CN112499675A - 一种高性能锂电池电负极材料的制备方法 - Google Patents

一种高性能锂电池电负极材料的制备方法 Download PDF

Info

Publication number
CN112499675A
CN112499675A CN202011355507.0A CN202011355507A CN112499675A CN 112499675 A CN112499675 A CN 112499675A CN 202011355507 A CN202011355507 A CN 202011355507A CN 112499675 A CN112499675 A CN 112499675A
Authority
CN
China
Prior art keywords
tio
lithium battery
mos
negative electrode
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011355507.0A
Other languages
English (en)
Inventor
许伟
周翠芳
秦作路
周建中
李明钧
张萍
毛鸥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianneng Shuai Fude Energy Co Ltd
Original Assignee
Tianneng Shuai Fude Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianneng Shuai Fude Energy Co Ltd filed Critical Tianneng Shuai Fude Energy Co Ltd
Priority to CN202011355507.0A priority Critical patent/CN112499675A/zh
Publication of CN112499675A publication Critical patent/CN112499675A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明属于锂电池制造技术领域,具体涉及一种高性能锂电池电负极材料的制备方法,要点在于:根据MoS2本身形态大小,选择具备微米尺寸的球形TiO2作为负载模板,确保两者在尺寸上的互配,以钼酸钠作为钼源,硫代乙酰胺作为硫源,十六烷基三甲基溴化铵(CTAB)为活化剂,用水热合成的实验方法将片状MoS2成功负载到TiO2表面,制备得到具有核壳结构的TiO2/MoS2复合材料。存在协同效应,电性能更加优异,具备较高的容量、良好的循环稳定性和倍率性能等,金属成分含量高,替代原有电池中的碳材料,不易燃,极大提高了锂离子电池的安全性。

Description

一种高性能锂电池电负极材料的制备方法
技术领域
本发明属于锂电池制造技术领域,具体涉及一种高性能锂电池电负极材料的制备方法。
背景技术
随着传统能源的消耗加快和开采成本上升,新能源的发展越来越受到各国政府的重视。锂离子电池作为商业化最为成功的新能源产业,已备受各方资本追捧,其中石墨因其自身便宜、无毒,原料来源丰富等特点,已成为锂离子电池应用最广泛的负极材料。
然而,作为已被广泛应用的负极材料,石墨表现了相对较低的理论储锂容量(372mAh/g),难以满足未来人们对长续航的需求,而与石墨相比,2D过渡金属硫化物MoS2基于其独特的物理和化学性质,如相对较高的能量密度,较长的寿命周期和设计灵活性,已被认为是用于锂离子电池很有前景的负极材料。除此之外,MoS2拥有类似于石墨的层状结构,其中钼原子夹在两层硫原子之间,这在层状家族中是一种十分常见的结构之一,具有非常好的稳定性,MoS2同时具有较高的理论容量,高达670mA/g,其层状结构的特点是易于锂离子快速嵌入-嵌出。但是单纯的MoS2材料依然表现出较差的稳定性、容量衰减快、倍率性差等缺点,这严重阻碍了其在锂离子电池中的应用。
为了能够提高MoS2在充放电过程中的电化学性能,最为普遍的做法便是给MoS2提供一个载体供其负载,避免MoS2结构坍塌和团聚。TiO2因其在锂化和脱锂的过程中体积变化小于4%,被认为是最佳的载体材料,能够缓冲复合材料因体积收缩膨胀而导致的结构变形,维持材料的整体性能平稳。球形TiO2在结构上更具稳定性,且TiO2微球本身即具备较大的比表面积和优异的电化学性能,对改性MoS2来说是一类非常合适的载体。
发明内容
本发明目的在于克服现有技术的不足,提供一种简单、易操作且环保高效的高性能锂电池电负极材料的制备方法。
为达到上述目的,本发明采用的技术方案如下:
一种高性能锂电池电负极材料的制备方法,包括如下步骤:
S1.在乙醇和乙腈的混合溶剂体系中,并于迅速搅拌下瞬间注入钛酸正丁酯,保持搅拌,用乙醇离心洗涤制备得到TiO2微球,并保存留用;
S2.取出S1的TiO2微球于聚四氟乙烯反应釜中,加水搅拌,再加入CTAB,继续保持搅拌,直至CTAB完全溶解;
S3.称取钼酸钠和硫代乙酰胺加入S2的混合液中,继续保持搅拌15~20min,至加入的钼酸钠和硫代乙酰胺溶解;
S4.将反应釜加盖拧紧,放入鼓风干燥箱中,在140~180℃保温3~5h,自然冷却至室温,制得中间物,将中间物用乙醇进行离心清洗并冷冻干燥;
S5.将S4干燥后的反应物A置于管式炉中,以1~2℃/min升温至800~1000℃并保温2~3h,之后再以1~2℃/min降温至室温,整个过程通入氩气保护,制得复合材料TiO2/MoS2
优选地,步骤S1,乙醇和乙腈按体积比1~3:1组成所述的混合溶剂体系,其中乙腈的用量范围在30~50mL。
更优选地,步骤S1,钛酸正丁酯的用量范围在3~5mg。
更优选地,步骤S1,保持搅拌2~4h。
优选地,步骤S2,加水搅拌45min~1.2h,继续保持搅拌8~12min。
更优选地,步骤S2,所用水为去离子水,去离子水的用量范围在30~40g,所用CTAB为分析纯,CTAB用量范围在0.1~0.15g。
优选地,步骤S3,所用钼酸钠和硫代乙酰胺均为分析纯,其中钼酸钠用量范围在1.8~2.5g,硫代乙酰胺用量范围在2.8~4.1g。
优选地,步骤S5,通入的氩气中含有2%H2
优选地,还包括步骤S6.将S5制备的复合材料TiO2/MoS2与SP和PVDF以8:1:1混合制成浆料,涂覆于12um铜箔上,并与金属锂片组成扣式半电池,电解液的成分为体积比EC:EMC=1:1的混合液,锂盐LiPF6浓度为1mol/L,测试扣电相关电性能。
本发明考虑到MoS2本身形态大小,选择具备微米尺寸的球形TiO2作为负载模板,确保两者在尺寸上的互配,以钼酸钠作为钼源,硫代乙酰胺作为硫源,十六烷基三甲基溴化铵(CTAB)为活化剂,采用水热合成的实验方法将片状MoS2成功负载到TiO2表面,制备得到具有核壳结构的TiO2负载MoS2(TiO2/MoS2)的复合材料,该复合材料表现出了优异的锂电性能。
本发明的制备方法简单易操作,所用设备均为实验室常用设备;所需原料如钛酸正丁酯、钼酸钠、硫代乙酰胺等成本低廉,来源广泛,无安全隐患;制备的TiO2/MoS2复合材料,存在协同效应,因而电性能更加优异,如具备较高的容量、良好的循环稳定性及倍率性能等,拥有广阔的应用前景;并且制备的TiO2/MoS2复合材料,金属成分含量高,替代原有电池中的碳材料,不易燃,极大的提高了锂离子电池的安全性。
附图说明
图1TiO2微米球SEM图;
图2复合材料TiO2/MoS2 SEM图;
图3复合材料TiO2/MoS2 TEM图;
图4无载体MoS2纳米片SEM图;
图5纯MoS2纳米片和TiO2/MoS2复合材料的热重分析曲线,空气氛围升温速度10℃/min;
图6复合材料TiO2/MoS2的XPS谱图:(a)全谱,(b)Ti 2p,(c)Mo 3d,(d)S 2p;
图7(a)复合材料TiO2/MoS2前三圈循环伏安,扫速0.1mV/s,电压0.01-3.0V,(b)TiO2/MoS2前三圈充放电,电流密度0.1A/g,电压0.01-3.0V,(c)TiO2/MoS2和MoS2的倍率性能对比,(d)TiO2/MoS2、MoS2和TiO2循环稳定测试,电流密度0.1A/g。
图8(a)TiO2/MoS2复合材料和纯MoS2的交流阻抗图,偏伏5.0mV,频率0.01Hz-100kHz,插图为等效电路图(b)组装的扣式电池点亮二极管。
具体实施方式
下面结合附图对本发明的具体实施例做详细说明。
实施例1
一种高性能锂电池电负极材料的制备方法,包括如下步骤:
S1.在乙醇80mL和乙腈40mL组成的混合溶剂体系中,并于迅速搅拌下瞬间注入4mg钛酸正丁酯,保持搅拌3h,用乙醇离心洗涤制备得到TiO2微球,并保存留用;
S2.取出S1的TiO2微球于聚四氟乙烯反应釜中,加去离子水35g搅拌1h,再加入分析纯级CTAB 0.12g,继续保持搅拌10min,直至CTAB完全溶解;
S3.称取分析纯级钼酸钠2.2g和分析纯级硫代乙酰胺3.5g加入S2的混合液中,继续保持搅拌15~20min,至加入的钼酸钠和硫代乙酰胺溶解;
S4.将反应釜加盖拧紧,放入鼓风干燥箱中,在140~180℃保温3~5h,自然冷却至室温,制得中间物,将中间物用乙醇进行离心清洗并冷冻干燥;
S5.将S4干燥后的反应物A置于管式炉中,以1~2℃/min升温至800~1000℃并保温2~3h,之后再以1~2℃/min降温至室温,整个过程通入的氩气(含2%H2)保护,制得复合材料TiO2/MoS2,SEM图如图2所示,TEM图如图3所示,XPS谱图如图6所示。
对比例1
纯纳米片MoS2的制备:在聚四氟乙烯反应釜中加入分析纯级钼酸钠2.2g和分析纯级硫代乙酰胺3.5g,再加入去离子水3.5g,搅拌溶解,加盖拧紧,再放入鼓风干燥箱中,在160℃温度下保温4h,自然冷却至室温,将反应物用乙醇进行清洗并冷冻干燥,得到产物纯MoS2纳米片。
测试例1
将实施例1制备的复合材料TiO2/MoS2与SP和PVDF按照8:1:1混合制成浆料,涂覆于12um铜箔上,并与金属锂片组成扣式半电池,电解液成分体积比EC:EMC=1:1的混合液,锂盐LiPF6浓度为1mol/L,测试扣电相关电性能。
测试例2
将对比例1制备的纯MoS2纳米片与SP和PVDF按照8:1:1混合制成浆料,涂覆于12um铜箔上,并与金属锂片组成扣式半电池,电解液成分体积比EC:EMC=1:1的混合液,锂盐LiPF6浓度为1mol/L,测试扣电相关电性能。
测试例3
将实施例1步骤S1制备的TiO2微球与SP和PVDF按照8:1:1混合制成浆料,涂覆于12um铜箔上,并与金属锂片组成扣式半电池,电解液成分为体积比EC:EMC=1:1的混合液,锂盐LiPF6浓度为1mol/L,测试扣电相关电性能。
TiO2微米球SEM图的如图1所示,无载体MoS2纳米片SEM图如图4所示,以上扣电相关电性能的对比结果如图5-8所示。
本发明的制备方法简单易操作,成本低廉,来源广泛,无安全隐患;制备的TiO2/MoS2复合材料,存在协同效应,因而电性能更加优异,如具备较高的容量、良好的循环稳定性及倍率性能等,拥有广阔的应用前景;并且制备的TiO2/MoS2复合材料,金属成分含量高,替代原有电池中的碳材料,不易燃,极大的提高了锂离子电池的安全性。此外,在本发明基础上,载体除用微米球TiO2外,同样可用其它类型的材料作为载体,如TiO2纳米线、TiO2纳米管、TiO2纳米棒等,合成方法不变,均能制得相关核壳结构的复合材料,以提升MoS2的电化学性能
上述实施例仅是本发明的较优实施方式,凡是依据本发明的技术实质对以上实施例所做的任何简单修饰、修改及替代变化,均属于本发明技术方案的范围内。

Claims (8)

1.一种高性能锂电池电负极材料的制备方法,其特征在于,包括如下步骤:
S1.在乙醇和乙腈的混合溶剂体系中,并于迅速搅拌下瞬间注入钛酸正丁酯,保持搅拌,用乙醇离心洗涤制备得到TiO2微球,并保存留用;
S2.取出S1的TiO2微球于聚四氟乙烯反应釜中,加水搅拌,再加入CTAB,继续保持搅拌,直至CTAB完全溶解;
S3.称取钼酸钠和硫代乙酰胺加入S2的混合液中,继续保持搅拌15~20min,至加入的钼酸钠和硫代乙酰胺溶解;
S4.将反应釜加盖拧紧,放入鼓风干燥箱中,在140~180℃保温3~5h,自然冷却至室温,制得中间物,将中间物用乙醇进行离心清洗并冷冻干燥;
S5.将S4干燥后的反应物A置于管式炉中,以1~2℃/min升温至800~1000℃并保温2~3h,之后再以1~2℃/min降温至室温,整个过程通入氩气保护,制得复合材料TiO2/MoS2
2.根据权利要求1所述的一种高性能锂电池电负极材料的制备方法,其特征在于,步骤S1,乙醇和乙腈按体积比1~3:1组成所述混合溶剂体系,其中乙腈的用量范围在30~50mL。
3.根据权利要求2所述的一种高性能锂电池电负极材料的制备方法,其特征在于,步骤S1,钛酸正丁酯的用量范围在3~5mg。
4.根据权利要求2所述的一种高性能锂电池电负极材料的制备方法,其特征在于,步骤S1,保持搅拌2~4h。
5.根据权利要求1所述的一种高性能锂电池电负极材料的制备方法,其特征在于,步骤S2,加水搅拌45min~1.2h,继续保持搅拌8~12min。
6.根据权利要求5所述的一种高性能锂电池电负极材料的制备方法,其特征在于,步骤S2,所用水为去离子水,去离子水的用量范围在30~40g,所用CTAB为分析纯,CTAB用量范围在0.1~0.15g。
7.根据权利要求1所述的一种高性能锂电池电负极材料的制备方法,其特征在于,步骤S3,所用钼酸钠和硫代乙酰胺均为分析纯,其中钼酸钠用量范围在1.8~2.5g,硫代乙酰胺用量范围在2.8~4.1g。
8.根据权利要求1所述的一种高性能锂电池电负极材料的制备方法,其特征在于,步骤S5,通入的氩气中含有2%H2
CN202011355507.0A 2020-11-27 2020-11-27 一种高性能锂电池电负极材料的制备方法 Pending CN112499675A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011355507.0A CN112499675A (zh) 2020-11-27 2020-11-27 一种高性能锂电池电负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011355507.0A CN112499675A (zh) 2020-11-27 2020-11-27 一种高性能锂电池电负极材料的制备方法

Publications (1)

Publication Number Publication Date
CN112499675A true CN112499675A (zh) 2021-03-16

Family

ID=74966625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011355507.0A Pending CN112499675A (zh) 2020-11-27 2020-11-27 一种高性能锂电池电负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN112499675A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115746701A (zh) * 2022-12-08 2023-03-07 广东电网有限责任公司 一种rtv防污闪涂料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655553A (zh) * 2016-01-11 2016-06-08 信阳师范学院 一种作为锂离子电池负极的层状堆叠的TiO2/MoS2核壳结构复合材料的制备方法
CN106807407A (zh) * 2016-12-19 2017-06-09 天津理工大学 一种核壳球状三氧化钼/二硫化钼及其制备方法
WO2018024183A1 (zh) * 2016-08-01 2018-02-08 福建新峰二维材料科技有限公司 一种三维石墨烯/MoS2复合材料的制备方法
CN109449399A (zh) * 2018-10-23 2019-03-08 郑州大学 一种锂离子电池负极材料用中空杂化微球及其制备方法
CN110323424A (zh) * 2019-05-29 2019-10-11 景德镇陶瓷大学 二氧化钛改性二硫化钼锂离子电池负极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655553A (zh) * 2016-01-11 2016-06-08 信阳师范学院 一种作为锂离子电池负极的层状堆叠的TiO2/MoS2核壳结构复合材料的制备方法
WO2018024183A1 (zh) * 2016-08-01 2018-02-08 福建新峰二维材料科技有限公司 一种三维石墨烯/MoS2复合材料的制备方法
CN106807407A (zh) * 2016-12-19 2017-06-09 天津理工大学 一种核壳球状三氧化钼/二硫化钼及其制备方法
CN109449399A (zh) * 2018-10-23 2019-03-08 郑州大学 一种锂离子电池负极材料用中空杂化微球及其制备方法
CN110323424A (zh) * 2019-05-29 2019-10-11 景德镇陶瓷大学 二氧化钛改性二硫化钼锂离子电池负极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEIXU ET AL.: ""Synthesis of core-shell TiO2@MoS2 composites for lithium-ion battery anodes"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115746701A (zh) * 2022-12-08 2023-03-07 广东电网有限责任公司 一种rtv防污闪涂料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN109755545B (zh) 多孔碳材料及其制备方法、多孔碳/硫复合材料、电池正极材料、锂硫电池及其应用
Li et al. High performance porous MnO@ C composite anode materials for lithium-ion batteries
CN108695495B (zh) 还原氧化石墨烯修饰三硫化二锑电池负极材料
Chen et al. Synthesis and electrochemical property of FeOOH/graphene oxide composites
CN103682327B (zh) 基于氮掺杂碳层包裹的空心多孔氧化镍复合材料的锂离子电池及其制备方法
CN104716321A (zh) 一种硅-氮掺杂碳-氮掺杂石墨烯复合材料及其制备和应用
CN107681147B (zh) 一种固态电解质包覆改性锂离子电池正极材料的制备方法与应用
CN107180964A (zh) 一种微波法制备掺杂金属氧化物/石墨烯复合纳米材料的方法及应用
CN106410164A (zh) 一种高性能复合材料及其制备方法和应用
CN107611425B (zh) 一种梭状铁酸锌/碳锂离子电池纳米复合负极材料及其制备方法与应用
Zhang et al. Facile synthesis of Mn2. 1V0. 9O4/rGO: a novel high-rate anode material for lithium-ion batteries
CN102315440A (zh) 一种尖晶石复合材料及其制备方法和用途
CN107749472A (zh) 一种高性能石墨复合负极材料及其制备方法
Qin et al. High performance of yolk-shell structured MnO@ nitrogen doped carbon microspheres as lithium ion battery anode materials and their in operando X-ray diffraction study
CN106410153A (zh) 一种氮化钛包覆钛酸镍复合材料及其制备方法和应用
CN114400309A (zh) 一种钠离子正极材料及其制备方法和应用
CN111785946B (zh) 负极活性材料及其制备及应用
WO2022151648A1 (zh) 一种高容量高稳定性硅碳负极材料及其制备方法
CN104638257A (zh) 纳米级氧化亚锰-导电炭黑复合材料及其合成方法
Qiao et al. Nanoneedle-assembled hollow α-Fe2O3 microflowers as Li-ion battery anode with high capacity and good temperature tolerance
CN106058193A (zh) 一种新型钠离子电池负极材料及其制备方法和应用
WO2023273265A1 (zh) 一种预锂化石墨烯及其制备方法和应用
Han et al. Preparation of multifunctional structural P-CF@ ZnCo2O4 composites used as structural anode materials
CN105932231B (zh) 一种石墨烯基核壳结构MnO@MnFe2O4纳米材料及制备与应用
Zhang et al. CNTs boosting superior cycling stability of ZnFe2O4/C nanoparticles as high-capacity anode materials of Li-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210316