CN112472716A - 一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法和应用 - Google Patents

一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN112472716A
CN112472716A CN202011279308.6A CN202011279308A CN112472716A CN 112472716 A CN112472716 A CN 112472716A CN 202011279308 A CN202011279308 A CN 202011279308A CN 112472716 A CN112472716 A CN 112472716A
Authority
CN
China
Prior art keywords
nano
selenium
solution
chitosan
composite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011279308.6A
Other languages
English (en)
Other versions
CN112472716B (zh
Inventor
孙冬冬
汪泽坤
王静媛
黎雨晴
杨恩东
郭峰
汪维云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Agricultural University AHAU
Original Assignee
Anhui Agricultural University AHAU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Agricultural University AHAU filed Critical Anhui Agricultural University AHAU
Priority to CN202011279308.6A priority Critical patent/CN112472716B/zh
Publication of CN112472716A publication Critical patent/CN112472716A/zh
Application granted granted Critical
Publication of CN112472716B publication Critical patent/CN112472716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/04Sulfur, selenium or tellurium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种克服多重耐药细菌感染的硒纳米复合材料,包括纳米硒复合颗粒,纳米硒复合颗粒为将甘露糖改性的壳聚糖包覆至硒纳米颗粒和β‑内酰胺类抗生素两者复合体的外表面所获得,纳米硒复合颗粒呈球型结构,内部为硒纳米颗粒和β‑内酰胺类抗生素,外表面为甘露糖改性的壳聚糖,纳米硒复合颗粒的平均粒径为40‑80nm,表面甘露糖改性的壳聚糖外壳的厚度为小于或等于5nm。本发明还提供了一种克服多重耐药细菌感染的硒纳米复合材料,和在纳米抗菌材料中的应用。本发明制备的纳米抗菌材料抑制多重耐药细菌的药物外排泵的表达和β‑内酰胺酶的活性,利用壳聚糖包埋硒纳米粒子和抗生素,有利于提高纳米材料的分散性和稳定性。

Description

一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法 和应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法和应用。
背景技术
由于临床滥用青霉素而导致的细菌耐药性产生严重影响了其临床疗效,设计新药或寻找新方法对抗青霉素介导的耐药性是临床上最大的挑战。
药物外排泵的激活和β-内酰胺酶的过度表达是大肠杆菌对青霉素耐药的主要机制。积累的研究证实了细菌外排泵系统AcrAB-TolC可以被非致死浓度的抗生素产生的活性氧激活,另一方面,β-内酰胺酶可以水解青霉素的β-内酰胺环,破坏药物结构并使青霉素失去抗菌活性。尽管,已有将β-内酰胺酶抑制剂与青霉素联合治疗的临床案例,但即使有效抑制了β-内酰胺酶诱导的药物分解,活化的药物外排泵仍然有效,并且仍需要更高的剂量的青霉素才能发挥作用,不仅加大了肝肾毒性,还将促使细菌对青霉素更加耐药,导致恶性循环。基于上述内容,我们提出一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法和应用。
发明内容
本发明的目的在于提供一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法和应用,以解决上述背景技术中提出的问题。
本发明通过以下技术方案来实现上述目的:
本发明提供了一种克服多重耐药细菌感染的硒纳米复合材料,包括纳米硒复合颗粒,所述纳米硒复合颗粒为将甘露糖改性的壳聚糖包覆至硒纳米颗粒和β-内酰胺类抗生素两者复合体的外表面所获得。
作为上述发明的进一步优化方案,所述纳米硒复合颗粒呈球型结构,内部为硒纳米颗粒和β-内酰胺类抗生素,外表面为甘露糖改性的壳聚糖,所述纳米硒复合颗粒的平均粒径为40-80nm,表面甘露糖改性的壳聚糖外壳的厚度为小于或等于10nm。
本发明还提供了一种克服多重耐药细菌感染的硒纳米复合材料在纳米抗菌材料中的应用。
本发明还提供了一种克服多重耐药细菌感染的硒纳米复合材料的制备方法,包括以下步骤:
步骤S1:将D-甘露糖和三乙酰基硼氢化钠溶解于纯水中制得溶液,向该溶液中滴加壳聚糖溶液形成混合溶液,透析、冷冻干燥后获得甘露糖改性壳聚糖;
步骤S2:将所述甘露糖改性壳聚糖溶于乙酸溶液中,再向该溶液中缓慢加入含有亚硒酸钠、抗坏血酸、β-内酰胺类抗生素的三聚磷酸钠溶液,搅拌得到橙色溶液,橙色溶液经过离心洗涤、冷冻干燥后获得反应产物;
步骤S3:将步骤S2中所述反应产物溶于乙酸溶液中,再向溶液中加入含有三羧基苯硼酸、N-羟基琥珀酰亚胺和1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐的甲醇溶液,搅拌得到混合溶液,混合溶液经过离心洗涤、冷冻干燥后获得纳米硒复合颗粒。
作为上述发明的进一步优化方案,所述步骤S1中壳聚糖溶液制作步骤为:将壳聚糖置于体积浓度1%乙酸溶液中,超声搅拌直至完全溶解,获得壳聚糖溶液。
作为上述发明的进一步优化方案,所述步骤S1中的壳聚糖脱乙酰度大于等于95%,粘度为100-200mpa.s。
作为上述发明的进一步优化方案,所述步骤S1中的透析包括:将混合溶液加入透析袋中,同时给与150rpm的缓慢搅拌,采用超纯水透析72h,每隔24h更换一次纯水。
作为上述发明的进一步优化方案,所述透析袋截留分子量为8-14kDa。
作为上述发明的进一步优化方案,所述步骤S2中的橙色溶液制作步骤为:将含有亚硒酸钠、抗坏血酸、β-内酰胺类抗生素的三聚磷酸钠溶液在室温下滴加甘露糖改性壳聚糖溶液中,搅拌速度为300-500rpm,滴加速度为1.5mL/min。
作为上述发明的进一步优化方案,所述步骤S3中混合溶液的制作步骤为:将三羧基苯硼酸和N-羟基琥珀酰亚胺溶于甲醇溶液中,在室温下搅拌30min得到混合物,然后将1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐加入到混合物中搅拌,然后将该混合物加入到反应产物溶液中在室温下搅拌24h。
本发明的有益效果在于:本发明制备的纳米抗菌材料抑制多重耐药细菌的药物外排泵的表达和β-内酰胺酶的活性,利用壳聚糖包埋硒纳米粒子和抗生素,有利于提高纳米材料的分散性和稳定性。甘露糖与细菌菌毛FimH凝集素相互识别,有利于提高纳米药物的靶向识别细菌的能力。本发明的纳米抗菌材料是一种低成本、高安全性、优良的抗菌活性和不易产生耐药性的抗菌材料,提高了纳米材料在医学领域的应用范围,能够实现医用抗菌材料的可持续开发利用。
附图说明
图1:(A)壳聚糖的扫描电镜图;(B)甘露糖改性后壳聚糖的扫描电镜图;(C)纳米硒的透射电镜图;(D)纳米硒复合材料的透射电镜图。
图2:(A)傅里叶红外光谱(a壳聚糖;b甘露糖;c甘露糖改性的壳聚糖;d纳米硒;e氨苄西林;f三羧基苯硼酸;g纳米硒复合材料);(B)紫外可见光分光光谱;(C)实施例1中纳米硒复合材料的元素分析;(D)实施例1中纳米硒复合材料的Zeta电位。
图3:(A)实施例1中纳米硒复合材料的热力学稳定性;(B)实施例1中纳米硒复合材料的动力学稳定性。
图4:(A)各产物与氨苄西林(30μg/mL)处理后对大肠杆菌和耐药大肠杆菌的菌落形成单位的影响。(B)评估各产物与氨苄西林(30μg/mL)对大肠杆菌和耐药大肠杆菌的抑制效果。
具体实施方式
下面结合附图对本申请作进一步详细描述,有必要在此指出的是,以下具体实施方式只用于对本申请进行进一步的说明,不能理解为对本申请保护范围的限制,该领域的技术人员可以根据上述申请内容对本申请作出一些非本质的改进和调整。
本发明一种克服多重耐药细菌感染的硒纳米复合材料的制备方法,包括以下步骤:
步骤S1:将10mM-50mMD-甘露糖和10mM-50mM三乙酰基硼氢化钠溶解于10-50mL纯水中,将500mg-1g壳聚糖置于30mL-50mL体积浓度1%乙酸溶液中,超声搅拌直至完全溶解,将在乙酸中的壳聚糖缓慢加入到甘露糖溶液中,室温搅拌48h形成混合溶液,将混合溶液加入截留分子量为8-14kDa的透析袋中,同时给与150rpm的缓慢搅拌,采用超纯水透析72h,每隔24h更换一次纯水,并通过冷冻干燥,获得甘露糖改性壳聚糖;
步骤S2:将80mg-200mg甘露糖改性壳聚糖溶于40mL-100mL体积浓度1%乙酸溶液中,并将10mg-30mg的三聚磷酸钠溶于15mL纯水中,然后,将1mL的10mM-40mM亚硒酸钠、1mL的50mM-150mM抗坏血酸和50mg-150mgβ-内酰胺类抗生素添加到三聚磷酸钠溶液中,并搅拌10min,然后将含有亚硒酸钠、抗坏血酸、β-内酰胺类抗生素的三聚磷酸钠溶液在室温下滴加甘露糖改性壳聚糖溶液中,搅拌速度为300-500rpm,滴加速度为1.5mL/min,获得橙色溶液,橙色溶液通过离心30min收集反应产物,离心参数为4℃、12000rpm,再用纯水洗涤3次,并通过冷冻干燥,获得反应产物;
步骤S3:将500mg-1g反应产物溶解在50mL-100mL体积浓度1%乙酸溶液中,称取100mg-500mg三羧基苯硼酸和200mg-300mgN-羟基琥珀酰亚胺溶于50mL-100mL甲醇溶液中,在室温下搅拌30min得到混合物,将300mg-500mg1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐加入到混合物中搅拌,然后将该混合物加入到反应产物溶液中在室温下搅拌24h得到混合溶液,混合溶液通过离心10min收集最终产物,离心参数为4℃、12000rpm,离心后用甲醇和纯水洗涤3次并通过冷冻干燥获得纳米硒复合颗粒。
实施例1
(1):将20mMD-甘露糖和20mM三乙酰基硼氢化钠溶解于20mL纯水中,将500mg壳聚糖置于30mL体积浓度1%乙酸溶液中,超声搅拌直至完全溶解,将在乙酸中的壳聚糖缓慢加入到甘露糖溶液中,室温搅拌48h形成混合溶液,将混合溶液加入截留分子量为8-14kDa的透析袋中,同时给与150rpm的缓慢搅拌,采用超纯水透析72h,每隔24h更换一次纯水,并通过冷冻干燥,获得甘露糖改性壳聚糖;
(2):将80mg甘露糖改性壳聚糖溶于40mL体积浓度1%乙酸溶液中,并将18mg的三聚磷酸钠溶于15mL纯水中,然后,将1mL的20mM亚硒酸钠、1mL的80mM抗坏血酸和55mg氨苄西林添加到三聚磷酸钠溶液中,并搅拌10min,然后将含有亚硒酸钠、抗坏血酸、氨苄西林的三聚磷酸钠溶液在室温下滴加甘露糖改性壳聚糖溶液中,搅拌速度为300-500rpm,滴加速度为1.5mL/min,获得橙色溶液,橙色溶液通过离心30min收集反应产物,离心参数为4℃、12000rpm,再用纯水洗涤3次,并通过冷冻干燥,获得反应产物。
(3):将500mg反应产物溶解在50mL体积浓度1%乙酸溶液中,称取225mg三羧基苯硼酸和230.2mgN-羟基琥珀酰亚胺溶于50mL甲醇溶液中,在室温下搅拌30min得到混合物,将383.4mg1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐加入到混合物中搅拌,然后将该混合物加入到反应产物溶液中在室温下搅拌24h得到混合溶液,混合溶液通过离心10min收集最终产物,离心参数为4℃、12000rpm,离心后用甲醇和纯水洗涤3次并通过冷冻干燥获得产物四。
对比例1
(1):将20mMD-甘露糖和20mM三乙酰基硼氢化钠溶解于20mL纯水中,将500mg壳聚糖置于30mL体积浓度1%乙酸溶液中,超声搅拌直至完全溶解,将在乙酸中的壳聚糖缓慢加入到甘露糖溶液中,室温搅拌48h形成混合溶液,将混合溶液加入截留分子量为8-14kDa的透析袋中,同时给与150rpm的缓慢搅拌,采用超纯水透析72h,每隔24h更换一次纯水,并通过冷冻干燥,获得甘露糖改性壳聚糖;
(2):将80mg甘露糖改性壳聚糖溶于40mL体积浓度1%乙酸溶液中,并将18mg的三聚磷酸钠溶于15mL纯水中,然后,将1mL的20mM亚硒酸钠、1mL的80mM抗坏血酸添加到三聚磷酸钠溶液中,并搅拌10min,然后将含有亚硒酸钠、抗坏血酸的三聚磷酸钠溶液在室温下滴加甘露糖改性壳聚糖溶液中,搅拌速度为300-500rpm,滴加速度为1.5mL/min,获得橙色溶液,橙色溶液通过离心30min收集反应产物,离心参数为4℃、12000rpm,再用纯水洗涤3次,并通过冷冻干燥,获得反应产物。
(3):将500mg反应产物溶解在50mL体积浓度1%乙酸溶液中,称取225mg三羧基苯硼酸和230.2mgN-羟基琥珀酰亚胺溶于50mL甲醇溶液中,在室温下搅拌30min得到混合物,将383.4mg1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐加入到混合物中搅拌,然后将该混合物加入到反应产物溶液中在室温下搅拌24h得到混合溶液,混合溶液通过离心10min收集最终产物,离心参数为4℃、12000rpm,离心后用甲醇和纯水洗涤3次并通过冷冻干燥获得产物一。
对比例2
(1):将20mMD-甘露糖和20mM三乙酰基硼氢化钠溶解于20mL纯水中,将500mg壳聚糖置于30mL体积浓度1%乙酸溶液中,超声搅拌直至完全溶解,将在乙酸中的壳聚糖缓慢加入到甘露糖溶液中,室温搅拌48h形成混合溶液,将混合溶液加入截留分子量为8-14kDa的透析袋中,同时给与150rpm的缓慢搅拌,采用超纯水透析72h,每隔24h更换一次纯水,并通过冷冻干燥,获得甘露糖改性壳聚糖;
(2):将80mg甘露糖改性壳聚糖溶于40mL体积浓度1%乙酸溶液中,并将18mg的三聚磷酸钠溶于15mL纯水中,然后,将1mL的20mM亚硒酸钠、1mL的80mM抗坏血酸和55mg氨苄西林添加到三聚磷酸钠溶液中,并搅拌10min,然后将含有亚硒酸钠、抗坏血酸的三聚磷酸钠溶液在室温下滴加甘露糖改性壳聚糖溶液中,搅拌速度为300-500rpm,滴加速度为1.5mL/min,获得橙色溶液,橙色溶液通过离心30min收集反应产物,离心参数为4℃、12000rpm,再用纯水洗涤3次,并通过冷冻干燥,获得反应产物二。
对比例3
(1):将80mg壳聚糖溶于40mL体积浓度1%乙酸溶液中,并将18mg的三聚磷酸钠溶于15mL纯水中,然后,将1mL的20mM亚硒酸钠、1mL的80mM抗坏血酸和55mg氨苄西林添加到三聚磷酸钠溶液中,并搅拌10min,然后将含有亚硒酸钠、抗坏血酸的三聚磷酸钠溶液在室温下滴加甘露糖改性壳聚糖溶液中,搅拌速度为300-500rpm,滴加速度为1.5mL/min,获得橙色溶液,橙色溶液通过离心30min收集反应产物,离心参数为4℃、12000rpm,再用纯水洗涤3次,并通过冷冻干燥,获得反应产物;
(2):将500mg(1)反应产物溶解在50mL体积浓度1%乙酸溶液中,称取225mg三羧基苯硼酸和230.2mgN-羟基琥珀酰亚胺溶于50mL甲醇溶液中,在室温下搅拌30min得到混合物,将383.4mg1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐加入到混合物中搅拌,然后将该混合物加入到反应产物溶液中在室温下搅拌24h得到混合溶液,混合溶液通过离心10min收集最终产物,离心参数为4℃、12000rpm,离心后用甲醇和纯水洗涤3次并通过冷冻干燥获得产物三。
图1中A为壳聚糖的扫描电镜图,壳聚糖表现出块状结构,B为甘露糖改性后壳聚糖的扫描电镜图,甘露糖和壳聚糖之间的共价偶联形成的内聚链,使得甘露糖改性的壳聚糖表现出片层装结构;图1中C透射电镜成像表明,纳米硒的直径小于20nm,图1中D透射电镜成像表明,最终的纳米硒复合颗粒具有50nm的平均直径,有利于细菌细胞渗透;氨苄青霉素从中心到表面随机散布在纳米硒中,表面可见甘露糖改性的壳聚糖和三羧基苯硼酸,厚度约为10nm。
图2中A傅里叶红外光谱图用于确认壳聚糖和甘露糖之间的相互作用,如图2中A所示,壳聚糖在1595cm-1处表现出–NH2拉伸振动,另一个在3423cm-1处的能带为胺对称振动,并且2885cm-1处的峰显示出典型的C-H振动,在甘露糖改性的壳聚糖的情况下,在1560cm-1处仲胺的N-H弯曲和1410cm-1处的C=N拉伸揭示了Schiff碱(R-CH=NR键)的形成,证实了甘露糖配体和壳聚糖的胺末端之间形成了一个连接;氨苄青霉素在1774cm-1处具有C=O的拉伸振动,三羧基苯硼酸在770cm-1和1550cm-1处的吸收带分别是硼酸和苯环的特征吸收峰,特征峰都反映在纳米硒复合颗粒中,表明三羧基苯硼酸修饰的甘露糖改性的壳聚糖已成功包覆了氨苄青霉素和硒纳米粒子;图2中B为紫外可见光谱图,硒纳米粒子和氨苄青霉素分别在300nm和240nm处具有特征峰,与纳米硒复合颗粒观察到结果相似;图2中C所示,元素分析进一步用于分析纳米硒复合颗粒的元素组成,结果表明,纳米硒复合颗粒中的硒(36.5%)和硼(11.4%)有很强的信号,分别来自纳米硒和三羧基苯硼酸,元素N(5.6%)的存在表明纳米硒复合颗粒中含有大量的氨苄青霉素,结果表明,本发明的制备方法成功制备了多功能纳米硒复合颗粒;图2中D所示,溶于PBS缓冲液中的硒纳米粒子的Zeta电位约为-21.8mV,产物二的Zeta电位变为+14.2mV,电位的变化是由于甘露糖改性的壳聚糖中氨基暴露在产物表面,纳米硒复合颗粒的Zeta电位为-10.5mV,Zeta电位变为负值,因为三羧基苯硼酸的成功连接,导致羧基暴露于纳米硒复合颗粒表面,电位交替显示每个步骤的修改成功。
图3A为实施例1中纳米硒复合颗粒的热力学稳定性;B为实施例1中纳米硒复合颗粒的动力学稳定性,通过检查纳米硒复合颗粒的聚集和沉降特性,表明了它们的热力学和动力学稳定性;如图3A所示,由于纳米硒复合颗粒的高热力学稳定性,其大小在72小时内没有实质性变化,同时,如图3B所示,纳米硒复合颗粒的透射率变化小于5%,因此它具有很高的动力学稳定性,几乎没有颗粒沉降,优异的稳定性有利于纳米硒复合颗粒的生物学应用。
图4中A为各产物与氨苄西林(30μg/mL)处理后对大肠杆菌和耐药大肠杆菌的菌落形成单位的影响;B为评估各产物与氨苄西林(30μg/mL)对大肠杆菌和耐药大肠杆菌的抑制效果。本发明采用菌落形成单位(CFU)方法评价了纳米硒复合颗粒诱导的体外抗菌活性:如图4A所示,氨苄青霉素显着抑制了大肠杆菌的生长,但对耐药大肠杆菌没有明显生长抑制作用,但是,纳米硒复合颗粒显著抑制了大肠杆菌和耐药大肠杆菌的生长;产物二和产物三在大肠杆菌和耐药大肠杆菌之间表现出显着的抗菌差异,表明三羧基苯硼酸抑制β-内酰胺酶实现了协同抗菌活性;如图4B所示,通过抑菌圈试验用于评估纳米硒复合颗粒诱导的抗菌活性,结果与CFU结果相似,纳米硒复合颗粒具有最大的抑菌圈,表明其具有最优异的抑菌活性。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种克服多重耐药细菌感染的硒纳米复合材料,其特征在于,包括纳米硒复合颗粒,所述纳米硒复合颗粒为将甘露糖改性的壳聚糖包覆至硒纳米颗粒和β-内酰胺类抗生素两者复合体的外表面所获得。
2.根据权利要求1所述的一种克服多重耐药细菌感染的硒纳米复合材料,其特征在于,所述纳米硒复合颗粒呈球型结构,内部为硒纳米颗粒和β-内酰胺类抗生素,外表面为甘露糖改性的壳聚糖,所述纳米硒复合颗粒的平均粒径为40-80nm,表面甘露糖改性的壳聚糖外壳的厚度为小于或等于10nm。
3.一种如权利要求2所述的克服多重耐药细菌感染的硒纳米复合材料在纳米抗菌材料中的应用。
4.一种克服多重耐药细菌感染的硒纳米复合材料的制备方法,其特征在于,包括以下步骤:
步骤S1:将D-甘露糖和三乙酰基硼氢化钠溶解于纯水中制得溶液,向该溶液中滴加壳聚糖溶液形成混合溶液,透析、冷冻干燥后获得甘露糖改性壳聚糖;
步骤S2:将所述甘露糖改性壳聚糖溶于乙酸溶液中,再向该溶液中缓慢加入含有亚硒酸钠、抗坏血酸、β-内酰胺类抗生素的三聚磷酸钠溶液,搅拌得到橙色溶液,橙色溶液经过离心洗涤、冷冻干燥后获得反应产物;
步骤S3:将步骤S2中所述反应产物溶于乙酸溶液中,再向溶液中加入含有三羧基苯硼酸、N-羟基琥珀酰亚胺和1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐的甲醇溶液,搅拌得到混合溶液,混合溶液经过离心洗涤、冷冻干燥后获得纳米硒复合颗粒。
5.根据权利要求4所述的一种克服多重耐药细菌感染的硒纳米复合材料的制备方法,其特征在于,所述步骤S1中壳聚糖溶液制作步骤为:将壳聚糖置于体积浓度1%乙酸溶液中,超声搅拌直至完全溶解,获得壳聚糖溶液。
6.根据权利要求4所述的一种克服多重耐药细菌感染的硒纳米复合材料的制备方法,其特征在于,所述步骤S1中的壳聚糖脱乙酰度大于等于95%,粘度为100-200mpa.s。
7.根据权利要求4所述的一种克服多重耐药细菌感染的硒纳米复合材料的制备方法,其特征在于,所述步骤S1中的透析包括:将混合溶液加入透析袋中,同时给与150rpm的缓慢搅拌,采用超纯水透析72h,每隔24h更换一次纯水。
8.根据权利要求7所述的一种克服多重耐药细菌感染的硒纳米复合材料的制备方法,其特征在于,所述透析袋截留分子量为8-14kDa。
9.根据权利要求4所述的一种克服多重耐药细菌感染的硒纳米复合材料的制备方法,其特征在于,所述步骤S2中的橙色溶液制作步骤为:将含有亚硒酸钠、抗坏血酸、β-内酰胺类抗生素的三聚磷酸钠溶液在室温下滴加甘露糖改性壳聚糖溶液中,搅拌速度为300-500rpm,滴加速度1.5mL/min。
10.根据权利要求4所述的一种克服多重耐药细菌感染的硒纳米复合材料的制备方法,其特征在于,所述步骤S3中混合溶液的制作步骤为:将三羧基苯硼酸和N-羟基琥珀酰亚胺溶于甲醇溶液中,在室温下搅拌30min得到混合物,然后将1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐加入到混合物中搅拌,然后将该混合物加入到反应产物溶液中在室温下搅拌24h。
CN202011279308.6A 2020-11-16 2020-11-16 一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法和应用 Active CN112472716B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011279308.6A CN112472716B (zh) 2020-11-16 2020-11-16 一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011279308.6A CN112472716B (zh) 2020-11-16 2020-11-16 一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112472716A true CN112472716A (zh) 2021-03-12
CN112472716B CN112472716B (zh) 2022-02-25

Family

ID=74931080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011279308.6A Active CN112472716B (zh) 2020-11-16 2020-11-16 一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112472716B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549506A (zh) * 2021-09-01 2021-10-26 高梵(浙江)信息技术有限公司 一种广谱灭菌型羽绒服清洗液
CN113563986A (zh) * 2021-09-01 2021-10-29 高梵(浙江)信息技术有限公司 一种具有抗污功能的羽绒服清洗剂
CN113647395A (zh) * 2021-08-23 2021-11-16 高梵(浙江)信息技术有限公司 一种去除羽绒衣物异味的除味剂及其制备方法
CN113698999A (zh) * 2021-09-01 2021-11-26 高梵(浙江)信息技术有限公司 一种抗菌羽绒面料的免水洗清洁液及其制备方法
CN114223732A (zh) * 2021-12-29 2022-03-25 安徽省纽斯康生物工程有限公司 一种预防、调理三高的亚麻酸型食用油及其制备方法和应用
CN114259052A (zh) * 2021-12-29 2022-04-01 安徽省纽斯康生物工程有限公司 一种降脂降糖的亚麻籽油膳食粉及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110393725A (zh) * 2018-04-20 2019-11-01 国家纳米科学中心 具有革兰氏选择性的苯硼酸及其衍生物修饰的金纳米颗粒、其制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110393725A (zh) * 2018-04-20 2019-11-01 国家纳米科学中心 具有革兰氏选择性的苯硼酸及其衍生物修饰的金纳米颗粒、其制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARYAM ALSADAT MEHRBAKHSH BANDARI ETAL: "Antibacterial Effect of Synthetized Selenium Nanoparticles and Ampicillin-Selenium Nanoparticles against Clinical Isolates of Methicillin Resistant Staphylococcus aureus", 《IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY》 *
SADAF EJAZ ETAL: "Mannose functionalized chitosan nanosystems for enhanced antimicrobial activity against multidrug resistant pathogens", 《POLYMER TESTING》 *
童春义: "基于硒纳米颗粒的新型生物材料研制与表征方法研究", 《中国博士学位论文全文数据库工程科技I辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113647395A (zh) * 2021-08-23 2021-11-16 高梵(浙江)信息技术有限公司 一种去除羽绒衣物异味的除味剂及其制备方法
CN113647395B (zh) * 2021-08-23 2023-03-07 高梵(浙江)信息技术有限公司 一种去除羽绒衣物异味的除味剂及其制备方法
CN113549506A (zh) * 2021-09-01 2021-10-26 高梵(浙江)信息技术有限公司 一种广谱灭菌型羽绒服清洗液
CN113563986A (zh) * 2021-09-01 2021-10-29 高梵(浙江)信息技术有限公司 一种具有抗污功能的羽绒服清洗剂
CN113698999A (zh) * 2021-09-01 2021-11-26 高梵(浙江)信息技术有限公司 一种抗菌羽绒面料的免水洗清洁液及其制备方法
CN113698999B (zh) * 2021-09-01 2023-09-12 高梵(浙江)信息技术有限公司 一种抗菌羽绒面料的免水洗清洁液及其制备方法
CN114223732A (zh) * 2021-12-29 2022-03-25 安徽省纽斯康生物工程有限公司 一种预防、调理三高的亚麻酸型食用油及其制备方法和应用
CN114259052A (zh) * 2021-12-29 2022-04-01 安徽省纽斯康生物工程有限公司 一种降脂降糖的亚麻籽油膳食粉及其制备方法

Also Published As

Publication number Publication date
CN112472716B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN112472716B (zh) 一种克服多重耐药细菌感染的硒纳米复合材料及其制备方法和应用
Teimouri et al. Anti-Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain
Wiarachai et al. Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material
CN107778497B (zh) 一种按需释放的复合共价水凝胶及其制备方法和应用
Shaaban et al. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates
CN110393725B (zh) 具有革兰氏选择性的苯硼酸及其衍生物修饰的金纳米颗粒、其制备方法及应用
Kedir et al. Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review
Samrot et al. Chelators influenced synthesis of chitosan–carboxymethyl cellulose microparticles for controlled drug delivery
CN111658668B (zh) 功能性抗菌组合药物及应用
Rajivgandhi et al. Anti-ESBL investigation of chitosan/silver nanocomposites against carbapenem resistant Pseudomonas aeruginosa
Sathiyaseelan et al. Ampicillin-resistant bacterial pathogens targeted chitosan nano-drug delivery system (CS-AMP-P-ZnO) for combinational antibacterial treatment
Mohammed et al. Exploring the applications of hyaluronic acid‐based nanoparticles for diagnosis and treatment of bacterial infections
Alamdaran et al. In-vitro study of the novel nanocarrier of chitosan-based nanoparticles conjugated HIV-1 P24 protein-derived peptides
Kadhum et al. The synergistic effects of chitosan-alginate nanoparticles loaded with doxycycline antibiotic against multidrug resistant proteus mirabilis, Escherichia coli and enterococcus faecalis
Huang et al. Chiral active β-Glucan nanoparticles for synergistic delivery of doxorubicin and immune potentiation
Rauta et al. Enhanced efficacy of clindamycin hydrochloride encapsulated in PLA/PLGA based nanoparticle system for oral delivery
Zhao et al. One-step synthesis of blue–green luminescent carbon dots by a low-temperature rapid method and their high-performance antibacterial effect and bacterial imaging
Kumaran et al. Chitin derivatives of NAG and chitosan nanoparticles from marine disposal yards and their use for economically feasible fish feed development
Vyas et al. Mannosylated liposomes for bio-film targeting
CN115093618B (zh) 一种自组装氧化壳聚糖/绿原酸复合纳米微粒及其制备方法
CN112111810B (zh) 一种聚γ-谷氨酸/壳聚糖/纳米银抗菌复合纤维的制备方法
CN113951276B (zh) 一种碳点偶联酶复合物及其制备方法和应用
CN101696278A (zh) 水溶性自组装壳聚糖纳米颗粒的制备方法和该壳聚糖纳米颗粒的应用
CN108619510A (zh) 一种用于光动力抗菌的eps-rb纳米颗粒的合成方法
de Oliveira et al. An overview of the antimicrobial activity of polymeric nanoparticles against Enterobacteriaceae

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant