CN112500565A - 一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法 - Google Patents

一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法 Download PDF

Info

Publication number
CN112500565A
CN112500565A CN202011257039.3A CN202011257039A CN112500565A CN 112500565 A CN112500565 A CN 112500565A CN 202011257039 A CN202011257039 A CN 202011257039A CN 112500565 A CN112500565 A CN 112500565A
Authority
CN
China
Prior art keywords
cross
dianhydride
drying
nmp
linking agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011257039.3A
Other languages
English (en)
Other versions
CN112500565B (zh
Inventor
崔升
宋梓豪
王雪
赵一帆
黄龙金
刘伟
袁美玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suqian Advanced Materials Institute Of Nanjing Tech University
Nanjing Tech University
Original Assignee
Suqian Advanced Materials Institute Of Nanjing Tech University
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suqian Advanced Materials Institute Of Nanjing Tech University, Nanjing Tech University filed Critical Suqian Advanced Materials Institute Of Nanjing Tech University
Priority to CN202011257039.3A priority Critical patent/CN112500565B/zh
Publication of CN112500565A publication Critical patent/CN112500565A/zh
Application granted granted Critical
Publication of CN112500565B publication Critical patent/CN112500565B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法,采用酰胺化改性的二维长径比大纳米碳材料作为交联剂,通过两步法和溶胶‑凝胶法制备出功能化交联型聚酰亚胺气凝胶,既解决了聚酰亚胺气凝胶的收缩率的问题,又进一步提高了材料的隔热能力。所制得的材料具有良好的稳定性,可用于高端隔热材料等领域。所制得的功能化交联型聚酰亚胺气凝胶的密度为0.052‑0.078g/cm3,抗压强度为0.3‑1.1MPa,体积收缩率为7.22%‑15.63%,热导率为0.0152‑0.021W/(m·K)。

Description

一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法
技术领域
本发明属于纳米多孔材料的制备工艺领域,尤其涉及一种低密度、低收缩率、高比表面积、并具有低热导率的功能化交联型聚酰亚胺气凝胶隔热材料的制备方法。
背景技术
聚酰亚胺(PI)分子链中具有独特的酰亚胺环和酰亚胺杂环结构,因此PI材料拥有多种优良的性能,例如高力学强度,低介电常数,同时耐化学性和耐温性都非常优异,是近年来高性能工程材料的研究热点。气凝胶是一种多孔纳米材料,由于其孔结构均一且孔隙率高,气凝胶拥有许多独特的宏观特点,例如超低的热导率和密度,高比表面积等,从而在保温隔热、催化载体、化学吸附和电气等方面有良好的应用。而PI气凝胶作为两种高性能材料的结合体,拥有两种材料各自的特点,从而处于聚合物气凝胶研究的热点方向,在航空航天、高端兵器等领域拥有广大的应用前景。
北京理工大学的梁祎采用化学改性氧化石墨烯作为交联剂制得了m-GO交联的PI气凝胶,该材料的收缩率为25%,热导率为0.0318W/(m·K),密度为0.12g/cm3。但由于网络异质性和有限的交联密度并没有很好地解决PI气凝胶体积收缩现象严重,易吸湿导致结构塌陷而失效等问题,因此采用二维长径比大纳米碳材料作为聚酰亚胺气凝胶的交联剂,旨在解决目前所发现的问题,使其在航空航天、高端科技等领域获取更大的应用前景。
发明内容
本发明的目的是为了改进现有技术的不足而提供了一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法。
本发明的技术方案为:一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法,其具体步骤如下:
(1)交联剂的改性
量取交联剂放入容器中,加入硝酸,水浴搅拌,趁热抽滤、沉淀,将沉淀置于真空干燥箱中真空干燥得到氧化改性的交联剂;将上述氧化改性得到的交联剂配制成一定浓度的NMP溶液,用超声波细胞破碎机超声后加入改性剂,在一定温度下冷凝回流后,倒入离心管中,离心去掉上层液体,得到黑色的沉淀,置于真空干燥箱中干燥,得到酰胺化改性的交联剂粉体;
(2)功能化交联型聚酰亚胺悬浮液的凝胶
称取一定质量的二胺于烧杯中,加入NMP,搅拌至完全溶解后加入二酐搅拌得到悬浮液;量取步骤(1)中的酰胺化改性的交联剂粉体分散于NMP溶液中得到混合溶液,用超声波细胞破碎机超声后加入上述悬浮溶液中搅拌均匀;再分别加入乙酸酐和吡啶,搅拌均匀静置使其凝胶;
(3)功能化交联型聚酰亚胺凝胶的老化及干燥
将步骤(2)所制得的功能化交联型聚酰亚胺凝胶用不同体积分数的NMP的无水乙醇溶液进行老化,老化时间4-5天,期间每8-10h换一次老化液,干燥,得到聚酰亚胺气凝胶;
(4)升温干燥
将步骤(3)中初步形成的聚酰亚胺气凝胶放入真空干燥箱中干燥,得到功能化交联型聚酰亚胺气凝胶材料。
优选步骤(1)中所述的交联剂为纳米碳纤维、碳纳米管或石墨烯;所使用的改性剂为4-氨基-N-(4-氨基苯基)-苯甲酰胺(DABA)和4,4’-二氨基二苯醚(ODA)、1,3-丙二胺或均苯四甲酸二酐(PMDA)中的一种。
优选步骤(1)中所述的交联剂和硝酸的质量比为1:(34-40);氧化改性的交联剂粉体的NMP溶液浓度为1-2mg/ml;氧一般为99%。
优选步骤(1)中所述的水浴温度为65-75℃,搅拌时间为1-2h;真空干燥的温度均为50-60℃,时间均为10-12h;冷凝回流温度在60-70℃,冷凝回流时间为10-12h。
优选步骤(1)中所述的超声波细胞破碎机的频率为1400-1500W,时间为5-6min;离心机转速为10000-11000r/min,离心时间为10-15min。
优选步骤(2)中所述的二胺为4-氨基-N-(4-氨基苯基)-苯甲酰胺(DABA)、4,4’-二氨基二苯醚(ODA)、1,3-丙二胺或对苯二胺(PDA)中的一种或两种;二酐为3,3,4,4,-联苯四甲酸二酐(BPDA)、均苯四甲酸二酐(PMDA)或4,4,-氧邻二邻苯二甲酸酐。
优选步骤(2)中所述的二胺、二酐、NMP的质量比为1:(1.3-3):(37-48);酰胺化改性的交联剂粉体的加入量与二酐的质量比为1:(22-30);步骤(2)中所述的乙酸酐与吡啶的加入顺序为乙酸酐在前,吡啶在后;且乙酸酐与二酐的质量比为(2.8-3.5):1;吡啶与二酐的质量比为(2.2-3):1。
优选步骤(2)中所述的超声波细胞破碎机的频率为1400-1500W,时间为5-6min;加入二酐后搅拌时长为10-12h。
优选步骤(3)中所述的NMP的无水乙醇溶液,其中NMP体积分数为0-80%;且老化方式为从高体积分数到低体积分数的梯度老化;老化时间4-5天,期间每8-10h换一次老化液。
优选步骤(3)中所述的干燥方式为CO2超临界干燥;步骤(4)中所述的真空干燥温度为50~60℃,干燥时间为12-15h。
本发明以酰胺化改性的纳米碳材料粉体作为交联剂,通过两步法和溶胶-凝胶法制备了聚酰亚胺气凝胶,最后结合CO2超临界干燥技术得到功能化交联型聚酰亚胺气凝胶,该材料具有三维纳米多孔网络结构,解决了体积收缩严重的问题,而且其具有良好的热稳定性、化学稳定性、结构稳定性,它的纳米多孔网络结构也赋予了它良好的隔热性能,所以是一种理想的隔热材料。所制得的功能化交联型聚酰亚胺气凝胶的密度为0.052-0.078g/cm3,抗压强度为0.3-1.1MPa,体积收缩率为7.22%-15.63%,热导率为0.0152-0.021W/(m·K)。
有益效果:
(1)相较于SiO2气凝胶等纯无机气凝胶以及其他有机气凝胶,PI气凝胶拥有更好的耐热性及力学性能。
(2)相比较于其他交联剂制备的聚酰亚胺气凝胶,使用二维长径比大的纳米碳材料作为聚酰亚胺气凝胶的交联剂,拥有高比表面积和高孔隙率、低密度、低热导率、低收缩率,实验证明该材料可应用于隔热领域。
附图说明
图1为实例3所制备的块状酰胺化改性的石墨烯交联的聚酰亚胺气凝胶的宏观实物图;
图2为实例3所制备的功能化交联型聚酰亚胺气凝胶材料的微观形貌图。
具体实施方式
下面结合实例对本发明作进一步说明,但保护范围并不限于此。
实例1
取0.5g纳米碳纤维粉体于烧杯中,加入17.5g硝酸,在65℃水浴下混合1h,趁热抽滤、洗涤沉淀,将沉淀置于真空干燥箱50℃干燥10h得到氧化纳米碳纤维粉体。将上述氧化纳米碳纤维粉体配制1mg/ml的氧化纳米碳纤维NMP溶液500ml于烧杯中,用超声波细胞破碎机1400W功率超声5min,再加入0.34g DABA,在60℃下搅拌冷凝回流12h,倒入离心管中,在离心机中以10000r/min离心分离10min,去掉上层液体,得到黑色的沉淀,置于真空干燥箱60℃干燥12h得到酰胺化的纳米碳纤维粉体。
称取0.75g ODA、0.225g DABA于烧杯中,加入到37g NMP,搅拌至完全溶解,再加入1.35g BPDA,搅拌10h得到悬浮液。称取0.060g酰胺化改性的纳米碳纤维粉体分散于NMP中,用超声波细胞破碎机1400W功率超声6min,加入上述悬浮液中,室温下搅拌均匀后先后加入4.1g乙酸酐和3.1g吡啶,待其搅拌均匀后静置使其凝胶。依次用体积分数为80%,50%,0%NMP的无水乙醇溶液对其进行溶剂置换,老化时间4天,期间每10h换一次老化液。最后通过CO2超临界干燥、50℃真空干燥12h得到功能化交联型聚酰亚胺气凝胶材料,该材料的密度为0.074g/cm3,抗压强度为0.49MPa,收缩率为15.28%,热导率为0.0194W/(m·K)。
实例2
取0.75g碳纳米管粉体于烧杯中,加入26.6g硝酸,在70℃水浴下混合2h,趁热抽滤、洗涤沉淀,将沉淀置于真空干燥箱60℃干燥12h得到氧化碳纳米管粉体。将上述氧化碳纳米管粉体配制1.5mg/ml的氧化碳纳米管NMP溶液500ml于烧杯中,用超声波细胞破碎机1500W功率超声6min,再加入0.56g ODA,在65℃下搅拌冷凝回流12h,倒入离心管中,在离心机中以11000r/min离心分离13min,去掉上层液体,得到黑色的沉淀,置于真空干燥箱60℃干燥12h得到酰胺化的碳纳米管。
称取1g ODA、0.45g1,3-丙二胺于烧杯中,加入到64gNMP,搅拌至完全溶解后加入2.9g PMDA,搅拌10h得到悬浮液。称取0.098g酰胺化改性的碳纳米管粉体分散于NMP中,用超声波细胞破碎机1500W功率超声5min,加入上述悬浮液中,搅拌均匀后先后加入8.4g乙酸酐和6.9g吡啶,待其搅拌均匀后静置使其凝胶。依次用含70%,50%,0%NMP的无水乙醇溶液对其进行溶剂置换,老化时间5天,期间每8h换一次老化液。最后通过CO2超临界干燥、60℃真空干燥13h得到功能化交联型聚酰亚胺气凝胶材料,该材料的密度为0.067g/cm3,抗压强度为0.68MPa,收缩率为8.73%,热导率为0.0171W/(m·K)。
实例3
取1g石墨烯粉体于烧杯中,加入38g硝酸,在70℃水浴下混合2h,趁热抽滤后、洗涤沉淀,将沉淀置于真空干燥箱60℃干燥10h得到氧化石墨烯粉体。接着配制2mg/ml的氧化石墨烯NMP溶液500ml于烧杯中,用超声波细胞破碎机1500W功率超声6min,再加入0.93g 1,3-丙二胺,在65℃下搅拌冷凝回流11h,倒入离心管中,在离心机中以11000r/min离心分离14min,去掉上层液体,得到黑色的沉淀,置于真空干燥箱60℃干燥12h得到酰胺化的氧化石墨烯。
称取1.25g ODA、0.29g DABA于烧杯中,加入71g NMP,搅拌至完全溶解,再加入3.1g BPDA,搅拌11h得到悬浮液。称取0.11g酰胺化改性的石墨烯粉体分散于NMP中,用超声波细胞破碎机1500W功率超声6min,加入上述悬浮液中,搅拌均匀后先后加入9.3g乙酸酐和7.8g吡啶,待其搅拌均匀后静置使其凝胶。依次用含50%,25%,0%NMP的无水乙醇溶液对其进行溶剂置换,老化时间4天,期间每8h换一次老化液。最后通过CO2超临界干燥、55℃真空干燥13h得到功能化交联型聚酰亚胺气凝胶材料,该材料的密度为0.058g/cm3,抗压强度为0.86MPa,收缩率为7.72%,热导率为0.0163W/(m·K)。
图1、图2分别为所制备的块状酰胺化改性的石墨烯交联的聚酰亚胺气凝胶的宏观实物图和微观形貌图,可看到该气凝胶收缩率较小,且具有气凝胶具备的完整的三维网络结构,说明功能化交联型聚酰亚胺气凝胶被成功制备。
实例4
取1.25g纳米碳纤维粉体于烧杯中,加入49.5g硝酸,在70℃水浴下混合1.5h,趁热抽滤、洗涤沉淀,将沉淀置于真空干燥箱60℃干燥12h得到氧化纳米碳纤维粉体。将氧化纳米碳纤维粉体配制2mg/ml的氧化纳米碳纤维NMP溶液625ml于烧杯中,用超声波细胞破碎机1400W功率超声5min,再加入1.25g ODA,在68℃下搅拌冷凝回流12h,倒入离心管中,在离心机中以10000r/min离心分离15min,去掉上层液体,得到黑色的沉淀,置于真空干燥箱55℃干燥12h得到酰胺化的纳米碳纤维粉体。
称取1.5g ODA、0.6g PDA于烧杯中,加入到89gNMP,搅拌至完全溶解后,加入4.6gBPDA,搅拌12h得到悬浮液。称取0.18g酰胺化改性的纳米碳材料粉体分散于NMP溶液中,用超声波细胞破碎机1400W功率超声6min,加入上述悬浮液中,搅拌均匀后先后加入13.9g乙酸酐和12.8g吡啶,待其搅拌均匀后静置使其凝胶。依次用含80%,25%,0%NMP的无水乙醇溶液对其进行溶剂置换,老化时间5天,期间每10h换一次老化液。最后通过CO2超临界干燥、58℃真空干燥14h得到功能化交联型聚酰亚胺气凝胶材料,该材料的密度为0.054g/cm3,抗压强度为1.0MPa,收缩率为7.52%,热导率为0.0156W/(m·K)。

Claims (10)

1.一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法,其具体步骤如下:
(1)交联剂的改性
量取交联剂放入容器中,加入硝酸,水浴搅拌,趁热抽滤、沉淀,将沉淀置于真空干燥箱中真空干燥得到氧化改性的交联剂;将上述氧化改性得到的交联剂配制成一定浓度的NMP溶液,用超声波细胞破碎机超声后加入改性剂,在一定温度下冷凝回流后,倒入离心管中,离心去掉上层液体,得到黑色的沉淀,置于真空干燥箱中干燥,得到酰胺化改性的交联剂粉体;
(2)功能化交联型聚酰亚胺悬浮液的凝胶
称取一定质量的二胺于烧杯中,加入NMP,搅拌至完全溶解后加入二酐搅拌得到悬浮液;量取步骤(1)中的酰胺化改性的交联剂粉体分散于NMP溶液中得到混合溶液,用超声波细胞破碎机超声后加入上述悬浮溶液中搅拌均匀;再分别加入乙酸酐和吡啶,搅拌均匀静置使其凝胶;
(3)功能化交联型聚酰亚胺凝胶的老化及干燥
将步骤(2)所制得的功能化交联型聚酰亚胺凝胶用不同体积分数的NMP的无水乙醇溶液进行老化,然后干燥,得到聚酰亚胺气凝胶;
(4)升温干燥
将步骤(3)中初步形成的聚酰亚胺气凝胶放入真空干燥箱中干燥,得到功能化交联型聚酰亚胺气凝胶材料。
2.根据权利要求1所述的制备方法,其特征在于步骤(1)中所述的交联剂为纳米碳纤维、碳纳米管或石墨烯;所使用的改性剂为4-氨基-N-(4-氨基苯基)-苯甲酰胺(DABA)和4,4’-二氨基二苯醚(ODA)、1,3-丙二胺或均苯四甲酸二酐(PMDA)中的一种。
3.根据权利要求1所述的制备方法,其特征在于步骤(1)中所述的交联剂和硝酸的质量比为1:(34-40);氧化改性的交联剂粉体的NMP溶液浓度为1-2mg/ml;氧化改性得到的交联剂与改性剂的质量比为1:(0.6-1.3)。
4.根据权利要求1所述的制备方法,其特征在于步骤(1)中所述的水浴温度为65-75℃,搅拌时间为1-2h;真空干燥的温度均为50-60℃,时间均为10-12h;冷凝回流温度在60-70℃,冷凝回流时间为10-12h。
5.根据权利要求1所述的制备方法,其特征在于步骤(1)中所述的超声波细胞破碎机的频率为1400-1500W,时间为5-6min;离心机转速为10000-11000r/min,离心时间为10-15min。
6.根据权利要求1所述的制备方法,其特征在于步骤(2)中所述的二胺为4-氨基-N-(4-氨基苯基)-苯甲酰胺(DABA)、4,4’-二氨基二苯醚(ODA)、1,3-丙二胺或对苯二胺(PDA)中的一种或两种;二酐为3,3,4,4,-联苯四甲酸二酐(BPDA)、均苯四甲酸二酐(PMDA)或4,4,-氧邻二邻苯二甲酸酐。
7.根据权利要求1所述的制备方法,其特征在于步骤(2)中所述的二胺、二酐、NMP的质量比为1:(1.3-3):(37-48);酰胺化改性的交联剂粉体的加入量与二酐的质量比为1:(22-30);步骤(2)中所述乙酸酐与二酐的质量比为(2.8-3.5):1;吡啶与二酐的质量比为(2.2-3):1。
8.根据权利要求1所述的制备方法,其特征在于步骤(2)中所述的超声波细胞破碎机的频率为1400-1500W,时间为5-6min;加入二酐后搅拌时长为10-12h。
9.根据权利要求1所述的制备方法,其特征在于步骤(3)中所述的NMP的无水乙醇溶液,其中NMP体积分数为0-80%;且老化方式为从高体积分数到低体积分数的梯度老化;老化时间4-5天,期间每8-10h换一次老化液。
10.根据权利要求1所述的制备方法,其特征在于步骤(3)中所述的干燥方式为CO2超临界干燥;步骤(4)中所述的真空干燥温度为50~60℃,干燥时间为12-15h。
CN202011257039.3A 2020-11-12 2020-11-12 一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法 Active CN112500565B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011257039.3A CN112500565B (zh) 2020-11-12 2020-11-12 一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011257039.3A CN112500565B (zh) 2020-11-12 2020-11-12 一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法

Publications (2)

Publication Number Publication Date
CN112500565A true CN112500565A (zh) 2021-03-16
CN112500565B CN112500565B (zh) 2022-04-26

Family

ID=74957117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011257039.3A Active CN112500565B (zh) 2020-11-12 2020-11-12 一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法

Country Status (1)

Country Link
CN (1) CN112500565B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539624A (zh) * 2022-03-07 2022-05-27 南京工业大学 一种高分散酰胺化低维碳材料的改性方法
CN115230252A (zh) * 2022-06-24 2022-10-25 中国科学院空间应用工程与技术中心 一种气凝胶多层间隔材料及制备方法
CN115819969A (zh) * 2022-11-29 2023-03-21 北京化工大学常州先进材料研究院 一种聚酰亚胺纳米纤维/碳纳米管复合导电气凝胶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832364A (zh) * 2017-01-06 2017-06-13 北京理工大学 柔性交联型聚酰亚胺气凝胶薄膜的制备方法
CN106987019A (zh) * 2017-04-14 2017-07-28 北京航空航天大学 一种表面官能化纳米粒子交联的聚酰亚胺气凝胶及其制备方法
CN109593440A (zh) * 2018-12-17 2019-04-09 浙江润奥环保科技有限公司 一种环保型纳米石墨烯地坪材料及其制备方法
CN109867785A (zh) * 2019-02-25 2019-06-11 南京工业大学 一种聚酰亚胺气凝胶吸附材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832364A (zh) * 2017-01-06 2017-06-13 北京理工大学 柔性交联型聚酰亚胺气凝胶薄膜的制备方法
CN106987019A (zh) * 2017-04-14 2017-07-28 北京航空航天大学 一种表面官能化纳米粒子交联的聚酰亚胺气凝胶及其制备方法
CN109593440A (zh) * 2018-12-17 2019-04-09 浙江润奥环保科技有限公司 一种环保型纳米石墨烯地坪材料及其制备方法
CN109867785A (zh) * 2019-02-25 2019-06-11 南京工业大学 一种聚酰亚胺气凝胶吸附材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YA ZHONG等: ""Preparation and Characterization of Polyimide Aerogels with a Uniform Nanoporous Framework"", 《LANGMUIR》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539624A (zh) * 2022-03-07 2022-05-27 南京工业大学 一种高分散酰胺化低维碳材料的改性方法
CN115230252A (zh) * 2022-06-24 2022-10-25 中国科学院空间应用工程与技术中心 一种气凝胶多层间隔材料及制备方法
CN115819969A (zh) * 2022-11-29 2023-03-21 北京化工大学常州先进材料研究院 一种聚酰亚胺纳米纤维/碳纳米管复合导电气凝胶及其制备方法

Also Published As

Publication number Publication date
CN112500565B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CN112500565B (zh) 一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法
Chen et al. Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO2 capture
Zhang et al. Direct fabrication of poly (p-phenylene terephthalamide) aerogel and its composites with great thermal insulation and infrared stealth
CN104355302B (zh) 一种石墨烯/聚酰亚胺基碳气凝胶的制备方法
Teo et al. Polyimide-based aerogel foams, via emulsion-templating
CN106987019B (zh) 一种表面官能化纳米粒子交联的聚酰亚胺气凝胶及其制备方法
Ghaffari-Mosanenzadeh et al. Recent advances in tailoring and improving the properties of polyimide aerogels and their application
WO2017050220A1 (zh) 一种对位芳纶纳米纤维的制备方法
Chen et al. Ultrafast, cost-effective and scaled-up recycling of aramid products into aramid nanofibers: mechanism, upcycling, closed-loop recycling
JP5867828B2 (ja) 複合膜およびその製造方法
Liu et al. A new method for an efficient porous carbon/Fe3O4 composite based electromagnetic wave absorber derived from a specially designed polyimide
CN113463375B (zh) 原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用
CN105968354B (zh) 一种co2吸附用聚酰亚胺气凝胶的制备方法
Wu et al. Solution-processable polyimide aerogels with high hydrophobicity
Zhang et al. Mechanically strong polyimide aerogels cross-linked with dopamine-functionalized carbon nanotubes for oil absorption
Feng et al. Polyamide-imide reinforced polytetrafluoroethylene nanofiber membranes with enhanced mechanical properties and thermal stabilities
Lin et al. Facile fabrication of mechanically strong and thermal resistant polyimide aerogels with an excess of cross-linker
CN106633171A (zh) 氨基苯基硅倍半氧烷交联聚酰亚胺气凝胶材料的制备方法
CN107337797A (zh) 一种交联型聚酰亚胺气凝胶的制备方法
CN114854083B (zh) 一种超轻、疏水聚酰亚胺气凝胶及其制备方法和应用
Yao et al. Solvothermal imidization to polyimide composite aerogels by vacuum drying
Wu et al. Preparation and characterization of highly hydrophobic fluorinated polyimide aerogels cross-linked with 2, 2′, 7, 7′-Tetraamino-9, 9′-spirobifluorene
Zheng et al. Facile and environment-friendly preparation of high-performance polyimide aerogels using water as the only solvent
Li et al. Novel anion exchange membrane with poly ionic liquid-confined hypercrosslinked polymer for enhanced anion conduction and stability
LIANG et al. Polyimide aerogels crosslinked with chemically modified graphene oxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant