛋白中,大大提升了两种酶之间的协同催化作用,从而可以更有效地降解木质纤维素。

Description

一种催化活性提高的纤维小体及其组装方法和应用
技术领域
本发明涉及一种催化活性提高的纤维小体及其组装方法和应用,属于生物技术领域。
背景技术
木质纤维素约占到地球总生物量的50%,但大部分被燃烧或废弃,这样既造成了环境污染,同时又浪费了资源。利用现代生物技术将其转化为生物乙醇或化工原料,不仅可以使人类摆脱对化石燃料的依赖,而且可以减少环境污染,促进社会的可持续发展。木质纤维素生物转化的关键是将纤维素或者半纤维素降解为可发酵的糖,在传统工艺中,通常是由多种商品化酶协同作用完成的,而酶制剂的花费可占到生产成本的20%,严重阻碍了木质纤维素生物转化的发展。因此,亟待开发一种高效经济的解决方案。
近年来,从厌氧微生物中发现了一种可持续、高效降解木质纤维素的多酶复合体--纤维小体(Cellulosome),该结构由不同酶蛋白按照一定的比例,依靠脚手架蛋白组装而成,可灵活调控酶蛋白的种类和表达量。纤维小体的脚手架蛋白由多个粘连模块(Cohesin domain,Coh)构成,酶蛋白则通过酶亚基上的对接模块(Dockerin domain,Doc)与粘连模块相互作用(主要是疏水作用,辅以少量的氢键),特异性地结合到脚手架上。当纤维小体结合底物后,除了酶组分之间的协同催化效应外,纤维小体还会促发酶-酶邻近效应及酶-底物-细胞复合协同效应,从而使纤维小体具有比游离酶更强大的底物降解能力。鉴于纤维小体是一种高效降解木质纤维素的多酶复合体,可知其在木质纤维素生物转化中具有巨大的应用潜力,但目前分离得到的产纤维小体的微生物种类有限,且所获得的菌株通常为厌氧微生物,如从反刍动物瘤胃内分离得到的黄色瘤胃球菌(Ruminococcusflavefaciens)和白色瘤胃球菌(R.albus),它们的培养条件十分苛刻,难以满足工业化生产的要求。若采用基因重组技术对纤维小体组分蛋白进行体外组装,构建人工纤维小体,可灵活调控木质纤维素降解酶的种类和表达量,从而达到充分降解木质纤维素的目的。
目前,利用酿酒酵母细胞表面展示纤维小体的研究已经取得了一定的研究成果,但人工纤维小体的催化活性依旧不高。因此寻找有效的途径和方法,优化纤维小体组分蛋白以提高催化活性,对木质纤维素的综合利用是至关重要的。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种催化活性提高的纤维小体及其组装方法,从而可以有效地降解木质纤维素。
为解决上述技术问题,本发明提供一种催化活性提高的纤维小体,在细胞表面利用纤维小体的脚手架蛋白结构结合高活性的木质纤维素降解酶:所述的细胞为酿酒酵母,所述的脚手架蛋白主要包括来自黄色瘤胃球菌的两种粘连蛋白Coh1、Coh2,所述的木质纤维素降解酶为含对接模块的木聚糖酶AExynM-Doc1以及含对接模块的葡聚糖酶EG1-Doc2。
本发明还提供一种上述的催化活性提高的纤维小体的组装方法,包括:
木质纤维素降解酶基因融合在对接蛋白基因的N末端:通过重叠PCR获得融合基因AExynM-Doc1,并将其插入pET-32a(+)载体,获得重组质粒pET-32a(+)-AExynM-Doc1;通过重叠PCR获得融合基因EG1-Doc2,并将其插入pET-32a(+)载体,获得重组质粒pET-32a(+)-EG1-Doc2;
融合基因的诱导表达:将所述重组质粒pET-32a(+)-AExynM-Doc1、pET-32a(+)-EG1-Doc2分别转入E.coli BL21中,IPTG诱导表达,发酵结束后离心收集菌体,对菌体进行超声破碎,经亲和色谱纯化获得含对接模块的木聚糖酶AExynM-Doc1和葡聚糖酶EG1-Doc2;
粘连蛋白Coh1、连接肽、粘连蛋白Coh2融合:将人工合成的融合基因Coh1-Coh2插入pYD1载体,获得重组质粒pYD1-Coh1-Coh2;
粘连蛋白细胞表面展示:将所述重组质粒pYD1-Coh1-Coh2转入酿酒酵母(Saccharomyces cerevisiae)EBY100中,获得重组酵母EBY100/Coh1-Coh2,发酵结束后离心收集菌体,对菌体进行免疫荧光检测,鉴定粘连蛋白是否成功展示;
纤维小体体外组装:将获得的木聚糖酶AExynM-Doc1、葡聚糖酶EG1-Doc2等量添加至获得的重组酵母EBY100/Coh1-Coh2菌体悬浊液中,混匀后4℃孵育1h,使AExynM-Doc1、EG1-Doc2分别与Coh1、Coh2结合,完成纤维小体的体外组装。
优选地,所述融合基因AExynM-Doc1包括来自宇佐美曲霉(Aspergillus usamii)的改造木聚糖酶基因AExynM(GenBank:HQ724284.1)和来自黄色瘤胃球菌(Ruminococcusflavefaciens)的对接蛋白基因Doc1(GenBank:WP_009985128),所述AExynM-Doc1的核苷酸序列和氨基酸序列如SEQ ID NO.3和SEQ ID NO.8所示。
优选地,所述融合基因EG1-Doc2包括来自草菇(Volvariella volvacea)V23的葡聚糖酶基因EG1(GenBank:AF329732)和来自黄色瘤胃球菌(R.flavefaciens)的对接蛋白基因Doc2(GenBank:5M2O-B),所述EG1-Doc2的核苷酸序列和氨基酸序列如SEQ ID NO.4和SEQID NO.9所示。
优选地,所述融合基因Coh1-Coh2包括来自黄色瘤胃球菌(R.flavefaciens)的粘连蛋白基因Coh1(GenBank:AM262974)、粘连蛋白基因Coh2(GenBank:5M2O-A)以及连接肽编码基因,所述连接肽的氨基酸序列为GGGGSGGGGSGGGGS,所述Coh1-Coh2的核苷酸序列和氨基酸序列如SEQ ID NO.5和SEQ ID NO.10所示。
优选地,通过重叠PCR获得融合基因AExynM-Doc1的具体方法为:以pET-32a(+)-AExynM为模板,以Xyn-F和Xyn-R为引物进行第一轮PCR;以pUCm-T-Doc1为模板,以Doc1F和Doc1R为引物进行第二轮PCR;将两轮PCR产物用1%琼脂糖凝胶电泳分析,纯化后混合、在无引物的情况进行第三轮PCR;以第三轮PCR反应液为模板,以Xyn-F和Doc1R为引物进行第四轮PCR;将第四轮PCR产物用1%琼脂糖凝胶电泳分析,割胶回收目的条带并与pET-32a(+)连接,获得重组质粒pET-32a(+)-AExynM-Doc1,所述引物序列为:
Xyn-F:AACGCTCAAACTTGTCTTAC,
Xyn-R:CTGAACAGTGATGGACGAA,
Doc1F:GTTTATGGTGATCTGGATGGT,
Doc1R:TTCAACCGGCAGGGTTTTAC。
优选地,通过重叠PCR获得融合基因EG1-Doc2的具体方法为:以pET-32a(+)-EG1为模板,以EG1-F和EG1-R为引物进行第一轮PCR;以pUCm-T-Doc2为模板,以Doc2F和Doc2R为引物进行第二轮PCR;第三轮PCR步骤同上;以第三轮PCR反应液为模板,以EG1-F和Doc2R为引物进行第四轮PCR;将第四轮PCR产物用1%琼脂糖凝胶电泳分析,割胶回收目的条带并与pET-32a(+)连接,获得重组质粒pET-32a(+)-EG1-Doc2,所述引物序列为:
EG1-F:GCAGTTCCGGTTTGGGGT;
EG1-R:AACAAACGGTTTCAGTGCTT;
Doc2F:GTTCAGAAATTTCCTGGTG;
Doc2R:TTCAACCGGAGGCAGTTC。
本发明还提供上述的催化活性提高的纤维小体在降解木质纤维素中的应用。
本发明所达到的有益效果:
1)本发明提供了一种具高催化活性的人工纤维小体组装技术,将具高催化活性的木聚糖酶、葡聚糖酶结合在纤维小体的脚手架蛋白中,大大提升了两种酶之间的协同催化作用。该研究可突破人工纤维小体催化活性不高的瓶颈,为木质纤维素的综合利用提供了一个崭新的思路。
2)本发明提供的基于酵母细胞表面展示系统的纤维小体组装技术,获得的重组酵母可作为细胞催化剂,重复多次使用,从而降低了酶的消耗量及生产成本,具有较好的应用前景。
附图说明
图1为本发明实施例1所述菌液PCR验证;其中,M:DNA marker;1:pET-32a(+);2:pET-32a(+)-AExynM-Doc1;3:pET-32a(+)-EG1-Doc2;
图2为本发明实施例2所述重组E.coli BL21诱导表达重组酶的SDS-PAGE分析;其中,(A)AExynM-Doc1;(B)EG1-Doc2;
图3为本发明实施例3所述酵母免疫荧光;
图4为本发明实施例4所述双酶组分纤维小体结构示意图。
具体实施方式
下面结合实施例对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
木质纤维素降解酶基因与对接蛋白基因的融合
对接蛋白Doc1和Doc2的编码基因分别来源于R.flavefaciens(GenBank:WP_009985128)和R.flavefaciens(GenBank:5M2O-B),按照大肠杆菌密码子偏好对其进行核苷酸序列的优化,Doc1和Doc2的核苷酸序列如SEQ ID NO.1和SEQ ID NO.2所示,Doc1和Doc2的氨基酸序列如SEQ ID NO.6和SEQ ID NO.7所示。
将Doc1和Doc2的编码基因通过重叠PCR的方式,分别融合至实验室保存的具高催化活性木聚糖酶AExynM(GenBank:HQ724284.1)和葡聚糖酶EG1(GenBank:AF329732)基因的C末端,引物序列见表1,具体步骤如下:
以本实验保存的pET-32a(+)-AExynM为模板,以Xyn-F和Xyn-R为引物进行第一轮PCR;以pUCm-T-Doc1(实验室保藏)为模板,以Doc1F和Doc1R为引物进行第二轮PCR;将两轮PCR产物用1%琼脂糖凝胶电泳分析,纯化后混合、在无引物的情况进行第三轮PCR;以第三轮PCR反应液为模板,以Xyn-F和Doc1R为引物进行第四轮PCR。将第四轮PCR产物用1%琼脂糖凝胶电泳分析,割胶回收目的条带并与pET-32a(+)连接,获得重组质粒pET-32a(+)-AExynM-Doc1,转化E.coli BL21,经T7-F/T7-R菌落PCR鉴定正确后送上海生工测序(图1)。AExynM-Doc1的核酸序列长度为774bp,具体序列如SEQ ID NO.3所示,其编码氨基酸序列如SEQ ID NO.8所示。
以本实验保存的pET-32a(+)-EG1为模板,以EG1-F和EG1-R为引物进行第一轮PCR;以pUCm-T-Doc2(实验室保藏)为模板,以Doc2F和Doc2R为引物进行第二轮PCR;第三轮PCR步骤同上;以第三轮PCR反应液为模板,以EG1-F和Doc2R为引物进行第四轮PCR。将第四轮PCR产物用1%琼脂糖凝胶电泳分析,割胶回收目的条带并与pET-32a(+)连接,获得重组质粒pET-32a(+)-EG1-Doc2,转化E.coli BL21,经T7-F/T7-R菌落PCR鉴定正确后送上海生工测序(图1)。EG1-Doc2的核酸序列长度为1320bp,具体序列如SEQ ID NO.4所示,其编码氨基酸序列如SEQ ID NO.9所示。
表1重叠PCR引物
实施例2
融合基因的诱导表达
对测序正确的大肠杆菌重组子pET-32a(+)-AExynM-Doc1和pET-32a(+)-EG1-Doc2及实验室保存的BL21-pET-32a(+)-AExynM和BL21-pET-32a(+)-EG1分别进行IPTG诱导培养:将菌种分别接种于LB培养基,过夜培养作为种子培养基,以1%量接种至30mL的LB培养基中,37℃、200rpm培养至菌体的OD600=0.6~0.8,加诱导剂IPTG至终浓度为0.8mmol/L,28℃、200rpm诱导培养4~6h。
取上述诱导培养物30mL,8,000rpm离心10min,收集菌体,用Na2HPO4-柠檬酸缓冲液(pH 5.5)含10mM CaCl2,清洗沉淀,冰浴超声破碎细胞后,15,000rpm离心10min,收集上清液,即为粗酶液,进行酶活性测定及SDS-PAGE检测。活性测定显示AExynM-Doc1、EG1-Doc2活性与AExynM、EG1相比,出现一定程度的下降(表2),其中AExynM-Doc1下降不显著(p>0.05),而EG1-Doc2下降显著(p<0.05),说明对接蛋白Doc2的融合可能干扰EG1的分子构象,影响底物和催化活性中心的接触。
表2融合对接蛋白对木质纤维素降解酶活性的影响(mean±SD)
SDS-PAGE检测显示超声上清样品中pET-32a(+)并未出现特异性条带,而重组菌经诱导后,AExynM-Doc1、EG1-Doc2分别在28及50kDa附近出现条带。将发酵上清液进行裂解处理后,采用Ni–NTA柱进行纯化,然后进行SDS-PAGE鉴定,结果如图2所示,纯化的重组蛋白在电泳中呈现单一蛋白条带,达到电泳纯(图2)。
实施例3
粘连蛋白在酿酒酵母的表面展示
1)重组表达载体pYD1-Coh1-Coh2构建
粘连蛋白Coh1和Coh2的编码基因分别来源于R.flavefaciens(GenBank:AM262974)和R.flavefaciens(GenBank:5M2O-A),通过人工合成的方式获得具体的序列,并在二者之间插入连接肽GGGGSGGGGSGGGGS,Coh1-Coh2的核苷酸序列和氨基酸序列如SEQ IDNO.5和SEQ ID NO.10所示,将此段序列插入表面展示质粒pYD1的EcoRⅠ和XhoⅠ位点之间,获得pYD1-Coh1-Coh2。
2)粘连蛋白Coh1-Coh2的表面展示
采用醋酸锂化学法转化pYD1-Coh1-Coh2至酿酒酵母Saccharomyces cerevisiaeEBY100的感受态细胞中,在色氨酸选择平板上筛选酵母重组子,提取重组子的基因组DNA。以此为模板,利用引物F(5′GCAGGCGAAACAGTGCAGAT)和R(5′GCCCTCCTCATTAGGAGTAC)进行PCR验证,确认Coh1-Coh2是否成功转入。
挑选测序正确的酵母重组子EBY100/Coh1-Coh2接种于含2.0%葡萄糖的YNB-CAA培养基中,30℃振荡培养过夜,随后转入含2.0%半乳糖的YNB–CAA培养基中,30℃培养72h,诱导外源蛋白表达。随后,利用pYD1质粒中的V5抗原表位标签进行免疫荧光分析,鉴定粘连蛋白是否成功展示,具体步骤如下:
培养结束后,8000r/min离心5min收集菌体,PBS缓冲液洗涤菌体2次,然后与含1mg/mL BSA与2μg/mL的鼠抗V5-FITC抗体的PBS缓冲液混合,4℃孵育4h,PBS冲洗菌体后,经荧光显微镜观察(图3),发现EBY100组无荧光,而EBY100/Coh1-Coh2出现荧光,证明Coh1-Coh2已成功实现酵母细胞的表面展示。
实施例4
纤维小体体外组装及功能验证
1)使用Bradford法分别测定纯化的AExynM-Doc1、EG1-Doc2的蛋白浓度,用Tris-Hcl缓冲液(含10mM CaCl2)稀释至相同浓度,等量添加至重组酵母EBY100/Coh1-Coh2菌体悬浊液中,混匀后4℃孵育1h,使AExynM-Doc1、EG1-Doc2分别与Coh1、Coh2结合,完成纤维小体的体外组装(图4)。
2)组装后,用Tris-Hcl缓冲液(含10mMCaCl2)冲洗菌体,然后调整OD600=30,将细胞悬浊液与50mg/mL碱预处理玉米芯溶液混合,30℃下振荡培养12h,测定水解上清液中还原糖的含量,分析纤维小体的催化活性。同时测定等量游离酶的催化活性。
3)采用DNS法测定水解液中还原糖的含量:取适当稀释的水解样品,加入等量DNS试剂,煮沸7min,冷却后加入去离子水5mL,测定OD540,根据标准曲线,计算相应的还原糖量。结果如表3所示,无论是单种酶组分的纤维小体还是双酶组分的纤维小体,其水解能力均优于游离酶(p<0.05)。双酶组分纤维小体水解碱预处理玉米芯溶液12h后,上清液中的还原糖可达到16.78mg/mL,显著高于游离酶组(9.06mg/mL),其催化活性是游离酶的1.85倍。
表3纤维小体与游离酶催化活性的比较
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。
序列表
<110> 扬州大学
<120> 一种催化活性提高的纤维小体及其组装方法和应用
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 192
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
gtttatggtg atctggatgg tgatggtgaa gttgatgttt ttgatctgat tctgatgcgt 60
aaagccgtgg aaaatggtga taccgaacgt tttgaagcag cagatctgaa ttgtgatggc 120
gtgattgata gtgatgatct gacctatcat agcgaatatc tgcatggtat tcgtaaaacc 180
ctgccggttg aa 192
<210> 2
<211> 219
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gttcagaaat ttcctggtga tgcaaattgt gatggcatcg tggatattag tgatgccgtt 60
ctgattatgc agaccatggc aaatccgagc aaatatcaga tgaccgataa aggtcgtatt 120
aatgcagatg tgaccggtaa tagtgatggt gttaccgttc tggatgcaca gtttatccag 180
agctattgtc tgggtttagt tgaactgcct ccggttgaa 219
<210> 3
<211> 774
<212> DNA
<213> 融合基因(Hybrid Gene)
<400> 3
aacgctcaaa cttgtcttac ctctccacaa actggttttc acaacggttt cttctactct 60
ttctggaagg acagtccagg tactgttaat ttttgtctgt tggagggtgg tcgttacact 120
gttgagtggt ccaacgtggg caactttgtc ggtggaaagg gctggaaccc cggaagtgcg 180
caggacatca cctacagcgg caccttcacc cctagcggca acggctatct ctccgtctat 240
ggctggacca ctgaccccct gatcgagtac tacatcgtcg agtcctacgg cgactacgac 300
cccggcagtg gaggcacata caagggcacc gtcacctcgg acggatccgt ttacgatatc 360
tacacggcta cccgtaccaa tgctgcttcc attcagggaa ccgctacctt cactcagtac 420
tggtccgtcc gccagaacaa gagagttggc ggaactgtta ccacctccaa ccacttcaat 480
gcttgggcta agctgggaat gaacctgggt actcacaact accagatcgt ggctaccgag 540
ggttaccaga gcagtggatc ttcgtccatc actgttcagg tttatggtga tctggatggt 600
gatggtgaag ttgatgtttt tgatctgatt ctgatgcgta aagccgtgga aaatggtgat 660
accgaacgtt ttgaagcagc agatctgaat tgtgatggcg tgattgatag tgatgatctg 720
acctatcata gcgaatatct gcatggtatt cgtaaaaccc tgccggttga ataa 774
<210> 4
<211> 1320
<212> DNA
<213> 融合基因(Hybrid Gene)
<400> 4
gcagttccgg tttggggtca gtgtggtggt aatggttgga gcggtgaaac cacctgtgca 60
agcggtagca cctgtgttgt tgttaatgaa tggtatcatc agtgtcagcc tggtgcaggt 120
ccgaccacca ccagtagcgc accgaatccg accagcagcg gttgtccgaa tgcaaccaaa 180
tttcgttttt ttggtgttaa tcaggcaggc gcagaatttg gtgaaaatgt tattccgggt 240
gaactgggca cccattatac ctggccgagt ccgagcagca ttgattattt tgtgaatcag 300
ggctttaata cctttcgcgt ggcctttaaa atcgaacgtc tgagtccgcc tggcaccggt 360
ctgacaggtc cgtttgatca ggcatatctg aatggtctga aaaccatcgt gaactatatt 420
accggcaaaa atgcctatgc agttctggac ccgcataact atatgcgcta taatggtaat 480
gttatcacca gcaccagcaa ttttcagacg tggtggaata aactggccac cgaatttcgt 540
agcaataccc gtgttatttt cgatgtgatg aatgagccgt atcagattga tgcaagcgtt 600
gtgtttaatc tgaaccaggc agcaattaat ggtattcgtg ccagcggtgc aaccagccag 660
ctgattctgg ttgaaggcac cgcatggacc ggtgcatggt catgggaaag cagcggtaat 720
ggtgcagttt ttggtgcaat tcgtgatccg aataataaca ccgcaattga gatgcatcag 780
tatctggata gcgatagcag cggcaccagc gcaacctgtg ttagcagcac cgttggtgtt 840
gaacgtctgc gtgttgcaac cgattggctg cgtcgtaata atctgaaagg ttttctgggt 900
gaaatgggtg caggtagcaa tgatgtttgt attgcagcag ttaaaggtgc actgtgtgca 960
atgcagcaga gcggtgtttg gattggttat ctgtggtggg cagcaggtcc gtggtggggc 1020
acctattttc agagcattga acctccgaat ggtgcaagca ttgcacgtat tctgccggaa 1080
gcactgaaac cgtttgttgt tcagaaattt cctggtgatg caaattgtga tggcatcgtg 1140
gatattagtg atgccgttct gattatgcag accatggcaa atccgagcaa atatcagatg 1200
accgataaag gtcgtattaa tgcagatgtg accggtaata gtgatggtgt taccgttctg 1260
gatgcacagt ttatccagag ctattgtctg ggtttagttg aactgcctcc ggttgaataa 1320
<210> 5
<211> 1014
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
gcaggcgaaa cagtgcagat atccgccagc aatgcggagg caaaggcagg tgatcagttc 60
gaggtgaagg tatctttggc tgatgttcca agtaccggaa tccagggtat cgactttgct 120
gttacttacg acaacacagt agtgacaatc gacaagatca cagtagggga gattgctgac 180
acgaaggcag cttccagtga tcagactgca tcacttctgc ccacattcga tgtatctata 240
cagaacagtg agggctatag cagtgttatc tggtctacag cagtagaaga ttcatcatac 300
tggatcagca aggacggtgt attatgtaca atcacaggta cagtatcaag caatgctaag 360
cctggtgcag aatcacctat caagcttgaa gcagtcaagc gtgagacata tgtcggctcc 420
ggtacagaca acagcagtat cagtgcaggt tattctgcaa acgataaggc tgtaaagtac 480
acagtcaagg caacaaacgg taagatatct gttccttcag cagaagtagg cggtggtggt 540
tctggtggcg gtggttctgg cggtggtggt tctatgcctg tagctaacgc tgatgtagta 600
ttcgatttcc agaattacac tgctaaggct ggagacgagg ttacagttga tgttttagtt 660
gattcaaaga acaagccaat ctcagctatg gacgttaagt tcaaggttga ttcacctctt 720
acaatcgagg agatcgacaa ggagtcactt gcattcaata caacagtcat gacaaacatg 780
gctatccttg gtgcaaactt caagtcactc gacgataagg gcgaaccgct cgttcctaag 840
gacggcgctg ctgtattcac actttacgtt aatgttcctg ctaatactcc tgacggaaca 900
tattatgtag gcttcaacgg aaagaacgaa gtacacaaga gcaacgacgg ttcacagttc 960
actgttgctt caaagaacgg tgctatcaca gttggtactc ctaatgagga gggc 1014
<210> 6
<211> 64
<212> PRT
<213> 黄色瘤胃球菌(Ruminococcus flavefaciens)
<400> 6
Val Tyr Gly Asp Leu Asp Gly Asp Gly Glu Val Asp Val Phe Asp Leu
1 5 10 15
Ile Leu Met Arg Lys Ala Val Glu Asn Gly Asp Thr Glu Arg Phe Glu
20 25 30
Ala Ala Asp Leu Asn Cys Asp Gly Val Ile Asp Ser Asp Asp Leu Thr
35 40 45
Tyr His Ser Glu Tyr Leu His Gly Ile Arg Lys Thr Leu Pro Val Glu
50 55 60
<210> 7
<211> 73
<212> PRT
<213> 黄色瘤胃球菌(Ruminococcus flavefaciens)
<400> 7
Val Gln Lys Phe Pro Gly Asp Ala Asn Cys Asp Gly Ile Val Asp Ile
1 5 10 15
Ser Asp Ala Val Leu Ile Met Gln Thr Met Ala Asn Pro Ser Lys Tyr
20 25 30
Gln Met Thr Asp Lys Gly Arg Ile Asn Ala Asp Val Thr Gly Asn Ser
35 40 45
Asp Gly Val Thr Val Leu Asp Ala Gln Phe Ile Gln Ser Tyr Cys Leu
50 55 60
Gly Leu Val Glu Leu Pro Pro Val Glu
65 70
<210> 8
<211> 257
<212> PRT
<213> 融合蛋白(Hybrid Gene)
<400> 8
Asn Ala Gln Thr Cys Leu Thr Ser Pro Gln Thr Gly Phe His Asn Gly
1 5 10 15
Phe Phe Tyr Ser Phe Trp Lys Asp Ser Pro Gly Thr Val Asn Phe Cys
20 25 30
Leu Leu Glu Gly Gly Arg Tyr Thr Val Glu Trp Ser Asn Val Gly Asn
35 40 45
Phe Val Gly Gly Lys Gly Trp Asn Pro Gly Ser Ala Gln Asp Ile Thr
50 55 60
Tyr Ser Gly Thr Phe Thr Pro Ser Gly Asn Gly Tyr Leu Ser Val Tyr
65 70 75 80
Gly Trp Thr Thr Asp Pro Leu Ile Glu Tyr Tyr Ile Val Glu Ser Tyr
85 90 95
Gly Asp Tyr Asp Pro Gly Ser Gly Gly Thr Tyr Lys Gly Thr Val Thr
100 105 110
Ser Asp Gly Ser Val Tyr Asp Ile Tyr Thr Ala Thr Arg Thr Asn Ala
115 120 125
Ala Ser Ile Gln Gly Thr Ala Thr Phe Thr Gln Tyr Trp Ser Val Arg
130 135 140
Gln Asn Lys Arg Val Gly Gly Thr Val Thr Thr Ser Asn His Phe Asn
145 150 155 160
Ala Trp Ala Lys Leu Gly Met Asn Leu Gly Thr His Asn Tyr Gln Ile
165 170 175
Val Ala Thr Glu Gly Tyr Gln Ser Ser Gly Ser Ser Ser Ile Thr Val
180 185 190
Gln Val Tyr Gly Asp Leu Asp Gly Asp Gly Glu Val Asp Val Phe Asp
195 200 205
Leu Ile Leu Met Arg Lys Ala Val Glu Asn Gly Asp Thr Glu Arg Phe
210 215 220
Glu Ala Ala Asp Leu Asn Cys Asp Gly Val Ile Asp Ser Asp Asp Leu
225 230 235 240
Thr Tyr His Ser Glu Tyr Leu His Gly Ile Arg Lys Thr Leu Pro Val
245 250 255
Glu
<210> 9
<211> 439
<212> PRT
<213> 融合蛋白(Hybrid Gene)
<400> 9
Ala Val Pro Val Trp Gly Gln Cys Gly Gly Asn Gly Trp Ser Gly Glu
1 5 10 15
Thr Thr Cys Ala Ser Gly Ser Thr Cys Val Val Val Asn Glu Trp Tyr
20 25 30
His Gln Cys Gln Pro Gly Ala Gly Pro Thr Thr Thr Ser Ser Ala Pro
35 40 45
Asn Pro Thr Ser Ser Gly Cys Pro Asn Ala Thr Lys Phe Arg Phe Phe
50 55 60
Gly Val Asn Gln Ala Gly Ala Glu Phe Gly Glu Asn Val Ile Pro Gly
65 70 75 80
Glu Leu Gly Thr His Tyr Thr Trp Pro Ser Pro Ser Ser Ile Asp Tyr
85 90 95
Phe Val Asn Gln Gly Phe Asn Thr Phe Arg Val Ala Phe Lys Ile Glu
100 105 110
Arg Leu Ser Pro Pro Gly Thr Gly Leu Thr Gly Pro Phe Asp Gln Ala
115 120 125
Tyr Leu Asn Gly Leu Lys Thr Ile Val Asn Tyr Ile Thr Gly Lys Asn
130 135 140
Ala Tyr Ala Val Leu Asp Pro His Asn Tyr Met Arg Tyr Asn Gly Asn
145 150 155 160
Val Ile Thr Ser Thr Ser Asn Phe Gln Thr Trp Trp Asn Lys Leu Ala
165 170 175
Thr Glu Phe Arg Ser Asn Thr Arg Val Ile Phe Asp Val Met Asn Glu
180 185 190
Pro Tyr Gln Ile Asp Ala Ser Val Val Phe Asn Leu Asn Gln Ala Ala
195 200 205
Ile Asn Gly Ile Arg Ala Ser Gly Ala Thr Ser Gln Leu Ile Leu Val
210 215 220
Glu Gly Thr Ala Trp Thr Gly Ala Trp Ser Trp Glu Ser Ser Gly Asn
225 230 235 240
Gly Ala Val Phe Gly Ala Ile Arg Asp Pro Asn Asn Asn Thr Ala Ile
245 250 255
Glu Met His Gln Tyr Leu Asp Ser Asp Ser Ser Gly Thr Ser Ala Thr
260 265 270
Cys Val Ser Ser Thr Val Gly Val Glu Arg Leu Arg Val Ala Thr Asp
275 280 285
Trp Leu Arg Arg Asn Asn Leu Lys Gly Phe Leu Gly Glu Met Gly Ala
290 295 300
Gly Ser Asn Asp Val Cys Ile Ala Ala Val Lys Gly Ala Leu Cys Ala
305 310 315 320
Met Gln Gln Ser Gly Val Trp Ile Gly Tyr Leu Trp Trp Ala Ala Gly
325 330 335
Pro Trp Trp Gly Thr Tyr Phe Gln Ser Ile Glu Pro Pro Asn Gly Ala
340 345 350
Ser Ile Ala Arg Ile Leu Pro Glu Ala Leu Lys Pro Phe Val Val Gln
355 360 365
Lys Phe Pro Gly Asp Ala Asn Cys Asp Gly Ile Val Asp Ile Ser Asp
370 375 380
Ala Val Leu Ile Met Gln Thr Met Ala Asn Pro Ser Lys Tyr Gln Met
385 390 395 400
Thr Asp Lys Gly Arg Ile Asn Ala Asp Val Thr Gly Asn Ser Asp Gly
405 410 415
Val Thr Val Leu Asp Ala Gln Phe Ile Gln Ser Tyr Cys Leu Gly Leu
420 425 430
Val Glu Leu Pro Pro Val Glu
435
<210> 10
<211> 338
<212> PRT
<213> 融合蛋白(Hybrid Gene)
<400> 10
Ala Gly Glu Thr Val Gln Ile Ser Ala Ser Asn Ala Glu Ala Lys Ala
1 5 10 15
Gly Asp Gln Phe Glu Val Lys Val Ser Leu Ala Asp Val Pro Ser Thr
20 25 30
Gly Ile Gln Gly Ile Asp Phe Ala Val Thr Tyr Asp Asn Thr Val Val
35 40 45
Thr Ile Asp Lys Ile Thr Val Gly Glu Ile Ala Asp Thr Lys Ala Ala
50 55 60
Ser Ser Asp Gln Thr Ala Ser Leu Leu Pro Thr Phe Asp Val Ser Ile
65 70 75 80
Gln Asn Ser Glu Gly Tyr Ser Ser Val Ile Trp Ser Thr Ala Val Glu
85 90 95
Asp Ser Ser Tyr Trp Ile Ser Lys Asp Gly Val Leu Cys Thr Ile Thr
100 105 110
Gly Thr Val Ser Ser Asn Ala Lys Pro Gly Ala Glu Ser Pro Ile Lys
115 120 125
Leu Glu Ala Val Lys Arg Glu Thr Tyr Val Gly Ser Gly Thr Asp Asn
130 135 140
Ser Ser Ile Ser Ala Gly Tyr Ser Ala Asn Asp Lys Ala Val Lys Tyr
145 150 155 160
Thr Val Lys Ala Thr Asn Gly Lys Ile Ser Val Pro Ser Ala Glu Val
165 170 175
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Met
180 185 190
Pro Val Ala Asn Ala Asp Val Val Phe Asp Phe Gln Asn Tyr Thr Ala
195 200 205
Lys Ala Gly Asp Glu Val Thr Val Asp Val Leu Val Asp Ser Lys Asn
210 215 220
Lys Pro Ile Ser Ala Met Asp Val Lys Phe Lys Val Asp Ser Pro Leu
225 230 235 240
Thr Ile Glu Glu Ile Asp Lys Glu Ser Leu Ala Phe Asn Thr Thr Val
245 250 255
Met Thr Asn Met Ala Ile Leu Gly Ala Asn Phe Lys Ser Leu Asp Asp
260 265 270
Lys Gly Glu Pro Leu Val Pro Lys Asp Gly Ala Ala Val Phe Thr Leu
275 280 285
Tyr Val Asn Val Pro Ala Asn Thr Pro Asp Gly Thr Tyr Tyr Val Gly
290 295 300
Phe Asn Gly Lys Asn Glu Val His Lys Ser Asn Asp Gly Ser Gln Phe
305 310 315 320
Thr Val Ala Ser Lys Asn Gly Ala Ile Thr Val Gly Thr Pro Asn Glu
325 330 335
Glu Gly

Claims (8)

1.一种催化活性提高的纤维小体,其特征在于,在细胞表面利用纤维小体的脚手架蛋白结构结合高活性的木质纤维素降解酶:所述的细胞为酿酒酵母,所述的脚手架蛋白包括来自黄色瘤胃球菌的两种粘连蛋白Coh1、Coh2,所述的木质纤维素降解酶为含对接模块的木聚糖酶AExynM-Doc1以及含对接模块的葡聚糖酶EG1-Doc2;
粘连蛋白Coh1Coh2的编码基因分别来源于黄色瘤胃球菌Ruminococcus flavefaciens(GenBank: AM262974)和R. flavefaciens(GenBank: 5M2O-A);所述AExynM- Doc1的核苷酸序列和氨基酸序列如SEQ ID NO. 3和SEQ ID NO. 8所示;所述EG1-Doc2的核苷酸序列和氨基酸序列如SEQ ID NO. 4和SEQ ID NO. 9所示。
2.根据权利要求1所述的催化活性提高的纤维小体的组装方法,其特征在于,包括:
通过重叠PCR获得融合基因AExynM-Doc1,并将其插入pET-32a(+)载体,获得重组质粒pET-32a(+)-AExynM-Doc1
通过重叠PCR获得融合基因EG1-Doc2,并将其插入pET-32a(+)载体,获得重组质粒pET-32a(+)-EG1-Doc2
将所述重组质粒pET-32a(+)-AExynM-Doc1、pET-32a(+)-EG1-Doc2分别转入E. coliBL21中,IPTG诱导表达,获得含对接模块的木聚糖酶AExynM-Doc1和葡聚糖酶EG1-Doc2;
将人工合成的融合基因Coh1-Coh2插入pYD1载体,获得重组质粒pYD1-Coh1-Coh2
将所述重组质粒pYD1-Coh1-Coh2转入酿酒酵母Saccharomyces cerevisiae EBY100中,获得重组酵母EBY100/Coh1-Coh2
将获得的木聚糖酶AExynM-Doc1、葡聚糖酶EG1-Doc2等量添加至获得的重组酵母EBY100/Coh1-Coh2菌体悬浊液中,使AExynM-Doc1、EG1-Doc2分别与Coh1、Coh2结合,完成纤维小体的体外组装。
3.根据权利要求2所述的催化活性提高的纤维小体的组装方法,其特征在于,所述融合基因AExynM-Doc1包括来自宇佐美曲霉的改造木聚糖酶基因AExynM和来自黄色瘤胃球菌的对接蛋白基因Doc1
4.根据权利要求2所述的催化活性提高的纤维小体的组装方法,其特征在于,所述融合基因EG1-Doc2包括来自草菇的葡聚糖酶基因EG1和来自黄色瘤胃球菌的对接蛋白基因Doc2
5.根据权利要求2所述的催化活性提高的纤维小体的组装方法,其特征在于,所述融合基因Coh1-Coh2包括来自黄色瘤胃球菌的粘连蛋白基因Coh1、粘连蛋白基因Coh2以及连接肽编码基因,所述连接肽的氨基酸序列为GGGGSGGGGSGGGGS,所述Coh1-Coh2的核苷酸序列和氨基酸序列如SEQ ID NO. 5和SEQ ID NO. 10所示。
6.根据权利要求3所述的催化活性提高的纤维小体的组装方法,其特征在于,通过重叠PCR获得融合基因AExynM-Doc1的具体方法为:以pET-32a(+)-AExynM为模板,以Xyn-F和Xyn-R为引物进行第一轮PCR;以pUCm-T-Doc1为模板,以Doc1F和Doc1R为引物进行第二轮PCR;将两轮PCR产物用1%琼脂糖凝胶电泳分析,纯化后混合、在无引物的情况进行第三轮PCR;以第三轮PCR反应液为模板,以Xyn-F和Doc1R为引物进行第四轮PCR;将第四轮PCR产物用1%琼脂糖凝胶电泳分析,割胶回收目的条带并与pET-32a(+)连接,获得重组质粒pET-32a(+)-AExynM-Doc1,所述引物序列为:
Xyn-F: AACGCTCAAACTTGTCTTAC,
Xyn-R:CTGAACAGTGATGGACGAA,
Doc1F:GTTTATGGTGATCTGGATGGT,
Doc1R:TTCAACCGGCAGGGTTTTAC。
7.根据权利要求4所述的催化活性提高的纤维小体的组装方法,其特征在于,通过重叠PCR获得融合基因EG1-Doc2的具体方法为:以pET-32a(+)-EG1为模板,以EG1-F和EG1-R为引物进行第一轮PCR;以pUCm-T-Doc2为模板,以Doc2F和Doc2R为引物进行第二轮PCR;第三轮PCR步骤同上;以第三轮PCR反应液为模板,以EG1-F和Doc2R为引物进行第四轮PCR;将第四轮PCR产物用1%琼脂糖凝胶电泳分析,割胶回收目的条带并与pET-32a(+)连接,获得重组质粒pET-32a(+)-EG1-Doc2,所述引物序列为:
EG1-F:GCAGTTCCGGTTTGGGGT;
EG1-R:AACAAACGGTTTCAGTGCTT;
Doc2F:GTTCAGAAATTTCCTGGTG;
Doc2R:TTCAACCGGAGGCAGTTC。
8.根据权利要求1所述的催化活性提高的纤维小体在降解木质纤维素中的应用。
CN202011334377.2A 2020-11-25 2020-11-25 一种催化活性提高的纤维小体及其组装方法和应用 Active CN112522249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011334377.2A CN112522249B (zh) 2020-11-25 2020-11-25 一种催化活性提高的纤维小体及其组装方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011334377.2A CN112522249B (zh) 2020-11-25 2020-11-25 一种催化活性提高的纤维小体及其组装方法和应用

Publications (2)

Publication Number Publication Date
CN112522249A CN112522249A (zh) 2021-03-19
CN112522249B true CN112522249B (zh) 2023-11-14

Family

ID=74993311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011334377.2A Active CN112522249B (zh) 2020-11-25 2020-11-25 一种催化活性提高的纤维小体及其组装方法和应用

Country Status (1)

Country Link
CN (1) CN112522249B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111100835B (zh) * 2020-01-07 2021-12-31 中国科学院青岛生物能源与过程研究所 Pet降解生物催化剂及其应用
FR3132526A1 (fr) * 2022-02-04 2023-08-11 Adisseo France S.A.S. Protéine à activité xylanase
CN114874334B (zh) * 2022-04-27 2023-12-22 首都师范大学 一种嵌合纤维小体及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977421A (zh) * 2018-08-17 2018-12-11 中国科学院青岛生物能源与过程研究所 用于催化木质纤维素糖化的全菌酶制剂

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977421A (zh) * 2018-08-17 2018-12-11 中国科学院青岛生物能源与过程研究所 用于催化木质纤维素糖化的全菌酶制剂

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Determinants for the improved thermostability of a mesophilic family 11 xylanase predicted by computational methods;Huimin Zhang等;《Biotechnology for Biofuels》;1-10 *
Hydrophilic Domains of Scaffolding Protein CbpA Promote Glycosyl Hydrolase Activity and Localization of Cellulosomes to the Cell Surface of Clostridium cellulovorans;Akihiko Kosugi等;《JOURNAL OF BACTERIOLOGY》;第186卷(第19期);6351-6359 *
纤维小体研究进展;郝 敏;《化学与生物工程》;第31卷(第2期);4-7 *
酿酒酵母人造纤维小体的研究进展;汤红婷等;《生物加工过程》;第12卷(第1期);94-101 *

Also Published As

Publication number Publication date
CN112522249A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN112522249B (zh) 一种催化活性提高的纤维小体及其组装方法和应用
US5536655A (en) Gene coding for the E1 endoglucanase
US11168315B2 (en) Expression of beta-glucosidases for hydrolysis of lignocellulose and associated oligomers
CN111893125A (zh) 壳聚糖酶基因、壳聚糖酶及其制备方法和应用
CN111676210B (zh) 一种提高纤维素酶活性的方法及纤维素酶突变体5i77-m和应用
CN107794275B (zh) 一种产(+)γ-内酰胺酶的重组毕赤酵母及其构建方法和应用
CN113684198B (zh) 一种提高纤维素酶催化效率的方法及突变体5i77-m2
US5712142A (en) Method for increasing thermostability in cellulase ennzymes
CN111876399A (zh) 北极来源的β-葡萄糖苷酶基因、及其编码的蛋白和应用
CN111961690A (zh) 一种蒸汽爆破狼尾草批式补料同步糖化发酵生产乙醇的方法
US20230220439A1 (en) Protein complex based on dna enzymes of e family of escherichia coli and application thereof in artificial protein scaffolds
CN115058408B (zh) 一种宏基因组来源的高比活耐酸性d-阿洛酮糖3-差向异构酶及其编码基因和应用
CN112481320B (zh) 一种催化效率高的制备(-)γ-内酰胺的方法
CN112342208B (zh) 一种普鲁兰酶突变体
US20140154751A1 (en) Enhanced fermentation of cellodextrins and beta-d-glucose
CN113817709A (zh) 碳水化合物结合结构域cbm68及其应用
CN109929816B (zh) 多糖裂解单加氧酶MtLPMO9G编码基因及其与制备和应用
CN101824401B (zh) 葡聚糖酶、其编码核酸及其表达
CN112442488B (zh) 一种溶解性多糖单加氧酶突变体及其应用
CN112442474B (zh) 一种(-)γ-内酰胺的制备方法
CN116426504A (zh) 一种嗜酸、嗜盐、嗜热、耐受离子液纤维素酶及其应用
CN106536730A (zh) 无糖基化酶及其用途
CN116042579A (zh) 一种耐受离子液和醇类的酸性纤维素酶及其应用
CN116042580A (zh) 一种嗜冷、嗜盐纤维素酶和应用
CN110343653A (zh) 一种敲除大肠杆菌醛脱氢酶基因提高1,2,4-丁三醇产量的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant