CN112466955B - Thin-layer SOI-LDMOS device with in-vivo conductive channel - Google Patents
Thin-layer SOI-LDMOS device with in-vivo conductive channel Download PDFInfo
- Publication number
- CN112466955B CN112466955B CN202011407861.3A CN202011407861A CN112466955B CN 112466955 B CN112466955 B CN 112466955B CN 202011407861 A CN202011407861 A CN 202011407861A CN 112466955 B CN112466955 B CN 112466955B
- Authority
- CN
- China
- Prior art keywords
- region
- oxide layer
- contact
- soi
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001727 in vivo Methods 0.000 title claims 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 96
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 48
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 48
- 239000000758 substrate Substances 0.000 claims description 18
- 239000012535 impurity Substances 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 2
- 229920005591 polysilicon Polymers 0.000 claims description 2
- 241001354791 Baliga Species 0.000 abstract description 6
- 230000001965 increasing effect Effects 0.000 abstract description 6
- 238000012546 transfer Methods 0.000 abstract description 5
- 238000005530 etching Methods 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 94
- 230000015556 catabolic process Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000005253 cladding Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
- H10D30/657—Lateral DMOS [LDMOS] FETs having substrates comprising insulating layers, e.g. SOI-LDMOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明涉及一种具有体内导电沟道的薄层SOI‑LDMOS器件,属于半导体功率器件技术领域。该器件在传统薄层SOI‑LDMOS器件的基础上,将表面栅极转移到埋氧层中形成体内栅极,在P‑body下表面形成体内导电沟道。同时,在器件的漂移区刻蚀并填充二氧化硅,该器件具有以下优点:在正向导通时,体内栅电压对电流的控制能力有很大的提高,器件的跨导gmMAX相比与传统器件、传统超结器件分别提高了298.7%、87.1%,进一步在漂移区刻蚀并填充二氧化硅能提高漂移区的掺杂浓度进而减小器件的比导通电阻,最终提高器件的Baliga优值FOM。
The invention relates to a thin-layer SOI-LDMOS device with an internal conductive channel, belonging to the technical field of semiconductor power devices. Based on the traditional thin-layer SOI-LDMOS device, the device transfers the surface gate to the buried oxide layer to form the internal gate, and forms the internal conductive channel on the lower surface of the P-body. At the same time, silicon dioxide is etched and filled in the drift region of the device. The device has the following advantages: in the forward conduction, the gate voltage in the body can greatly improve the current control ability, and the transconductance gmMAX of the device is compared with The traditional devices and traditional superjunction devices are increased by 298.7% and 87.1% respectively. Further etching and filling silicon dioxide in the drift region can increase the doping concentration of the drift region and reduce the specific on-resistance of the device, and finally improve the Baliga of the device. Figure of merit FOM.
Description
技术领域technical field
本发明属于半导体功率器件技术领域,涉及一种具有体内导电沟道的薄层SOI-LDMOS器件。The invention belongs to the technical field of semiconductor power devices, and relates to a thin-layer SOI-LDMOS device with an internal conductive channel.
背景技术Background technique
SOI技术可通过在器件中引入介质层来实现功率集成电路的介质隔离。相比于体硅技术,SOI技术集成度更高、寄生电容极更小和隔离性能更好。SOI技术可以大大提高集成电路的可靠性,在未来制造高集成度、高可靠性、高速度和低功耗芯片的过程中将成为关键性技术,特别是对功率集成电路。基于绝缘体上硅技术的LDMOS器件(SOI-LDMOS:Si-On-InsulatorLateralDouble-DiffusedMetal-Oxide-Semiconductor)与其他的大多数新型有源器件如HEMT、HBT等相比,拥有更好的CMOS工艺兼容性以及方便集成的特点,且本身具有高功率、高增益、高线性度、高开关特性,以及有良好的隔离性能、优越的抗辐照能力和可靠性,故受到行业工作者的广泛关注,所以以SOI-LDMOS为对象的研究具有十分特殊的意义。其主要应用于:智能功率集成电路(SmartPowerIntegratedCiruit,SPIC)、射频集成电路(RadioFrequencyIntegratedCircuit,RFIC)、高压集成电路(HighVoltageIntegratedCircuit,HVIC)。SOI technology can achieve dielectric isolation of power integrated circuits by introducing a dielectric layer into the device. Compared with bulk silicon technology, SOI technology has higher integration, extremely smaller parasitic capacitance and better isolation performance. SOI technology can greatly improve the reliability of integrated circuits, and will become a key technology in the process of manufacturing high-integration, high-reliability, high-speed and low-power chips in the future, especially for power integrated circuits. LDMOS devices based on silicon-on-insulator technology (SOI-LDMOS: Si-On-Insulator Lateral Double-Diffused Metal-Oxide-Semiconductor) have better CMOS process compatibility than most other new active devices such as HEMT, HBT, etc. And the characteristics of convenient integration, and it has high power, high gain, high linearity, high switching characteristics, as well as good isolation performance, superior radiation resistance and reliability, so it has been widely concerned by industry workers, so The research on SOI-LDMOS has a very special significance. It is mainly used in: smart power integrated circuit (SmartPowerIntegratedCircuit, SPIC), radio frequency integrated circuit (RadioFrequencyIntegratedCircuit, RFIC), high voltage integrated circuit (HighVoltageIntegratedCircuit,HVIC).
SOI横向功率器件的耐压能力由横向击穿电压与纵向击穿电压较小者决定。一般增大器件的横向长度和降低漂移区的掺杂浓度,可以提高器件的横向耐压能力,但同时会增大器件的导通电阻,从而导致器件的正向导通性能降低。然而,由于SOI器件的埋氧层与顶层硅不能太厚,如果埋氧层与顶层硅的厚度太厚,会导致器件的制造工艺难度增大和器件自热现象加重,以及散热等问题,因此,SOI器件的埋氧层与顶层硅不能太厚。当SOI器件的埋氧层与顶层硅太薄时,会导致器件的纵向耐压能力降低,是因为埋氧层会阻止器件的耗尽区扩展到衬底,从而使衬底不会进行耐压。该器件的主要矛盾是比导通电阻Ron,sp与击穿电压BV:Ron,sp∝BV2.5。通过提高漂移区N型层的掺杂浓度进而降低器件的比导通电阻,但同时,会导致器件的击穿电压急剧降低;提高器件的击穿电压,同时会使器件的比导通电阻增大。为了更好衡量该器件的综合性能指标,使用Baliga优值评价器件的优值FOM(figureofmerit)已经成为一种很重要的性能指标,即FOM=BV2/Ron,sp,Baliga优值FOM越大表示器件的综合性能也就越好。The withstand voltage capability of SOI lateral power devices is determined by the smaller of the lateral breakdown voltage and the longitudinal breakdown voltage. Generally, increasing the lateral length of the device and reducing the doping concentration of the drift region can improve the lateral withstand voltage capability of the device, but at the same time increase the on-resistance of the device, thereby reducing the forward conduction performance of the device. However, since the buried oxide layer and the top silicon of the SOI device cannot be too thick, if the thickness of the buried oxide layer and the top silicon is too thick, the manufacturing process of the device will be more difficult, the self-heating phenomenon of the device will be aggravated, and heat dissipation and other problems will be caused. Therefore, The buried oxide and top silicon layers of SOI devices should not be too thick. When the buried oxide layer and the top silicon of the SOI device are too thin, the vertical withstand voltage capability of the device will be reduced, because the buried oxide layer will prevent the depletion region of the device from extending to the substrate, so that the substrate will not withstand voltage. . The main contradiction of this device is the specific on-resistance Ron,sp and the breakdown voltage BV: Ron,sp∝BV 2.5 . By increasing the doping concentration of the N-type layer in the drift region, the specific on-resistance of the device is reduced, but at the same time, the breakdown voltage of the device will drop sharply; increasing the breakdown voltage of the device will increase the specific on-resistance of the device at the same time. big. In order to better measure the comprehensive performance indicators of the device, the use of Baliga figure of merit to evaluate the figure of merit FOM (figure of merit) of the device has become a very important performance indicator, that is, FOM=BV 2 /Ron,sp, the larger the Baliga figure of merit FOM It means that the overall performance of the device is better.
为了解决上述矛盾,本发明提出了一种具有体内导电沟道的薄层SOI-LDMOS器件,该器件通过在漂移区引入二氧化硅介质区,能提高漂移区N型层的掺杂浓度,从而降低器件的比导通电阻。与此同时,将器件的表面栅极转移到埋氧层形成体内栅极,使电子的注入能力有很大的提升,从而增强器件栅极电压对电流的控制能力。In order to solve the above contradiction, the present invention proposes a thin-layer SOI-LDMOS device with an internal conductive channel, which can increase the doping concentration of the N-type layer in the drift region by introducing a silicon dioxide dielectric region into the drift region, thereby Reduce the specific on-resistance of the device. At the same time, the surface gate of the device is transferred to the buried oxide layer to form the internal gate, which greatly improves the injection ability of electrons, thereby enhancing the control ability of the gate voltage of the device on the current.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种具有体内导电沟道的薄层SOI-LDMOS器件,能够优化漂移区的电场分布,提高漂移区N型层掺杂浓度进而降低器件的比导通电阻,同时,通过体内栅极电压控制沟道的开启,使电子的注入能力增强,从而提高栅极电压对电流的控制能力。In view of this, the purpose of the present invention is to provide a thin-layer SOI-LDMOS device with a conductive channel in the body, which can optimize the electric field distribution in the drift region, increase the doping concentration of the N-type layer in the drift region, and reduce the specific on-resistance of the device. At the same time, the opening of the channel is controlled by the gate voltage in the body, so that the injection ability of electrons is enhanced, thereby improving the control ability of the gate voltage on the current.
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种具有体内导电沟道的薄层SOI-LDMOS器件,包括源极接触区(1)、源极P+区(2)、N型漂移区(3)、场氧化层(4)、二氧化硅介质区(5)、漏极接触区(6)、漏极N+区(7)、埋氧层(8)、衬底(9)、体内栅氧化层(10)、P-body(11)、体内栅接触区(12)和源极N+区(13)。所述源极接触区(1)位于源极N+区(13)、源极P+区(2)的上方,源极接触区(1)的右侧紧邻场氧化层(4)的左侧;所述源极P+区(2)的上侧与源极接触区(1)的下侧接壤,源极P+区(2)的下侧、左侧与源极N+区(13)接触,同时,源极P+区(2)右侧与P-body(11)左侧的一部分接触;所述N型漂移区(3)的上侧紧邻二氧化硅介质区(5)的下侧,其左侧与P-body(11)的右下侧接触,右侧与漏极N+区(7)的左下侧相邻,下侧与埋氧层(8)上侧接触;所述场氧化层(4)位于P-body(11)和二氧化硅介质区(5)的上侧,右侧紧邻漏极接触区(6)的左侧,左侧与源极接触区(1)的右侧接触;所述二氧化硅介质区(5)下侧与N型漂移区(3)的上侧接触,左侧与P-body(11)右上侧相邻,右侧紧邻漏极N+区(7)的左上侧,同时,上侧与场氧化层(4)的下侧接触;所述漏极接触区(6)位于漏极N+区(7)的正上方,漏极接触区(6)左侧紧邻场氧化层(4)的右侧;所述漏极N+区(7)位于漏极接触区(6)的正下方,同时,其左边与二氧化硅介质区(5)和N型漂移区(3)的右边接触,漏极N+区(7)的下边与埋氧层(8)的上右边相邻;所述埋氧层(8)下边紧邻衬底(9)的上边,埋氧层(8)的上边与漏极N+区(7)、N型漂移区(3)下边相邻,同时,埋氧层(8)的上左边紧邻体内栅接触区(12)的下边,左上边与体内栅氧化层(10)、体内栅接触区(12)右边接触;所述衬底(9)上侧与埋氧层(8)下侧接触,其位于器件的底部;所述体内栅氧化层(10)的下边与体内栅接触区(12)的上边接触,其右侧与埋氧层(8)接触,同时,体内栅氧化层(10)的上边与源极N+区(13)、P-body(11)的下边接触;所述P-body(11)的左侧与源极N+区(13)、源极P+区(2)的右侧接触,同时,其上侧紧邻场氧化层(4)的下左侧,下边与体内栅氧化层(10)的上右边接触;所述体内栅接触区(12)位于埋氧层(8)的上左边和体内栅氧化层(10)的下边,其右侧与埋氧层(8)接触。所述源极N+区(13)的上左边与源极接触区(1)的下边接触,源极N+区(13)的下边与体内栅氧化层(10)的上边接触,其形状为L型,同时,源极N+区(13)最右侧与P-body(11)左下侧接触,以及源极N+区(13)还与源极P+区(2)的下侧、左侧接触。A thin-layer SOI-LDMOS device with an internal conductive channel, comprising a source contact region (1), a source P+ region (2), an N-type drift region (3), a field oxide layer (4), silicon dioxide Dielectric region (5), drain contact region (6), drain N+ region (7), buried oxide layer (8), substrate (9), internal gate oxide layer (10), P-body (11), Body gate contact region (12) and source N+ region (13). The source contact region (1) is located above the source N+ region (13) and the source P+ region (2), and the right side of the source contact region (1) is immediately adjacent to the left side of the field oxide layer (4); The upper side of the source P+ region (2) borders the lower side of the source contact region (1), and the lower and left sides of the source P+ region (2) are in contact with the source N+ region (13). The right side of the polar P+ region (2) is in contact with a part of the left side of the P-body (11); the upper side of the N-type drift region (3) is immediately adjacent to the lower side of the silicon dioxide dielectric region (5), and the left side of the N-type drift region (3) is adjacent to the lower side of the silicon dioxide dielectric region (5). The lower right side of the P-body (11) is in contact, the right side is adjacent to the lower left side of the drain N+ region (7), and the lower side is in contact with the upper side of the buried oxide layer (8); the field oxide layer (4) is located in The upper side of the P-body (11) and the silicon dioxide dielectric region (5), the right side is immediately adjacent to the left side of the drain contact region (6), and the left side is in contact with the right side of the source contact region (1); the The lower side of the silicon dioxide dielectric region (5) is in contact with the upper side of the N-type drift region (3), the left side is adjacent to the upper right side of the P-body (11), and the right side is adjacent to the upper left side of the drain N+ region (7). , at the same time, the upper side is in contact with the lower side of the field oxide layer (4); the drain contact region (6) is located directly above the drain N+ region (7), and the left side of the drain contact region (6) is adjacent to the field oxide layer The right side of layer (4); the drain N+ region (7) is located directly below the drain contact region (6), while the left side is connected to the silicon dioxide dielectric region (5) and the N-type drift region (3) The right side of the drain N+ region (7) is in contact with the upper right side of the buried oxide layer (8); the lower side of the buried oxide layer (8) is close to the upper side of the substrate (9), and the buried oxide layer (8) The upper side of the drain electrode is adjacent to the drain N+ region (7) and the lower side of the N-type drift region (3). At the same time, the upper left side of the buried oxide layer (8) is adjacent to the lower side of the body gate contact region (12), and the upper left side is adjacent to the body gate oxide layer. The layer (10) is in contact with the right side of the in-body gate contact region (12); the upper side of the substrate (9) is in contact with the lower side of the buried oxide layer (8), which is located at the bottom of the device; the in-body gate oxide layer (10) The lower side of the gate oxide layer (10) is in contact with the upper side of the in-body gate contact region (12), and the right side is in contact with the buried oxide layer (8). 11) bottom contact; the left side of the P-body (11) is in contact with the source N+ region (13) and the right side of the source P+ region (2), and at the same time, its upper side is adjacent to the field oxide layer (4) The lower left side is in contact with the upper right side of the internal gate oxide layer (10); the internal gate contact region (12) is located on the upper left side of the buried oxide layer (8) and the lower side of the internal gate oxide layer (10), which The right side is in contact with the buried oxide layer (8). The upper left side of the source N+ region (13) is in contact with the lower side of the source contact region (1), and the lower side of the source N+ region (13) is in contact with the upper side of the internal gate oxide layer (10), and its shape is L-shaped At the same time, the rightmost side of the source N+ region (13) is in contact with the lower left side of the P-body (11), and the source N+ region (13) is also in contact with the lower and left sides of the source P+ region (2).
可选的,所述二氧化硅介质区(5)的厚度为0.2~0.8μm,能够调节。Optionally, the thickness of the silicon dioxide dielectric region (5) is 0.2-0.8 μm, which can be adjusted.
可选的,所述体内栅接触区(12)为掺杂的多晶硅和金属。Optionally, the in-body gate contact region (12) is doped polysilicon and metal.
可选的,所述N型漂移区(3)掺入N型杂质,其掺杂浓度范围为5×1015~5×1016cm-3。Optionally, the N-type drift region (3) is doped with N-type impurities, and the doping concentration thereof ranges from 5×10 15 to 5×10 16 cm −3 .
本发明的有益效果在于:本发明所提出的一种具有体内沟道的薄层SOI-LDMOS器件,将器件的表面栅极转移至埋氧层形成体内栅极,同时,在N型漂移区中通过离子刻蚀和介质填充形成二氧化硅介质区。首先,在正向导通时,体内栅极使电子注入N型漂移区能力有很大的提升,从而提高栅极电压对电流的控制能力(跨导gm增大);二氧化硅介质区能有效提高N型漂移区的掺杂浓度,使N型漂移区的导通电阻减小,从而优化器件的正向导通性能。其次,在击穿时,二氧化硅介质区可以优化N型漂移区的电场分布,从而使N型漂移区能够完全耗尽。综上所述,将表面栅极转移至埋氧层形成体内栅极并在漂移区刻蚀填充二氧化硅,提高了器件的Baliga优值FOM。The beneficial effect of the present invention is that: for a thin-layer SOI-LDMOS device with an internal channel proposed by the present invention, the surface gate of the device is transferred to the buried oxide layer to form the internal gate, and at the same time, in the N-type drift region Silicon dioxide dielectric regions are formed by ion etching and dielectric filling. First of all, in the forward conduction, the ability of the internal gate to inject electrons into the N-type drift region is greatly improved, thereby improving the control ability of the gate voltage on the current (the transconductance gm increases); the silicon dioxide dielectric region can The doping concentration of the N-type drift region is effectively increased, so that the on-resistance of the N-type drift region is reduced, thereby optimizing the forward conduction performance of the device. Second, during breakdown, the silicon dioxide dielectric region can optimize the electric field distribution of the N-type drift region, so that the N-type drift region can be completely depleted. To sum up, transferring the surface gate to the buried oxide layer to form the bulk gate and etching and filling silicon dioxide in the drift region improves the Baliga figure of merit FOM of the device.
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。Other advantages, objects, and features of the present invention will be set forth in the description that follows, and will be apparent to those skilled in the art based on a study of the following, to the extent that is taught in the practice of the present invention. The objectives and other advantages of the present invention may be realized and attained by the following description.
附图说明Description of drawings
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be preferably described in detail below with reference to the accompanying drawings, wherein:
图1为本发明实施例1的薄层SOI-LDMOS器件的结构示意图;1 is a schematic structural diagram of a thin-layer SOI-LDMOS device according to
图2为本发明实施例2的薄层SOI-LDMOS器件的结构示意图;2 is a schematic structural diagram of a thin-layer SOI-LDMOS device according to
图3为本发明实施例3的薄层SOI-LDMOS器件的结构示意图;3 is a schematic structural diagram of a thin-layer SOI-LDMOS device according to
图4为本发明提供的新结构SOI-LDMOS器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件在正向导通下转移特性曲线与跨导对比图;4 is a comparison diagram of transfer characteristic curve and transconductance under forward conduction of a new structure SOI-LDMOS device, a traditional SOI-LDMOS device and a traditional superjunction SOI-LDMOS device provided by the present invention;
图5为本发明提供的新结构SOI-LDMOS器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件在正向导通下输出特性曲线对比图;5 is a comparison diagram of output characteristic curves of a new structure SOI-LDMOS device, a traditional SOI-LDMOS device and a traditional superjunction SOI-LDMOS device provided by the present invention under forward conduction;
图6为本发明提供的新结构SOI-LDMOS器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件开启电压对比图;FIG. 6 is a comparison diagram of the turn-on voltage of a new structure SOI-LDMOS device, a traditional SOI-LDMOS device and a traditional super-junction SOI-LDMOS device provided by the present invention;
图7为本发明提供的新结构SOI-LDMOS器件在N型漂移区掺杂浓度为1.2×1016cm-3、1.4×1016cm-3、1.6×1016cm-3、1.8×1016cm-3、2.0×1016cm-3和2.2×1016cm-3时,击穿电压BV和比导通电阻Ron,sp的变化曲线;7 shows the SOI-LDMOS device with the new structure provided by the present invention in the N-type drift region with the doping concentrations of 1.2×10 16 cm -3 , 1.4×10 16 cm -3 , 1.6×10 16 cm -3 , 1.8×10 16 Variation curves of breakdown voltage BV and specific on-resistance Ron,sp at cm -3 , 2.0×10 16 cm -3 and 2.2×10 16 cm -3 ;
图8为本发明提供的新结构SOI-LDMOS器件在二氧化硅介区厚度为为0.4μm、0.5μm、0.6μm、0.7μm和0.8μm时,击穿电压BV和比导通电阻Ron,sp的变化曲线;Figure 8 shows the breakdown voltage BV and the specific on-resistance Ron,sp of the SOI-LDMOS device with the new structure provided by the present invention when the thickness of the silicon dioxide interposer is 0.4 μm, 0.5 μm, 0.6 μm, 0.7 μm and 0.8 μm the change curve;
图9为本发明提供的新结构SOI-LDMOS器件和传统SOI-LDMOS器件、传统超结SOI-LDMOS器件在正向导通状态下的电流线方向图;(a)为新结构SOI-LDMOS;(b)为传统SOI-LDMOS;(c)为传统超结SOI-LDMOS;9 is the current line pattern of the new structure SOI-LDMOS device provided by the present invention, the traditional SOI-LDMOS device, and the traditional superjunction SOI-LDMOS device in the forward conduction state; (a) is the new structure SOI-LDMOS; ( b) is a traditional SOI-LDMOS; (c) is a traditional super-junction SOI-LDMOS;
图10为本发明提供的新结构SOI-LDMOS器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件在击穿状态下Y=0.7μm处二维电场强度对比图;10 is a comparison diagram of the two-dimensional electric field intensity at Y=0.7 μm in the breakdown state of the new structure SOI-LDMOS device, the traditional SOI-LDMOS device and the traditional superjunction SOI-LDMOS device provided by the present invention;
图11为本发明提供的新结构SOI-LDMOS器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件在击穿状态下等势线分布图;(a)为新结构SOI-LDMOS;(b)为传统SOI-LDMOS;(c)为传统超结SOI-LDMOS;FIG. 11 is a distribution diagram of equipotential lines in a breakdown state of a new structure SOI-LDMOS device, a traditional SOI-LDMOS device and a traditional superjunction SOI-LDMOS device provided by the present invention; (a) is a new structure SOI-LDMOS; (b) ) is a traditional SOI-LDMOS; (c) is a traditional super-junction SOI-LDMOS;
图12为本发明工艺流程图;(a)为刻蚀,干氧氧化,填充形成沟槽栅极;(b)为气相外延,离子注入;(c)为淀积SiO2保护层;(d)为淀积金属接触。12 is a process flow diagram of the present invention; (a) is etching, dry oxygen oxidation, filling to form trench gates; (b) is vapor phase epitaxy, ion implantation; (c) is deposition of SiO 2 protective layer; (d) ) is the deposited metal contact.
附图标记:源极接触区1、源极P+区2、N型漂移区3、场氧化层4、二氧化硅介质区5、漏极接触区6、漏极N+区7、埋氧层8、衬底9、体内栅氧化层10、P-body11、体内栅接触区12和源极N+区13。Reference numerals:
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that the drawings provided in the following embodiments are only used to illustrate the basic idea of the present invention in a schematic manner, and the following embodiments and features in the embodiments can be combined with each other without conflict.
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。Among them, the accompanying drawings are only used for exemplary description, and represent only schematic diagrams, not physical drawings, and should not be construed as limitations of the present invention; in order to better illustrate the embodiments of the present invention, some parts of the accompanying drawings will be omitted, The enlargement or reduction does not represent the size of the actual product; it is understandable to those skilled in the art that some well-known structures and their descriptions in the accompanying drawings may be omitted.
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。The same or similar numbers in the drawings of the embodiments of the present invention correspond to the same or similar components; in the description of the present invention, it should be understood that if there are terms “upper”, “lower”, “left” and “right” , "front", "rear" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must be It has a specific orientation, is constructed and operated in a specific orientation, so the terms describing the positional relationship in the accompanying drawings are only used for exemplary illustration, and should not be construed as a limitation of the present invention. situation to understand the specific meaning of the above terms.
实施例1:Example 1:
如图1所示,一种具有体内沟道的薄层SOI-LDMOS器件,其特征在于,该器件结构主要包括源极接触区1、源极P+区2、N型漂移区3、场氧化层4、二氧化硅介质区5、漏极接触区6、漏极N+区7、埋氧层8、衬底9、体内栅氧化层10、P-body11、体内栅接触区12和源极N+区13。As shown in FIG. 1, a thin-layer SOI-LDMOS device with an internal channel is characterized in that the device structure mainly includes a
所述源极接触区1位于源极N+区13、源极P+区2的上方,源极接触区1的右侧紧邻场氧化层4的左侧;其厚度为0.4μm,长度为0.5μm。The
所述源极P+区2的上边与源极接触区1的下边接触,源极P+区2的下侧、左侧与源极N+区13接触,同时,源极P+区2右边与P-body11左上边接触;其厚度为0.2μm,长度为0.5μm,掺入P型杂质浓度为1.0×1020cm-3。The upper side of the
所述N型漂移区3的上侧紧邻二氧化硅介质区5的下侧,其左侧与P-body11的右下侧接触,右侧与漏极N+区7的左下侧相邻;其厚度为0.6μm,长度为7.0μm,掺入N型杂质浓度为1.7×1016cm-3。The upper side of the N-
所述场氧化层4位于P-body11和二氧化硅介质区5的上侧,右侧紧邻漏极接触区6的左侧,左侧与源极接触区1的右侧接触;其厚度为0.2μm,长度为8.0μm。The
所述二氧化硅介质区5下侧与N型漂移区3的上侧接触,左侧与P-body11右上侧相邻,右侧紧邻漏极N+区7的左上侧,同时,上侧与场氧化层4下侧接触;其厚度为0.7μm,长度为7.0μm。The lower side of the silicon
所述漏极接触区6位于漏极N+区7的正上方,漏极接触区6左侧紧邻场氧化层4的右侧;其厚度为0.2μm,长度为1.0μm。The
所述漏极N+区7位于漏极接触区6的正下方,同时,其左边与二氧化硅介质区5、N型漂移区3的右边接触,漏极N+区7的下边与埋氧层8的上右边相邻;其厚度为1.0μm,长度为1.0μm,掺入N型杂质浓度为1.0×1020cm-3。The
所述埋氧层8下边紧邻衬底9的上边,埋氧层8的上边与漏极N+区7下边、N型漂移区3下边相邻,同时,埋氧层8的上左边紧邻体内栅接触区12的下边,左上边与体内栅氧化层10、体内栅接触区12右边接触;其厚度为2.0μm,长度为10.0μm。The lower side of the buried
所述衬底9上侧与埋氧层8下侧接触,其位于器件的底部;其厚度为2.0μm,长度为10.0μm。The upper side of the
所述体内栅氧化层10的下边与体内栅接触区12的上边接触,其右侧与埋氧层8接触,同时,体内栅氧化层10的上边与源极N+区13、P-body11的下边接触;其厚度为0.1μm,长度为2.0μm。The lower side of the in-body
所述P-body11的左侧与源极N+区13、源极P+区2的右侧接触,同时,其上边紧邻场氧化层4的下侧,下边与体内栅氧化层10的上右边接触;其厚度为1.0μm,长度为1.0μm,掺入P型杂质浓度为1.0×1017cm-3。The left side of the P-
所述体内栅接触区12位于埋氧层8的上左边和源极N+区13的下边,其右侧还与埋氧层8接触;其厚度为0.2μm,长度为2.0μm的多晶硅,掺入N型杂质浓度为5.0×1018cm-3。The body
所述源极N+区13的上左边与源极接触区1的下边接触,源极N+区13的下边与体内栅接触区12的上边接触,其形状为L型,同时,源极N+区13最右侧与P-body11左下侧接触,以及源极N+区13还与源极P+区2的下侧和左侧相邻。其上边长0.5μm,下边长为1.0μm,厚度为1.0μm,掺入N型杂质浓度为1.0×1020cm-3。The upper left side of the
实施例2:Example 2:
一种具有体内沟道的薄层SOI-LDMOS器件,其特征在于,该器件结构主要包括源极接触区1、源极P+区2、N型漂移区3、场氧化层4、P型覆盖层5、漏极接触区6、漏极N+区7、埋氧层8、衬底9、体内栅氧化层10、P-body11、体内栅接触区12和源极N+区13。A thin-layer SOI-LDMOS device with an internal channel, characterized in that the device structure mainly includes a
在实施例1的结构基础之上,将二氧化硅介质区5替换成P型覆盖层5,P型覆盖层的下侧、左侧和右侧均位于N型漂移区3内,不和其他部分相邻,左侧距离N型漂移区的左侧为1.0μm,右侧距离N型漂移区的右侧为1.0μm,其上边与场氧化层4下边相邻;P型覆盖层5长度为5μm,厚度为0.5μm,掺入P型杂质浓度为2.0×1016cm-3。On the basis of the structure of Example 1, the silicon
实施例3:Example 3:
一种具有体内沟道的薄层SOI-LDMOS器件,其特征在于,该器件结构主要包括源极接触区1、源极P+区2、N型漂移区3、场氧化层4、二氧化硅介质区5、漏极接触区6、漏极N+区7、埋氧层8、衬底9、体内栅氧化层10、P-body11、体内栅接触区12、源极N+区13和P型覆盖层14。A thin-layer SOI-LDMOS device with an internal channel is characterized in that the device structure mainly includes a
在实施例1的结构基础之上,将二氧化硅介质区5的长度缩短,使二氧化硅介质区5的下边与N型漂移区3上侧接触,右侧与P型覆盖层14的左侧接触,上侧与场氧化层4的下侧接触,左侧与P-body11的右侧接触,二氧化硅介质区5的长度为3.0μm,厚度为0.5μm。P型覆盖层14的左侧与二氧化硅介质区5的右侧接触,上侧与场氧化层4的下侧接触,右侧与漏极N+区7的左侧接触,下侧与N型漂移区3的上侧接触,P型覆盖层14的长度为4.0μm,厚度为0.5μm,掺入P型杂质浓度为2.0×1016cm-3。On the basis of the structure of Example 1, the length of the silicon
图4是在室温等于300k和漏极电压(Vd)等于1V时,新结构SOI-LDMOS(其结构如图1所示)器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件在正向导通下转移特性曲线与跨导对比图。通过sentaurus仿真软件分别对以上四种器件的电学特性进行仿真,再将所得到的仿真数据通过Origin工具绘制的对比图,如图4所示。新结构SOI-LDMOS的跨导最大值(gmMAX)为5.8mS/mm,而传统SOI-LDMOS、传统超结SOI-LDMOS的跨导最大值(gmMAX)分别为1.5mS/mm和3.1mS/mm,新结构SOI-LDMOS与传统SOI-LDMOS、传统超结SOI-LDMOS的跨导最大值(gmMAX)相比分别增加了4.6mS/mm和3.0mS/mm,同时,是传统SOI-LDMOS跨导最大值(gmMAX)的3.87倍和传统超结SOI-LDMOS跨导最大值(gmMAX)的1.87倍。此外,新结构1SOI-LDMOS的转移特性曲线均高于传统SOI-LDMOS、传统超结SOI-LDMOS的转移特性曲线。因此,新结构SOI-LDMOS的栅极电压对电流控制能力与传统SOI-LDMOS、传统超结SOI-LDMOS相比有很大提高。Figure 4 shows the new structure SOI-LDMOS (the structure of which is shown in Figure 1), the traditional SOI-LDMOS device and the traditional superjunction SOI-LDMOS device in the positive Contrast graph of transfer characteristic curve and transconductance under conduction. The electrical characteristics of the above four devices are simulated by the sentaurus simulation software, and the obtained simulation data are drawn by the Origin tool for a comparison chart, as shown in Figure 4. The maximum transconductance (g mMAX ) of the new SOI-LDMOS is 5.8mS/mm, while the maximum transconductance (g mMAX ) of the conventional SOI-LDMOS and the conventional superjunction SOI-LDMOS are 1.5mS/mm and 3.1mS, respectively /mm, the transconductance maximum (g mMAX ) of the new structure SOI-LDMOS is increased by 4.6mS/mm and 3.0mS/mm compared with the traditional SOI-LDMOS and the traditional superjunction SOI-LDMOS, respectively. The LDMOS transconductance maximum value (g mMAX ) is 3.87 times and the conventional superjunction SOI-LDMOS transconductance maximum value (g mMAX ) is 1.87 times. In addition, the transfer characteristic curves of the new structure 1SOI-LDMOS are higher than those of traditional SOI-LDMOS and traditional superjunction SOI-LDMOS. Therefore, compared with the conventional SOI-LDMOS and the conventional superjunction SOI-LDMOS, the gate voltage-to-current control capability of the new structure SOI-LDMOS is greatly improved.
图5是新结构SOI-LDMOS(其结构如图1所示)器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件在栅极电压Vg为10V的输出特性曲线图。根据图5所示,当器件开启后,新结SOI-LDMOS的漏极饱和电流均大于传统传统SOI-LDMOS、传统超结SOI-LDMOS的漏极饱和电流。FIG. 5 is a graph showing the output characteristics of the new structure SOI-LDMOS device (its structure is shown in FIG. 1 ), the conventional SOI-LDMOS device and the conventional superjunction SOI-LDMOS device when the gate voltage V g is 10V. As shown in FIG. 5 , when the device is turned on, the drain saturation current of the new junction SOI-LDMOS is larger than that of the conventional conventional SOI-LDMOS and the conventional super-junction SOI-LDMOS.
图6是新结构SOI-LDMOS(其结构如图1所示)器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件的在漏极电压Vd为5V时的开启电压对比图。如图6所示,在相同栅氧化层厚度和漏极电流Id为100A/cm2时,传统SOI-LDMOS器件、传统超结SOI-LDMOS器件的开启电压分别为6.25V和5.80V。然而,新结构SOI-LDMOS器件的开启电压为5.45V,与传统SOI-LDMOS器件、传统超结SOI-LDMOS器件相比,分别降低了12.8%和6%;是因为新结构新结构SOI-LDMOS在漂移区存在二氧化硅介质区,二氧化硅介质区可以提高漂移区的掺杂浓度,在相同的偏压下,其漏极电流会增大,以及将表面栅极转移到埋氧层中,可以增强电子的注入能力。因此,新结构SOI-LDMOS器件的正向导通性能均比传统SOI-LDMOS器件、传统超结SOI-LDMOS器件优秀。6 is a comparison diagram of turn-on voltages of a new structure SOI-LDMOS (the structure of which is shown in FIG. 1 ), a conventional SOI-LDMOS device and a conventional superjunction SOI-LDMOS device when the drain voltage Vd is 5V. As shown in FIG. 6 , when the gate oxide thickness and drain current I d are 100A/cm 2 , the turn-on voltages of the conventional SOI-LDMOS device and the conventional superjunction SOI-LDMOS device are 6.25V and 5.80V, respectively. However, the turn-on voltage of the new structure SOI-LDMOS device is 5.45V, which is 12.8% and 6% lower than that of the traditional SOI-LDMOS device and the traditional superjunction SOI-LDMOS device, respectively; because of the new structure and new structure SOI-LDMOS There is a silicon dioxide dielectric region in the drift region. The silicon dioxide dielectric region can increase the doping concentration of the drift region. Under the same bias voltage, its drain current will increase, and the surface gate will be transferred into the buried oxide layer. , which can enhance the electron injection ability. Therefore, the forward conduction performance of the SOI-LDMOS device with the new structure is better than that of the traditional SOI-LDMOS device and the traditional superjunction SOI-LDMOS device.
如下表1分别记录了三种器件的跨导最大值(gmMAX)、比导通比导通电阻Ron,sp、Baliga优值FOM和击穿电压BV。根据下表所示新结构SOI-LDMOS器件的跨导最大值(gmMAX)均大于传统SOI-LDMOS器件和传统超结SOI-LDMOS器件的跨导最大值(gmMAX),是因为新结构SOI-LDMOS器件在传统器件的基础上,将表面栅极转移到埋氧层形成体内栅,从而使器件栅极电压对电流的控制能力增强。新结构SOI-LDMOS器件的比导通比导通电阻Ron,sp与传统SOI-LDMOS器件和传统超结SOI-LDMOS器件相比,也是最小的,因为该器件在N型漂移区存在二氧化硅介质区,二氧化硅介质区能够提高器件漂移区的掺杂浓度继而降低器件的比导通电阻。新结构SOI-LDMOS器件的击穿电压相对于传统SOI-LDMOS器件和传统超结SOI-LDMOS器件略微降低。新结构SOI-LDMOS器件的Baliga优值FOM均大于传统SOI-LDMOS器件和传统超结SOI-LDMOS器件的Baliga优值FOM。Table 1 below records the maximum value of transconductance (g mMAX ), specific on-resistance R on,sp , Baliga figure of merit FOM and breakdown voltage BV of the three devices, respectively. According to the table below, the maximum transconductance value (g mMAX ) of the new structure SOI-LDMOS device is larger than that of the traditional SOI-LDMOS device and the traditional superjunction SOI-LDMOS device (g mMAX ), because the new structure SOI On the basis of traditional devices, LDMOS devices transfer the surface gate to the buried oxide layer to form the internal gate, so that the control ability of the gate voltage of the device to the current is enhanced. Compared with the traditional SOI-LDMOS device and the traditional superjunction SOI-LDMOS device, the specific on-resistance R on,sp of the new structure SOI-LDMOS device is also the smallest because of the presence of dioxide in the N-type drift region of the device. The silicon dielectric region and the silicon dioxide dielectric region can increase the doping concentration of the device drift region and then reduce the specific on-resistance of the device. The breakdown voltage of the SOI-LDMOS device with the new structure is slightly lower than that of the conventional SOI-LDMOS device and the conventional superjunction SOI-LDMOS device. The Baliga figure of merit FOM of the SOI-LDMOS device with the new structure is larger than that of the traditional SOI-LDMOS device and the traditional superjunction SOI-LDMOS device.
表1三种器件性能对比Table 1 Performance comparison of three devices
图7是新结构SOI-LDMOS器件在N型漂移区掺杂浓度分别为1.2×1016cm-3、1.4×1016cm-3、1.6×1016cm-3、1.8×1016cm-3、2.0×1016cm-3和2.2×1016cm-3时,击穿电压BV和比导通电阻Ron,sp的变化曲线。如图7所示,在N型漂移区掺杂浓度为1.8×1016cm-3时,击穿电压BV达到一个极大值,其击穿电压BV为110V,此时比导通电阻Ron,sp为6.0mΩ·cm2。比导通电阻Ron,sp随着N型漂移区掺杂浓度的增大呈下降趋势,N型漂移区掺杂浓度越大,比导通电阻Ron,sp就越小;但是当N型漂移区掺杂浓度大于2.0×1016cm-3,击穿电压BV急剧降低。Fig. 7 shows that the doping concentrations of the SOI-LDMOS device with the new structure in the N-type drift region are 1.2×10 16 cm -3 , 1.4×10 16 cm -3 , 1.6×10 16 cm -3 , and 1.8×10 16 cm -3 , respectively , 2.0×10 16 cm -3 and 2.2×10 16 cm -3 , the breakdown voltage BV and the specific on-resistance R on,sp change curve. As shown in Fig. 7, when the doping concentration of the N-type drift region is 1.8×10 16 cm -3 , the breakdown voltage BV reaches a maximum value, and the breakdown voltage BV is 110V. At this time, the specific on-resistance R on , sp is 6.0mΩ·cm 2 . The specific on-resistance R on,sp decreases with the increase of the doping concentration of the N-type drift region. The greater the doping concentration of the N-type drift region, the smaller the specific on-resistance R on,sp ; When the doping concentration in the drift region is greater than 2.0×10 16 cm -3 , the breakdown voltage BV decreases sharply.
图8是新结构SOI-LDMOS器件在二氧化硅介区厚度分别为0.4μm、0.5μm、0.6μm、0.7μm和0.8μm时,击穿电压BV和比导通电阻Ron,sp的变化曲线。由图8可知,随着二氧化硅介区厚度增大,击穿电压BV先增大后减小;在二氧化硅介区厚度为0.7μm时,击穿电压BV达到了一个极大值为110V,此时比导通电阻Ron,sp为6.0mΩ·cm2。比导通电阻Ron,sp随着二氧化硅介区厚度的增加呈上升趋势,是因为二氧化硅介区厚度的增加,其N型漂移区的厚度将会减小,会导致有效导电面积减小,从而使比导通电阻Ron,sp增大。Figure 8 is the change curve of the breakdown voltage BV and the specific on-resistance R on,sp of the new structure SOI-LDMOS device when the silicon dioxide interlayer thickness is 0.4μm, 0.5μm, 0.6μm, 0.7μm and 0.8μm, respectively . It can be seen from Figure 8 that as the thickness of the silicon dioxide interposer increases, the breakdown voltage BV first increases and then decreases; when the thickness of the silicon dioxide interposer is 0.7 μm, the breakdown voltage BV reaches a maximum value. 110V, the specific on-resistance R on,sp is 6.0mΩ·cm 2 at this time. The specific on-resistance R on,sp increases with the increase of the thickness of the silicon dioxide interposer, because the thickness of the silicon dioxide interposer increases, the thickness of the N-type drift region will decrease, which will lead to the effective conductive area decreases, so that the specific on-resistance R on,sp increases.
图9是新结构SOI-LDMOS(其结构如图1所示)器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件在正向导通状态下的电流线方向图。如图9所示,新结构SOI-LDMOS器件的导电沟道在体内,电流通过体内沟道流向源极;而传统SOI-LDMOS器件和传统超结SOI-LDMOS器件的导电沟道在表面,电流通过表面沟道流向源极。FIG. 9 is a current line direction diagram of a new structure SOI-LDMOS device (the structure of which is shown in FIG. 1 ), a conventional SOI-LDMOS device and a conventional superjunction SOI-LDMOS device in a forward conduction state. As shown in Figure 9, the conductive channel of the SOI-LDMOS device with the new structure is in the body, and the current flows to the source through the channel in the body; while the conductive channel of the traditional SOI-LDMOS device and the traditional superjunction SOI-LDMOS device is on the surface, and the current flows to the source. flow to the source through the surface channel.
图10是新结构SOI-LDMOS(其结构如图1所示)器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件在雪崩击穿状态下的Y=0.7μm电场对比图。从图10中可以看去,传统SOI-LDMOS器件和传统超结SOI-LDMOS器件的电场强度曲线与X轴围成的面积均大于新结构SOI-LDMOS器件,是因为传统SOI-LDMOS器件漂移区掺杂浓度相对较低,以及传统超结SOI-LDMOS器件在漂移区中存在P型柱,可以辅助N型漂移区耗尽,因此,它们的电场强度分布会均匀一些。FIG. 10 is a comparison diagram of the electric field of Y=0.7 μm in the avalanche breakdown state of a new structure SOI-LDMOS device (the structure of which is shown in FIG. 1 ), a conventional SOI-LDMOS device and a conventional superjunction SOI-LDMOS device. As can be seen from Figure 10, the area enclosed by the electric field strength curve and the X axis of the traditional SOI-LDMOS device and the traditional superjunction SOI-LDMOS device is larger than that of the new structure SOI-LDMOS device, because the drift region of the traditional SOI-LDMOS device is The relatively low doping concentration and the presence of P-type pillars in the drift region of conventional superjunction SOI-LDMOS devices can assist in the depletion of the N-type drift region, so their electric field intensity distribution will be more uniform.
图11是新结构SOI-LDMOS(其结构如图1所示)器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件在雪崩击穿状态下的等势线对分布图。从图11中可以看出,新结构SOI-LDMOS器件、传统SOI-LDMOS器件和传统超结SOI-LDMOS器件等势线分布十分均匀,只是新结构SOI-LDMOS器件的漂移区中间部位等势线分布相对稀疏一点。FIG. 11 is a distribution diagram of equipotential line pairs of a new structure SOI-LDMOS device (its structure is shown in FIG. 1 ), a conventional SOI-LDMOS device and a conventional superjunction SOI-LDMOS device under avalanche breakdown state. It can be seen from Figure 11 that the equipotential lines of the new structure SOI-LDMOS device, the traditional SOI-LDMOS device and the traditional superjunction SOI-LDMOS device are very uniformly distributed, but the equipotential lines in the middle part of the drift region of the new structure SOI-LDMOS device The distribution is relatively sparse.
本发明提出的一种具有体内沟道的薄层SOI-LDMOS器件,以示意图1为例,其主要工艺流程如图12所示。其具体实现方法包括:首先,选取SOI衬底,对SOI衬底进行刻蚀填充,形成体内栅。其次,进行气相外延,生长N型漂移区,再进行离子注入和扩散工艺,分别形成源极N+区、P-body、源极P+区和源极N+区。接下来对N型漂移区进行离子刻蚀形成沟槽,再利用化学沉积法对刻蚀形成的沟槽淀积二氧化硅进而形成二氧化硅介质区,以及在二氧化硅介质区上部和P-body上部淀积一层SiO2保护层形成场氧化层。最后,对源极和漏极淀积金属,形成良好的欧姆接触。A thin-layer SOI-LDMOS device with an internal channel proposed by the present invention, taking schematic diagram 1 as an example, the main process flow of which is shown in FIG. 12 . The specific implementation method includes: first, selecting an SOI substrate, and etching and filling the SOI substrate to form an internal gate. Next, vapor phase epitaxy is performed to grow an N-type drift region, and then ion implantation and diffusion processes are performed to form a source N+ region, a P-body, a source P+ region, and a source N+ region, respectively. Next, the N-type drift region is ion-etched to form a trench, and then chemical deposition is used to deposit silicon dioxide on the etched trench to form a silicon dioxide dielectric region, and the upper part of the silicon dioxide dielectric region and the P - Deposit a layer of SiO 2 protective layer on the top of the body to form a field oxide layer. Finally, metal is deposited on the source and drain to form good ohmic contacts.
在实施的过程中,根据具体器件的设计要求,本发明提出的一种具有体内沟道的薄层SOI-LDMOS器件,在具体制作时,衬底材料除了可以用碳化硅SiC材料,还可用硅、砷化镓、磷化铟或锗硅等半导体材料代替体碳化硅。In the process of implementation, according to the design requirements of the specific device, a thin-layer SOI-LDMOS device with an internal channel proposed by the present invention, in the specific production, the substrate material can be silicon carbide SiC material, and silicon carbide can also be used. , gallium arsenide, indium phosphide or silicon germanium and other semiconductor materials instead of bulk silicon carbide.
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent replacements, without departing from the spirit and scope of the technical solution, should all be included in the scope of the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011407861.3A CN112466955B (en) | 2020-12-04 | 2020-12-04 | Thin-layer SOI-LDMOS device with in-vivo conductive channel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011407861.3A CN112466955B (en) | 2020-12-04 | 2020-12-04 | Thin-layer SOI-LDMOS device with in-vivo conductive channel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112466955A CN112466955A (en) | 2021-03-09 |
CN112466955B true CN112466955B (en) | 2022-10-11 |
Family
ID=74805490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011407861.3A Active CN112466955B (en) | 2020-12-04 | 2020-12-04 | Thin-layer SOI-LDMOS device with in-vivo conductive channel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112466955B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113097310B (en) * | 2021-04-02 | 2023-03-24 | 重庆邮电大学 | Fin-type EAFin-LDMOS device with electron accumulation effect |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109166915A (en) * | 2018-08-28 | 2019-01-08 | 电子科技大学 | A kind of medium superjunction MOS type power semiconductor and preparation method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0107408D0 (en) * | 2001-03-23 | 2001-05-16 | Koninkl Philips Electronics Nv | Field effect transistor structure and method of manufacture |
US8097880B2 (en) * | 2009-04-09 | 2012-01-17 | Infineon Technologies Austria Ag | Semiconductor component including a lateral transistor component |
US8217452B2 (en) * | 2010-08-05 | 2012-07-10 | Atmel Rousset S.A.S. | Enhanced HVPMOS |
CN102386211B (en) * | 2010-08-31 | 2014-01-08 | 无锡华润上华半导体有限公司 | LDMOS device and its manufacturing method |
CN102779836B (en) * | 2012-07-13 | 2015-02-11 | 电子科技大学 | Longitudinal power device with low specific on-resistance using high dielectric constant groove structure |
EP2757580A1 (en) * | 2013-01-22 | 2014-07-23 | Nxp B.V. | Bipolar cmos dmos (bcd) processes |
CN103325835B (en) * | 2013-05-28 | 2015-10-21 | 电子科技大学 | A kind of SOI power LDMOS device with junction type field plate |
US9419130B2 (en) * | 2013-11-27 | 2016-08-16 | Infineon Technologies Austria Ag | Semiconductor device and integrated circuit |
US9312348B2 (en) * | 2014-02-14 | 2016-04-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Ultra high voltage semiconductor device with electrostatic discharge capabilities |
KR102248307B1 (en) * | 2014-09-01 | 2021-05-04 | 에스케이하이닉스 시스템아이씨 주식회사 | Power integrated device, and electronic device and electronic system having the power integrated device |
CN105097936A (en) * | 2015-07-06 | 2015-11-25 | 深港产学研基地 | Silicon-on-insulator lateral double-diffused metal-oxide-semiconductor (LDMOS) power device |
CN105789314A (en) * | 2016-03-18 | 2016-07-20 | 电子科技大学 | Transverse SOI power LDMOS |
CN108063158A (en) * | 2017-12-06 | 2018-05-22 | 重庆邮电大学 | A kind of LDMOS device with groove profile oxide layer and horizontal superjunction |
-
2020
- 2020-12-04 CN CN202011407861.3A patent/CN112466955B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109166915A (en) * | 2018-08-28 | 2019-01-08 | 电子科技大学 | A kind of medium superjunction MOS type power semiconductor and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN112466955A (en) | 2021-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103208522B (en) | There is the lateral dmos device structure of dummy grid | |
CN103268890B (en) | A kind of power LDMOS device with junction type field plate | |
CN109166924B (en) | A lateral MOS type power semiconductor device and its preparation method | |
CN102184944B (en) | Junction terminal structure of lateral power device | |
CN109119461B (en) | Super-junction MOS type power semiconductor device and preparation method thereof | |
CN109166915B (en) | A kind of dielectric superjunction MOS type power semiconductor device and preparation method thereof | |
CN114050187A (en) | An integrated trench gate power semiconductor transistor with low characteristic on-resistance | |
CN105529369A (en) | A semiconductor cell structure and power semiconductor device | |
CN101656269B (en) | Trench DMOS device with low on-resistance | |
CN112420846B (en) | Transverse super-junction thin-layer SOI-LDMOS device with surface and body double channels | |
CN103325835B (en) | A kind of SOI power LDMOS device with junction type field plate | |
CN112466955B (en) | Thin-layer SOI-LDMOS device with in-vivo conductive channel | |
CN105304693B (en) | A kind of manufacturing method of LDMOS device | |
CN108054202A (en) | A kind of semiconductor structure and forming method thereof | |
CN118263321A (en) | SiC-MOSFET device integrating channel diode and Schottky diode and preparation method | |
CN113488525B (en) | Super-junction EA-SJ-FINFET device with charge accumulation effect | |
CN111477681A (en) | Double-channel uniform electric field modulation transverse double-diffusion metal oxide semiconductor field effect transistor and manufacturing method thereof | |
CN117012836A (en) | Longitudinal gallium oxide MOSFET device and preparation method thereof | |
CN102569404B (en) | Transverse diffusion metal oxide semiconductor (MOS) device with low on-resistance | |
CN113410299B (en) | High-voltage-resistance n-channel LDMOS device and preparation method thereof | |
CN116598361A (en) | LDMOS device with super-junction split gate | |
CN111969051B (en) | Split-gate VDMOS device with high reliability and manufacturing method thereof | |
CN108054194A (en) | A kind of semiconductor devices Withstand voltage layer with three-dimensional variety lateral doping | |
CN111477680A (en) | Two-channel uniform electric field modulation lateral double-diffused metal oxide wide bandgap semiconductor field effect transistor and fabrication method | |
CN113921611A (en) | LDMOS device with double-side super-junction trench gate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |