CN109166924B - A lateral MOS type power semiconductor device and its preparation method - Google Patents
A lateral MOS type power semiconductor device and its preparation method Download PDFInfo
- Publication number
- CN109166924B CN109166924B CN201810991168.1A CN201810991168A CN109166924B CN 109166924 B CN109166924 B CN 109166924B CN 201810991168 A CN201810991168 A CN 201810991168A CN 109166924 B CN109166924 B CN 109166924B
- Authority
- CN
- China
- Prior art keywords
- type semiconductor
- conductive type
- region
- trench
- drift region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 281
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 78
- 229920005591 polysilicon Polymers 0.000 claims abstract description 71
- 239000000758 substrate Substances 0.000 claims description 44
- 210000000746 body region Anatomy 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 17
- 238000005530 etching Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 239000003989 dielectric material Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 4
- 238000001259 photo etching Methods 0.000 claims 1
- 230000007306 turnover Effects 0.000 claims 1
- 230000005684 electric field Effects 0.000 abstract description 10
- 230000015556 catabolic process Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 6
- 238000009826 distribution Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910002601 GaN Inorganic materials 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 4
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
- H10D30/658—Lateral DMOS [LDMOS] FETs having trench gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/421—Insulated-gate bipolar transistors [IGBT] on insulating layers or insulating substrates, e.g. thin-film IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
- H10D30/0289—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs using recessing of the gate electrodes, e.g. to form trench gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/667—Vertical DMOS [VDMOS] FETs having substrates comprising insulating layers, e.g. SOI-VDMOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
Landscapes
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明属于功率半导体器件技术领域,具体涉及一种横向MOS型功率半导体器件及其制备方法。The invention belongs to the technical field of power semiconductor devices, and in particular relates to a lateral MOS type power semiconductor device and a preparation method thereof.
背景技术Background technique
随着电子技术的快速发展,对于高压可集成的功率MOS型器件提出了迫切的需求。横向双扩散金属氧化物半导体场效应晶体管(LDMOS)以及横向绝缘栅双极晶体管(LIGBT)器件凭借其热稳定性好,增益高,噪声低,与CMOS工艺兼容度高的优势,被广泛使用于大规模集成电路中,成为功率集成电路发展必不可少的一部分。对于传统的LDMOS(如图1所示)和LIGBT器件,如果要增加器件的耐压能力,就必须增大漂移区长度来提高器件耐压能力,然而这样会使器件的导通电阻/导通压降增大,功耗增加,芯片面积增大,成本增加。虽然,业界通过在漂移区中引入双重降低表面电场(RESURF)的作用,但器件性能的提升十分有限。With the rapid development of electronic technology, there is an urgent need for high-voltage integratable power MOS devices. Lateral Double Diffused Metal Oxide Semiconductor Field Effect Transistor (LDMOS) and Lateral Insulated Gate Bipolar Transistor (LIGBT) devices are widely used for their good thermal stability, high gain, low noise, and high compatibility with CMOS technology. In large-scale integrated circuits, it has become an indispensable part of the development of power integrated circuits. For traditional LDMOS (as shown in Figure 1) and LIGBT devices, if the voltage withstand capability of the device is to be increased, the length of the drift region must be increased to improve the device voltage withstand capability. However, this will increase the on-resistance/conduction of the device. The voltage drop increases, the power consumption increases, the chip area increases, and the cost increases. Although the industry has introduced the effect of double reduced surface electric field (RESURF) in the drift region, the improvement of device performance is very limited.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的缺陷,本发明提供一种横向MOS型器件及其制备方法,通过在传统横向MOS型器件(LDMOS器件/LIGBT器件)的漂移区中引入深介质沟槽使得器件形成型导电沟道;同时引入半绝缘多晶硅(SIPOS)柱,SIPOS柱与漂移区沿深介质沟槽横向延伸方向交替相接作为三维阻性场板结构,进一步在漂移区中相对SIPOS柱的另一侧引入与漂移区掺杂类型相反的半导体区域以提供三维电荷补偿作用,使得在器件阻断时向漂移区引入多维耗尽作用来提高漂移区的掺杂浓度,并使深沟槽两侧的漂移区宽度不受掺杂剂量的限制,改善漂移区的电场分布,在提高击穿电压的同时降低比导通电阻/导通压降;进一步通过引入缓冲层来提高三维介质超结结构的电荷平衡特性,从而进一步提高器件的性能和可靠性。In view of the defects existing in the prior art, the present invention provides a lateral MOS type device and a preparation method thereof. By introducing a deep dielectric trench into the drift region of a traditional lateral MOS type device (LDMOS device/LIGBT device), the device forms a conductive type At the same time, a semi-insulating polysilicon (SIPOS) column is introduced, and the SIPOS column and the drift region are alternately connected along the lateral extension direction of the deep dielectric trench as a three-dimensional resistive field plate structure, which is further introduced in the drift region on the other side of the SIPOS column. The semiconductor region with the opposite doping type to the drift region provides a three-dimensional charge compensation effect, so that the multi-dimensional depletion effect is introduced into the drift region when the device is blocked to increase the doping concentration of the drift region, and make the drift region on both sides of the deep trench. The width is not limited by the dopant dose, improves the electric field distribution in the drift region, and reduces the specific on-resistance/on-voltage drop while increasing the breakdown voltage; further, by introducing a buffer layer to improve the charge balance characteristics of the three-dimensional dielectric superjunction structure , thereby further improving the performance and reliability of the device.
为了实现上述目的,本发明的技术方案是:In order to achieve the above object, the technical scheme of the present invention is:
本发明提供一种MOS型功率半导体器件,具体是一种横向扩散金属氧化物半导体器件(LDMOS器件):The present invention provides a MOS type power semiconductor device, specifically a laterally diffused metal oxide semiconductor device (LDMOS device):
一种LDMOS器件,其元胞结构包括衬底、设置在衬底背面的衬底电极16和衬底正面的第一导电类型半导体漂移区10;第一导电类型半导体漂移区10顶层一侧设置有第一导电类型半导体漏区9;第一导电类型半导体漂移区10顶层另一侧设置有MOS结构,所述MOS结构包括第二导电类型半导体体区7、第一导电类型半导体源极区6、第二导电类型半导体接触区8、源电极3和沟槽栅结构;沟槽栅结构包括沟槽栅电极1以及设置在沟槽栅电极1侧面和底面的沟槽栅介质层2;第二导电类型半导体体区7设置在沟槽栅结构与第一导电类型半导体漏区9之间且紧邻沟槽栅结构设置;第二导电类型半导体体区7和其下方的第一导电类型半导体漂移区10通过沟槽介质层2与沟槽栅电极1相接触;第一导电类型半导体源极区6和第二导电类型半导体接触区8并排设置在第二导电类型半导体体区7的顶层,其中第一导电类型半导体源极区6通过侧面的沟槽介质层2与沟槽栅电极1相接触;其特征在于:An LDMOS device, its cell structure includes a substrate, a
衬底与第一导电类型半导体漂移区10之间设置有第一导电类型半导体缓冲层13;第一导电类型半导体缓冲层13的下表面与衬底的上表面重合,第一导电类型半导体缓冲层13的上表面与第一导电类型半导体漂移区10的下表面重合;所述沟槽栅结构与第一导电类型半导体漏区9之间的第一导电类型半导体漂移区10中设置有深介质沟槽4;深介质沟槽4的侧面与第二导电类型半导体接触区8和第二导电类型半导体体区7相接触;所述第一导电类型半导体漂移区10中还设置有半绝缘多晶硅槽,所述半绝缘多晶硅槽包括半绝缘多晶硅11和设置在半绝缘多晶硅11侧面和底面的绝缘介质层12,所述半绝缘多晶硅槽沿深介质沟槽4横向延伸方向与第一导电类型半导体漂移区10交替相接,其中半绝缘多晶硅槽的上表面与第一导电类型半导体漏区9上表面齐平,其下表面与第一导电类型半导体漂移区10的下表面平齐;半绝缘多晶硅11通过沟槽栅介质层2与沟槽栅电极1接触,半绝缘多晶硅11、绝缘介质层12、第一导电类型半导体源极区6、第二导电类型半导体接触区8的上表面设置有源电极3;源电极3和沟槽栅电极1通过介质层相隔离;半绝缘多晶硅11和第一导电类型半导体漏区9的上表面设置有漏电极5。A first conductive type
进一步的,本发明可以采用SOI层作为衬底,所述SOI层具体包括自下而上依次层叠设置的第二导电类型半导体层15、埋氧层14和第一导电类型半导体缓冲层13形成,也可以直接采用第二导电类型半导体层15作为衬底。Further, the present invention can use an SOI layer as a substrate, and the SOI layer specifically includes a second conductive
进一步的,本发明器件所用半导体的材料可以选自硅、锗、碳化硅、氮化镓、三氧化二镓或者金刚石。Further, the semiconductor material used in the device of the present invention can be selected from silicon, germanium, silicon carbide, gallium nitride, gallium trioxide or diamond.
进一步的,所述深介质沟槽具体是通过在深沟槽内填充介质材料所形成。Further, the deep dielectric trench is specifically formed by filling the deep trench with a dielectric material.
进一步的,所述半绝缘多晶硅槽具体是通过在沟槽内先形成绝缘介质层12然后填充半绝缘多晶硅材料而成。Further, the semi-insulating polysilicon trench is specifically formed by first forming an insulating
进一步的,深介质沟槽4的纵向深度可以等于或者大于第一导电类型半导体漂移区10的结深,即深介质沟槽4可以延伸到第一导电类型半导体漂移区10,与第一导电类型半导体漂移区10的下表面重合,也可以延伸到第一导电类型半导体缓冲层13中。Further, the longitudinal depth of the deep
进一步的,深介质沟槽4纵向深度大于其宽度,即深介质沟槽4的横纵比小于1。Further, the longitudinal depth of the deep
进一步的,半绝缘多晶硅槽的纵向深度可以大于深介质沟槽4的纵向深度,也可以小于深介质沟槽4的纵向深度,还可以等于深介质沟槽4的纵向深度。Further, the longitudinal depth of the semi-insulating polysilicon trench may be greater than the longitudinal depth of the deep
进一步的,半绝缘多晶硅11通过侧面的沟槽栅介质层2与沟槽栅电极1接触。Further, the
进一步的,第二导电类型半导体体区7的结深小于沟槽栅电极1的深度。Further, the junction depth of the second conductive type
进一步的,半绝缘多晶硅槽贯穿深介质沟槽4。Further, the semi-insulating polysilicon trench runs through the deep
进一步的,沟槽栅电极1的纵向深度小于深介质沟槽4的纵向深度。Further, the longitudinal depth of the
进一步的,第一导电类型半导体漂移区10中还设置有第二导电类型半导体柱区17,第二导电类型半导体柱区17沿深介质沟槽4横向与第一导电类型半导体漂移区10相接且夹设在两侧第一导电类型半导体漂移区10之间以避免与半绝缘多晶硅接触,并且第二导电类型半导体柱区17与第一导电类型半导体漂移区10的上、下表面平齐。Further, the first conductive type
进一步的,第一导电类型半导体漏区9下方的第一导电类型半导体漂移区10中还设置有紧贴深介质沟槽4侧壁的侧面第一导电类型半导体缓冲层18。所述侧面第一导电类型半导体缓冲层18的掺杂浓度可以是均匀掺杂,也可以是自上而下递减。Further, the first conductive type
进一步的,深介质沟槽4下方的第一导电类型半导体漂移区10中还设置有紧贴深介质沟槽4底壁的底面第一导电类型半导体缓冲层19。所述底面第一导电类型半导体缓冲层19的掺杂浓度可以是均匀掺杂,也可以是沿金属化漏极5至金属化源极3方向递减。Further, the first conductive type
进一步的,当侧面第一导电类型半导体缓冲层18和底面第一导电类型半导体缓冲层19同时存在时,侧面第一导电类型半导体缓冲层18的掺杂浓度不小于底面第一导电类型半导体缓冲层19的掺杂浓度。Further, when the side first conductivity type
进一步的,第二导电类型半导体体区7下方的第一导电类型半导体漂移区10中还设置有紧贴深介质沟槽4侧壁的侧面第二导电类型半导体缓冲层。所述侧面第二导电类型半导体缓冲层的掺杂浓度可以是均匀掺杂,也可以是自上而下递减。Further, a side surface second conductive type semiconductor buffer layer close to the sidewall of the deep
进一步的,第一导电类型半导体缓冲层13、侧面第一导电类型半导体缓冲层18、底面第一导电类型半导体缓冲层18的掺杂浓度大于第一导电类型半导体漂移区10的掺杂浓度。Further, the doping concentration of the first conductive type
进一步的,深介质沟槽4中还设置有与之延伸方向相同且对称设置的第一场板401和第二场板402。其中第一场板401和第二场板402的纵向延伸深度小于深介质沟槽4的纵向深度;第一场板401和第二场板402距离深介质沟槽4边缘的介质层厚度可调节,即可以设置成介质层厚度均匀的场板,也可以设置成阶梯型场板,或者也可以通过合理设置第一场板401和第二场板402的位置,使二者与邻近侧深介质沟槽4边缘的介质层厚度沿纵向方向递增。Further, the deep
本发明提供一种同属于MOS型功率半导体器件,具体是一种横向绝缘栅双极型晶体管(即LIGBT器件):The present invention provides a MOS type power semiconductor device, in particular a lateral insulated gate bipolar transistor (ie an LIGBT device):
一种LIGBT器件,其元胞结构包括:衬底、设置在衬底背面的衬底电极16和衬底正面的第一导电类型半导体漂移区10;第一导电类型半导体漂移区10顶层一侧设置有MOS结构,第一导电类型半导体漂移区10顶层另一侧设置有相互独立的第一导电类型半导体Buffer区和设置在第一导电类型半导体Buffer区上表面的第二导电类型半导体集电区;第一导电类型半导体Buffer区上表面的第二导电类型半导体集电区与深介质沟槽4接触;;所述MOS结构包括第二导电类型半导体体区7、第一导电类型半导体源极区6、第二导电类型半导体接触区8、源电极3和沟槽栅结构;沟槽栅结构包括沟槽栅电极1以及设置在沟槽栅电极1侧面和底面的沟槽栅介质层2;第二导电类型半导体体区7设置在沟槽栅结构与第一导电类型半导体Buffer区之间且紧邻沟槽栅结构设置;第二导电类型半导体体区7和其下方的第一导电类型半导体漂移区10通过沟槽介质层2与沟槽栅电极1相接触;第一导电类型半导体源极区6和第二导电类型半导体接触区8并排设置在第二导电类型半导体体区7的顶层,其中第一导电类型半导体源极区6通过侧面的沟槽介质层2与沟槽栅电极1相接触;其特征在于:An LIGBT device, its cell structure includes: a substrate, a
衬底与第一导电类型半导体漂移区10之间设置有第一导电类型半导体缓冲层13;第一导电类型半导体缓冲层13的下表面与衬底的上表面重合,第一导电类型半导体缓冲层13的上表面与第一导电类型半导体漂移区10的下表面重合;所述沟槽栅结构与第一导电类型半导体Buffer区之间的第一导电类型半导体漂移区10中设置有深介质沟槽4;深介质沟槽4的侧面与第二导电类型半导体接触区8和第二导电类型半导体体区7相接触;所述第一导电类型半导体漂移区10中还设置有半绝缘多晶硅槽,所述半绝缘多晶硅槽包括半绝缘多晶硅11和设置在半绝缘多晶硅11侧面和底面的绝缘介质层12,,所述半绝缘多晶硅槽沿深介质沟槽4横向延伸方向与第一导电类型半导体漂移区10交替相接,其中半绝缘多晶硅槽的上表面与第二导电类型半导体集电区的上表面平齐,其下表面与第一导电类型半导体漂移区10的下表面平齐;半绝缘多晶硅11通过沟槽栅介质层2与沟槽栅电极1接触,半绝缘多晶硅11、绝缘介质层12、第一导电类型半导体源极区6、第二导电类型半导体接触区8的上表面设置有源电极3;源电极3和沟槽栅电极1通过介质层相隔离;半绝缘多晶硅槽和第一导电类型半导体漏区9的上表面设置有漏电极5。A first conductive type
进一步的,本发明可以采用SOI层作为衬底,所述SOI层具体包括自下而上依次层叠设置的第二导电类型半导体层15、埋氧层14和第一导电类型半导体缓冲层13形成,也可以直接采用第二导电类型半导体层15作为衬底。Further, the present invention can use an SOI layer as a substrate, and the SOI layer specifically includes a second conductive
进一步的,本发明器件所用半导体的材料可以选自硅、锗、碳化硅、氮化镓、三氧化二镓或者金刚石。Further, the semiconductor material used in the device of the present invention can be selected from silicon, germanium, silicon carbide, gallium nitride, gallium trioxide or diamond.
进一步的,所述深介质沟槽具体是通过在深沟槽内填充介质材料所形成。Further, the deep dielectric trench is specifically formed by filling the deep trench with a dielectric material.
进一步的,所述半绝缘多晶硅槽具体是通过在沟槽内先形成绝缘介质层12然后填充半绝缘多晶硅材料而成。Further, the semi-insulating polysilicon trench is specifically formed by first forming an insulating
进一步的,深介质沟槽4的纵向深度可以等于或者大于第一导电类型半导体漂移区10的结深,即深介质沟槽4可以延伸到第一导电类型半导体漂移区10,与第一导电类型半导体漂移区10的下表面重合,也可以延伸到第一导电类型半导体缓冲层13中。Further, the longitudinal depth of the deep
进一步的,深介质沟槽4纵向深度大于其宽度,即深介质沟槽4的横纵比小于1。Further, the longitudinal depth of the deep
进一步的,半绝缘多晶硅槽的纵向深度可以大于深介质沟槽4的纵向深度,也可以小于深介质沟槽4的纵向深度,还可以等于深介质沟槽4的纵向深度。Further, the longitudinal depth of the semi-insulating polysilicon trench may be greater than the longitudinal depth of the deep
进一步的,半绝缘多晶硅11通过侧面的沟槽栅介质层2与沟槽栅电极1接触。Further, the
进一步的,第二导电类型半导体体区7的结深小于沟槽栅电极1的深度。Further, the junction depth of the second conductive type
进一步的,半绝缘多晶硅槽贯穿深介质沟槽4。Further, the semi-insulating polysilicon trench runs through the deep
进一步的,沟槽栅电极1的纵向深度小于深介质沟槽4的纵向深度。Further, the longitudinal depth of the
进一步的,第一导电类型半导体漂移区10中还设置有第二导电类型半导体柱区17,第二导电类型半导体柱区17沿深介质沟槽4横向与第一导电类型半导体漂移区10相接且夹设在两侧第一导电类型半导体漂移区10之间以避免与半绝缘多晶硅柱接触,并且第二导电类型半导体柱区17与第一导电类型半导体漂移区10的上、下表面平齐。Further, the first conductive type
进一步的,第二导电类型半导体集电区9下方的第一导电类型半导体漂移区10中还设置有紧贴深介质沟槽4侧壁的侧面第一导电类型半导体缓冲层18。所述侧面第一导电类型半导体缓冲层18的掺杂浓度可以是均匀掺杂,也可以是自上而下递减。Further, the first conductive type
进一步的,深介质沟槽4下方的第一导电类型半导体漂移区10中还设置有紧贴深介质沟槽4底壁的底面第一导电类型半导体缓冲层19。所述底面第一导电类型半导体缓冲层19的掺杂浓度可以是均匀掺杂,也可以是沿金属化漏极5至金属化源极3方向递减。Further, the first conductive type
进一步的,当侧面第一导电类型半导体缓冲层18和底面第一导电类型半导体缓冲层19同时存在时,侧面第一导电类型半导体缓冲层18的掺杂浓度不小于底面第一导电类型半导体缓冲层19的掺杂浓度。Further, when the side first conductivity type
进一步的,第二导电类型半导体体区7下方的第一导电类型半导体漂移区10中还设置有紧贴深介质沟槽4侧壁的侧面第二导电类型半导体缓冲层。所述侧面第二导电类型半导体缓冲层的掺杂浓度可以是均匀掺杂,也可以是自上而下递减。Further, a side surface second conductive type semiconductor buffer layer close to the sidewall of the deep
进一步的,第一导电类型半导体缓冲层13、侧面第一导电类型半导体缓冲层18、底面第一导电类型半导体缓冲层18的掺杂浓度大于第一导电类型半导体漂移区10的掺杂浓度。Further, the doping concentration of the first conductive type
进一步的,深介质沟槽4中还设置有与之延伸方向相同且对称设置的第一场板401和第二场板402。其中第一场板401和第二场板402的纵向延伸深度小于深介质沟槽4的纵向深度;第一场板401和第二场板402距离深介质沟槽4边缘的介质层厚度可调节,即可以设置成介质层厚度均匀的场板,也可以设置成阶梯型场板,或者也可以通过合理设置第一场板401和第二场板402的位置,使二者与邻近侧深介质沟槽4边缘的介质层厚度沿纵向方向递增。Further, the deep
此外,本发明还提供了一种横向MOS型功率半导体器件的制备方法,其特征在于,包括如下步骤:In addition, the present invention also provides a preparation method of a lateral MOS type power semiconductor device, which is characterized by comprising the following steps:
(1)选取第二导电类型半导体层作为衬底;(1) select the second conductive type semiconductor layer as the substrate;
(2)在第二导电类型半导体层上形成第一导电类型半导体缓冲层;(2) forming a first conductive type semiconductor buffer layer on the second conductive type semiconductor layer;
(3)在第一导电类型半导体缓冲层上形成第一导电类型半导体漂移区;(3) forming a first conductivity type semiconductor drift region on the first conductivity type semiconductor buffer layer;
(4)通过在第一导电类型半导体漂移区刻蚀沟槽,在沟槽内壁形成绝缘介质层并在所述沟槽内填充半绝缘多晶硅材料,形成与第一导电类型半导体漂移区相接且上下表面平齐的半绝缘多晶硅柱;(4) by etching a trench in the first conductivity type semiconductor drift region, forming an insulating dielectric layer on the inner wall of the trench and filling the trench with semi-insulating polysilicon material, forming a contact with the first conductivity type semiconductor drift region and Semi-insulating polysilicon pillars with flush upper and lower surfaces;
(5)沿垂直于第一导电类型半导体漂移区与半绝缘多晶硅柱相接界面的方向刻蚀深槽,并在所述深槽内填充介质材料形成深介质槽;(5) etching a deep groove along the direction perpendicular to the interface between the first conductivity type semiconductor drift region and the semi-insulating polysilicon column, and filling the deep groove with a dielectric material to form a deep dielectric groove;
(6)在深介质沟槽一侧第一导电类型半导体漂移区中形成沟槽栅结构;(6) forming a trench gate structure in the first conductivity type semiconductor drift region on one side of the deep dielectric trench;
(7)在深介质沟槽和沟槽栅结构之间的第一导电类型半导体漂移区顶层中形成第二导电类型半导体基区,第二导电类型半导体基区的结深小于沟槽栅结构的纵向深度;(7) A second conductivity type semiconductor base region is formed in the top layer of the first conductivity type semiconductor drift region between the deep dielectric trench and the trench gate structure, and the junction depth of the second conductivity type semiconductor base region is smaller than that of the trench gate structure. longitudinal depth;
(8)在第二导电类型半导体基区的顶层形成第一导电类型半导体源极区和第二导电类型半导体接触区;(8) forming a first conductive type semiconductor source region and a second conductive type semiconductor contact region on the top layer of the second conductive type semiconductor base region;
(9)在深介质沟槽另一侧的第一导电类型半导体漂移区顶层形成第一导电类型半导体漏区,或者在深介质沟槽另一侧的第一导电类型半导体漂移区顶层形成第一导电类型半导体Buffer区和第二导电类型半导体集电区;(9) forming a first conductivity type semiconductor drain region on the top layer of the first conductivity type semiconductor drift region on the other side of the deep dielectric trench, or forming a first conductivity type semiconductor drain region on the top layer of the first conductivity type semiconductor drift region on the other side of the deep dielectric trench a conductive type semiconductor buffer region and a second conductive type semiconductor collector region;
(10)淀积介质层,光刻,孔刻蚀;形成源电极金属和漏电极金属,翻转器件在背面形成衬底电极金属。(10) Depositing a dielectric layer, photolithography, and hole etching; forming source electrode metal and drain electrode metal, and flipping the device to form a substrate electrode metal on the backside.
进一步的,本发明中衬底可以直接选择SOI层,所述SOI层具体包括自下而上依次层叠设置的第二导电类型半导体层15、埋氧层14和第一导电类型半导体缓冲层13形成,当SOI层的第一导电类型半导体缓冲层13达到实际所需厚度可省略步骤2。Further, in the present invention, the substrate can directly select the SOI layer, and the SOI layer specifically includes the second conductive
进一步的,本发明中半导体的材料可以选自硅、锗、碳化硅、氮化镓、三氧化二镓或者金刚石。Further, the material of the semiconductor in the present invention can be selected from silicon, germanium, silicon carbide, gallium nitride, gallium trioxide or diamond.
本发明的工作原理具体如下:The working principle of the present invention is as follows:
本发明通过在横向MOS型半导体功率器件的基础上,在漂移区中引入深介质沟槽以及沿深介质沟槽横向延伸方向与漂移区平行相接的半绝缘多晶硅柱区作为三维阻性场板结构,并在漂移区和衬底之间引入缓冲层。当源电极3、沟槽栅电极1、衬底电极16接低电位,漏电极5接高电位时,器件处于阻断状态,此时由于漂移区中深介质沟槽的存在使器件的导电通道由传统的横向通道变成U型导电通道,在同样器件长度下情况下有效增加了漂移区的长度;同时由于与深介质沟槽垂直的半绝缘多晶硅SIPOS柱区提供的三维阻性场板作用,器件在阻断时会在多个方向形成多维耗尽作用,进而使漂移区和缓冲层在器件击穿之前完全耗尽,以此来提高漂移区和缓冲层的掺杂浓度,改善N型漂移区和缓冲层的电场分布;同时也正是因为本发明克服了深沟槽所带来漂移区无法完全耗尽的问题,因此本发明器件也无需采用传统技术为了维持深介质槽一定深度将沟槽栅结构加深的手段,由此可实现浅沟槽栅结构,进而降低器件的栅电容,提高器件开关速度;并且,由于深介质沟槽介质相对高的临界击穿电场,器件在获得高击穿电压的同时,降低了的比导通电阻/导通压降。同时,在N型漂移区相对半绝缘多晶硅SIPOS柱区的另一侧引入与漂移区掺杂类型不同的半导体区域形成超结结构,能够进一步提供三维电荷补偿作用,使漂移区中的电场形成类梯形分布,克服了厚漂移区和深沟槽所带来的漂移区无法完全耗尽的问题,进一步提高了器件漂移区的掺杂浓度;由于半绝缘多晶硅SIPOS柱区和与漂移区掺杂类型不同的半导体区域提供的三维耗尽作用,使深沟槽两侧的漂移区宽度不受掺杂剂量的限制在高的掺杂浓度下可采用宽的宽度,在提高器件耐压的同时降低了器件的导通电阻。此外,进一步在深介质沟槽侧壁和底壁引入高浓度N型缓冲层,能够充分利用背部埋氧化层和深沟槽介质层提供的降低表面电场RESURF作用来提高漂移区掺杂浓度,同时也抑制了衬底以及深介质沟槽两侧由于电位不同导致的辅助耗尽,提高了超结结构中掺杂类型不同的半导体区域之间的电荷平衡特性,同时高浓度N型缓冲层进一步降低了导通电阻,提高器件的性能和可靠性。Based on the lateral MOS type semiconductor power device, the invention introduces a deep dielectric trench in the drift region and a semi-insulating polysilicon pillar region parallel to the drift region along the lateral extension direction of the deep dielectric trench as a three-dimensional resistive field plate structure and introduce a buffer layer between the drift region and the substrate. When the
相比现有技术,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
本发明通过在漂移区中引入深介质沟槽以及沿深介质沟槽横向延伸方向与漂移区平行相接的半绝缘多晶硅柱区作为三维阻性场板结构,使器件的导电通道由传统的横向通道变成U型导电通道,在一定的器件长度下增加了漂移区的有效长度,并通过在阻断时在多个方向形成多维耗尽作用使N型漂移区和N型缓冲层在器件击穿之前全耗尽,在获得高器件击穿电压的同时,降低了比导通电阻;同时N型缓冲层的引入在充分利用背部埋氧化层和深沟槽介质层提供的降低表面电场RESURF作用提高漂移区掺杂浓度的同时,抑制了衬底以及深沟槽两侧由于电位不同导致的辅助耗尽,进一步提高了器件的耐压,并减小了比导通电阻,节约了芯片面积,降低了成本。In the present invention, a deep dielectric trench and a semi-insulating polysilicon pillar region parallel to the drift region along the lateral extension direction of the deep dielectric trench are introduced into the drift region as a three-dimensional resistive field plate structure, so that the conductive channel of the device is changed from the traditional lateral The channel becomes a U-type conduction channel, which increases the effective length of the drift region under a certain device length, and causes the N-type drift region and the N-type buffer layer to hit the device by forming multi-dimensional depletion in multiple directions during blocking. It is fully depleted before breaking through, which reduces the specific on-resistance while obtaining a high device breakdown voltage; at the same time, the introduction of the N-type buffer layer makes full use of the lower surface electric field RESURF provided by the back buried oxide layer and the deep trench dielectric layer. While increasing the doping concentration of the drift region, the auxiliary depletion caused by different potentials on both sides of the substrate and the deep trench is suppressed, which further improves the withstand voltage of the device, reduces the specific on-resistance, and saves the chip area. Reduced costs.
附图说明Description of drawings
图1是传统深沟槽LDMOS器件结构示意图;其中:1为沟槽栅电极,2为沟槽栅介质层,3为源电极,4为深介质沟槽,5为漏电极,6为N+源极区,7为P型基区,8为P+接触区,9为N型漏区,10为N型漂移区,15为P型半导体层,16为衬底电极。1 is a schematic structural diagram of a traditional deep trench LDMOS device; wherein: 1 is a trench gate electrode, 2 is a trench gate dielectric layer, 3 is a source electrode, 4 is a deep dielectric trench, 5 is a drain electrode, and 6 is an N+ source Polar region, 7 is a P-type base region, 8 is a P+ contact region, 9 is an N-type drain region, 10 is an N-type drift region, 15 is a P-type semiconductor layer, and 16 is a substrate electrode.
图2是实施例1一种LDMOS器件的结构示意图;2 is a schematic structural diagram of an LDMOS device in
图3是实施例1一种LDMOS器件沿AB的剖面示意图;Fig. 3 is the cross-sectional schematic diagram of a kind of LDMOS device of
图4是实施例1一种LDMOS器件沿CD的剖面示意图;4 is a schematic cross-sectional view of an LDMOS device along CD in
图5是实施例2一种LDMOS器件的三维结构示意图;Fig. 5 is the three-dimensional structure schematic diagram of a kind of LDMOS device of
图6是实施例2一种LDMOS器件沿AB的剖面示意图;Fig. 6 is the cross-sectional schematic diagram of a kind of LDMOS device of
图7是实施例2一种LDMOS器件沿CD的剖面示意图;7 is a schematic cross-sectional view of an LDMOS device along CD in
图8是实施例2一种LDMOS器件沿EF的剖面示意图;8 is a schematic cross-sectional view of an LDMOS device in
图9是实施例3一种LDMOS器件的三维结构示意图;Fig. 9 is the three-dimensional structure schematic diagram of a kind of LDMOS device of
图10是实施例3一种LDMOS器件沿AB的剖面示意图;10 is a schematic cross-sectional view of an LDMOS device along AB in
图11是实施例3一种LDMOS器件沿CD的剖面示意图;11 is a schematic cross-sectional view of an LDMOS device along CD in
图12是实施例3一种LDMOS器件沿EF的剖面示意图;12 is a schematic cross-sectional view of an LDMOS device along EF in
图13是实施例4一种LDMOS器件的三维结构示意图;13 is a schematic diagram of a three-dimensional structure of an LDMOS device in
图14是实施例4一种LDMOS器件沿AB的剖面示意图;14 is a schematic cross-sectional view of an LDMOS device along AB in
图15是实施例4一种LDMOS器件沿CD的剖面示意图;15 is a schematic cross-sectional view of an LDMOS device along CD in
图16是实施例4一种LDMOS器件沿EF的剖面示意图;16 is a schematic cross-sectional view of an LDMOS device along EF in
图17是实施例5一种LDMOS器件的三维结构示意图;17 is a schematic diagram of a three-dimensional structure of an LDMOS device in
图18是实施例5一种LDMOS器件沿AB的剖面示意图;18 is a schematic cross-sectional view of an LDMOS device along AB in
图19是实施例5一种LDMOS器件沿CD的剖面示意图;19 is a schematic cross-sectional view of an LDMOS device along CD in
图2至19中:1为沟槽栅电极,2为沟槽栅介质层,3为源电极,4为深介质沟槽,104为第一场板,402为第二场板,5为漏电极,6为N+源极区,7为P型基区,8为P+接触区,9为N型漏区,10为N型漂移区,11为半绝缘多晶硅。12为绝缘介质层,13为N型缓冲层,14为埋氧层,15为P型半导体层,16为衬底电极,17为P型柱区,18为侧面N型缓冲层,19为底面N型缓冲层。2 to 19: 1 is the trench gate electrode, 2 is the trench gate dielectric layer, 3 is the source electrode, 4 is the deep dielectric trench, 104 is the first field plate, 402 is the second field plate, 5 is the leakage current 6 is the N+ source region, 7 is the P-type base region, 8 is the P+ contact region, 9 is the N-type drain region, 10 is the N-type drift region, and 11 is the semi-insulating polysilicon. 12 is an insulating dielectric layer, 13 is an N-type buffer layer, 14 is a buried oxide layer, 15 is a P-type semiconductor layer, 16 is a substrate electrode, 17 is a P-type pillar region, 18 is a side N-type buffer layer, and 19 is the bottom surface N-type buffer layer.
具体实施方式Detailed ways
为使本领域技术人员能够清楚本发明方案及原理,下面结合附图和具体实施例进行详细描述。本发明的内容不局限于任何具体实施例,也不代表是最佳实施例,本领域技术人员所熟知的一般替代也涵盖在本发明的保护范围内。In order to make the solution and principle of the present invention clear to those skilled in the art, the following detailed description is given in conjunction with the accompanying drawings and specific embodiments. The content of the present invention is not limited to any specific embodiment, nor does it represent the best embodiment, and general substitutions known to those skilled in the art are also included within the protection scope of the present invention.
实施例1:Example 1:
本实施例提供一种LDMOS器件,其元胞结构如图2所示,图2所示元胞结构沿AB线和CD线的剖面结构示意图分别如图3和4所示,结合图2至4来看,所述元胞结构包括:纵向自下而上层叠的衬底电极16、P型半导体层15、埋氧层14、N型缓冲层13和N型漂移区10;N型漂移区10表面一侧设置有N型漏区9;N型漂移区10表面另一侧设置有MOS结构,所述MOS结构包括P型体区7、N+源极区6、P+接触区8、沟槽栅结构和源电极3,其中沟槽栅结构包括沟槽栅电极1和设置在沟槽栅电极1侧面及底面的沟槽栅介质层2,P型体区7靠近N型漏区9一侧设置且与沟槽栅结构相接触,所述N+源极区6和P+接触区8设置在P型体区7的顶层,且N+源极区6靠近沟槽栅结构一侧设置;其特征在于:This embodiment provides an LDMOS device, the cell structure of which is shown in FIG. 2 , and the schematic cross-sectional structure diagrams of the cell structure shown in FIG. 2 along the AB line and the CD line are respectively shown in FIGS. 3 and 4 . From the point of view, the cell structure includes: the
所述沟槽栅结构与N型漏区9之间的N型漂移区10中设置有由填充有介质材料的深槽所形成的深介质沟槽4;深介质沟槽4的侧面与P+接触区8和P型体区7相接触;所述N型漂移区10中还设置有沿深介质沟槽4横向延伸方向设置的半绝缘多晶硅柱11;半绝缘多晶硅柱11、P型体区7和N型漂移区10与沟槽栅电极1通过沟槽栅介质层2接触;半绝缘多晶硅11、绝缘介质层12、N+源极区6、P+接触区8的上表面设置有源电极3;源电极3和沟槽栅电极1通过介质层相隔离;半绝缘多晶硅11和N型漏区9的上表面设置有漏电极5。The N-
本实施例中N型缓冲层13的厚度为0.5~2μm;掺杂浓度为1015~1017个/cm3;N型漂移区10沿z方向的宽度为0.5~2μm,沿y方向的深度为5~25μm,沿x方向的宽度为4~20μm;掺杂浓度为1015~1017个/cm3;深介质沟槽4沿y轴方向纵向的深度为5~20μm,沿x轴方向的宽度为2~10μm。In this embodiment, the thickness of the N-
实施例2:Example 2:
本实施例提供一种LDMOS器件,其元胞结构如图5所示,图5所示元胞结构沿AB线、CD线和EF线的剖面结构示意图分别如图6、7和8所示,结合图5至8来看,本实施例是在实施例1的基础上,在N-漂移区10相对远离半绝缘多晶硅柱11的一侧中设有P型柱区17,P型柱区17的下表面与N-缓冲层13相接触;P型柱区17沿深介质沟槽4横向延伸方向与N-漂移区10平行相接且交替排列形成超结结构。本实施例中P型柱区17沿z轴方向的宽度为0.5~1.5μm,沿y轴方向纵向的深度为5~25μm,沿x轴方向的宽度为4~20μm,掺杂浓度为1015~1017个/cm3。P型柱区17的引入进一步提供了三维电荷补偿作用,使N型漂移区10中的电场形成类梯形分布,进一步提高了器件漂移区的掺杂浓度和击穿电压。This embodiment provides an LDMOS device, the cell structure of which is shown in FIG. 5 , and the schematic cross-sectional structures of the cell structure shown in FIG. 5 along the AB line, the CD line and the EF line are respectively shown in FIGS. Referring to FIGS. 5 to 8 , this embodiment is based on
实施例3:Example 3:
本实施例提供一种LDMOS器件,其元胞结构如图9所示,图9所示元胞结构沿AB线、CD线和EF线的剖面结构示意图分别如图10、11和12所示,本实施例是在实施例2的基础上,在N型漏区9下方的N型漂移区10和P型柱区17中设置紧贴深介质沟槽4侧壁的侧面N型缓冲层18,侧面N型缓冲层18的掺杂浓度不小于N型漂移区10的掺杂浓度。所述侧面N型缓冲层18的掺杂浓度可以是均匀掺杂,也可以是自上而下递减。侧面N型缓冲层18的引入可以抑制由于深沟槽两侧电位不同导致的辅助耗尽对N型漂移区10和P型柱区17电荷平衡的影响,在提高器件耐压的同时,进一步减小器件的导通电阻。This embodiment provides an LDMOS device, the cell structure of which is shown in FIG. 9 , and the schematic cross-sectional structures of the cell structure shown in FIG. 9 along the AB line, the CD line, and the EF line are shown in FIGS. 10 , 11 and 12 respectively. In this embodiment, on the basis of
实施例4:Example 4:
本实施例提供一种LDMOS器件,其元胞结构如图13所示,图13所示元胞结构沿AB线、CD线和EF线的剖面结构示意图分别如图14、15和16所示,本实施例是在实施例3的基础上,在深介质沟槽4下方的N型漂移区10和P型柱区17中还设有紧贴深介质沟槽4底壁的底面N型缓冲层19,底面N型缓冲层19的掺杂浓度大于N型漂移区10的掺杂浓度。所述底面N型缓冲层19的掺杂浓度可以是均匀掺杂,也可以是自右向左递减。底面N型缓冲层19的引入可以抑制由于深沟槽底部与源极电位不同导致的辅助耗尽对N型漂移区10和P柱17电荷平衡的影响,在提高器件耐压的同时,进一步减小器件的导通电阻。This embodiment provides an LDMOS device, the cell structure of which is shown in FIG. 13 , and the schematic cross-sectional structures of the cell structure shown in FIG. 13 along the AB line, the CD line, and the EF line are shown in FIGS. In this embodiment, on the basis of
实施例5:Example 5:
本实施例提供一种LDMOS器件,其元胞结构如图17所示,图17所示元胞结构沿AB线和CD线的剖面结构示意图分别如图18和19所示。本实施例是在实施例1的基础上,在深介质槽4中引入沿N型柱区10和半绝缘多晶硅柱11平行相接方向设置的第一场板401和第二场板402,所述第一场板401和第二场板402的纵向深度小于深介质沟槽4的纵向深度。第一场板401和第二场板402与深介质沟槽4边缘的介质层厚度可调节,即:可采用介质层厚度均匀的场板,可采用阶梯型场板,也可通过合理设置第一场板401和第二场板402的位置,使二者与邻近侧深介质沟槽4边缘的介质层厚度沿纵向方向即图中示出的y轴方向递增。第一场板401和第二场板402的引入能够进一步调节深介质沟槽4两侧N型漂移区10和半绝缘多晶硅柱11中的电场,进一步提高器件耐压。This embodiment provides an LDMOS device, the cell structure of which is shown in FIG. 17 , and the schematic cross-sectional structures of the cell structure shown in FIG. 17 along the AB line and the CD line are respectively shown in FIGS. 18 and 19 . In this embodiment, on the basis of
实施例6:Example 6:
本实施例提供一种LDMOS器件,在实施例4的基础上,在P型体区7下方的N型漂移区10中设置紧贴深介质沟槽4侧壁的侧面P型缓冲层。侧面P型缓冲层的掺杂浓度可以是均匀掺杂,也可以是自上而下递减。侧面P型缓冲层的引入可以进一步抑制由于深沟槽两侧电位不同导致的辅助耗尽对超结结构电荷平衡的影响,在提高器件耐压的同时,进一步减小器件的导通电阻。This embodiment provides an LDMOS device. On the basis of
实施例7:Example 7:
本实施例提供一种LDMOS器件,在实施例1的基础上,省略所述半绝缘多晶硅柱11与深介质沟槽4、N型缓冲层13和N型漂移区10之间的绝缘介质层12,即半绝缘多晶硅柱11与深介质沟槽4、N型缓冲层13和N型漂移区10直接接触。这样在保持器件特性的基础上可进一步简化工艺,降低成本。This embodiment provides an LDMOS device. On the basis of
实施例8:Example 8:
一种LIGBT器件,所述元胞结构包括:纵向自下而上层叠的衬底电极16、P型半导体层15、埋氧层14、N型缓冲层13和N型漂移区10;N型漂移区10表面一侧设置有相互独立且的N型Buffer区和设置在N型Buffer区上表面的P型集电区;N-Buffer区上表面的P型集电区与深介质沟槽4接触;P型集电区与上方的金属化漏极5接触;N型漂移区10表面另一侧设置有MOS结构,所述MOS结构包括P型体区7、N+源极区6、P+接触区8、沟槽栅结构和源电极3,其中沟槽栅结构包括沟槽栅电极1和设置在沟槽栅电极1侧面及底面的沟槽栅介质层2,P型体区7靠近N型Buffer区和P型集电区一侧设置且与沟槽栅结构相接触,所述N+源极区6和P+接触区8设置在P型体区7的顶层,且N+源极区6靠近沟槽栅结构一侧设置;其特征在于:An LIGBT device, the cell structure includes: a
所述沟槽栅结构与N型Buffer区和P型集电区之间的N型漂移区10中设置有由填充有介质材料的深槽所形成的深介质沟槽4;深介质沟槽4的侧面与P+接触区8和P型体区7相接触;所述N型漂移区10中还设置有沿深介质沟槽4横向延伸方向设置的半绝缘多晶硅柱(包括半绝缘多晶硅11和绝缘介质层12);半绝缘多晶硅11、P型体区7和N型漂移区10与沟槽栅电极1通过沟槽栅介质层2接触;半绝缘多晶硅11、绝缘介质层12、N+源极区6、P+接触区8的上表面设置有源电极3;源电极3和沟槽栅电极1通过介质层2相隔离;半绝缘多晶硅柱P型集电区的上表面设置有漏电极5。The N-
本领域技术人员可知,以上实施例的所有变形对于超结IGBT器件仍然适用,本文在此不再赘述。Those skilled in the art know that all the modifications of the above embodiments are still applicable to superjunction IGBT devices, and details are not described herein again.
实施例9:Example 9:
本发明提供的一种横向MOS型器件的制备方法,包括以下步骤:A preparation method of a lateral MOS type device provided by the present invention comprises the following steps:
第一步:按需选取一定厚度的SOI层作为衬底,SOI材料由N型缓冲层、埋氧层、P型衬底三部分构成,N型缓冲层的掺杂浓度为1015~1017个/cm3;P型衬底的掺杂浓度为1014~1015个/cm3;Step 1: Select a SOI layer with a certain thickness as the substrate as needed. The SOI material consists of an N-type buffer layer, a buried oxide layer, and a P-type substrate. The doping concentration of the N-type buffer layer is 10 15 ~ 10 17 pieces/cm 3 ; the doping concentration of the P-type substrate is 10 14 to 10 15 pieces/cm 3 ;
第二步:在所述衬底上外延一定厚度的N型漂移区,掺杂浓度为1015~1017个/cm3;The second step: epitaxy an N-type drift region with a certain thickness on the substrate, and the doping concentration is 10 15 to 10 17 /cm 3 ;
第三步:在漂移区表面光刻、刻蚀N型漂移区形成沟槽,并通过高温氧化形成一层介质层,然后淀积半绝缘多晶硅SIPOS薄膜填充沟槽形成半绝缘多晶硅柱区;并通过CMP工艺去除表面多余的SIPOS材料;The third step: photolithography and etching the N-type drift region on the surface of the drift region to form a trench, and a dielectric layer is formed by high temperature oxidation, and then a semi-insulating polysilicon SIPOS film is deposited to fill the trench to form a semi-insulating polysilicon pillar region; and Remove excess SIPOS material on the surface by CMP process;
第四步:在漂移区表面生长一层氧化层,采用光刻工艺沿垂直于N-漂移区与半绝缘多晶硅柱区交界面的方向刻蚀形成介质深槽,接着在介质深槽内填充二氧化硅介质,然后通过CMP工艺去除表面多余的介质材料;The fourth step: grow an oxide layer on the surface of the drift region, and use a photolithography process to etch the dielectric deep groove in the direction perpendicular to the interface between the N-drift region and the semi-insulating polysilicon pillar region, and then fill the dielectric deep groove with two Silicon oxide dielectric, and then remove excess dielectric material on the surface by CMP process;
第五步:采用光刻工艺在深介质沟槽一侧的N型漂移区刻蚀形成栅沟槽,并通过高温氧化在栅沟槽表面生长二氧化硅形成栅氧化层,接着填充多晶硅形成栅电极;所述栅沟槽的深度小于深介质沟槽的深度;Step 5: A gate trench is formed by etching the N-type drift region on one side of the deep dielectric trench by photolithography, and silicon dioxide is grown on the surface of the gate trench through high temperature oxidation to form a gate oxide layer, and then polysilicon is filled to form a gate. electrode; the depth of the gate trench is less than the depth of the deep dielectric trench;
第六步:通过离子注入并高温退火在栅沟槽与深介质沟槽之间形成P型基区;所述P型基区的深度小于栅沟槽的深度;The sixth step: forming a P-type base region between the gate trench and the deep dielectric trench by ion implantation and high temperature annealing; the depth of the P-type base region is less than that of the gate trench;
第七步:通过离子注入并退火依次形成N型漏区,N型源区及P型接触区;Step 7: N-type drain region, N-type source region and P-type contact region are sequentially formed by ion implantation and annealing;
第八步:淀积介质层,光刻,孔刻蚀;在器件表面淀积金属并刻蚀形成源电极和漏电极;翻转硅片背面金属化形成衬底电极。The eighth step: depositing a dielectric layer, photolithography, and hole etching; depositing metal on the surface of the device and etching to form source and drain electrodes; flipping the backside of the silicon wafer to metallize to form a substrate electrode.
进一步的第一步SOI材料还可以直接选用一定厚度的P型衬底材料,P型衬底的掺杂浓度为1014~1015个/cm3。In the further first step SOI material, a P-type substrate material with a certain thickness can also be directly selected, and the doping concentration of the P-type substrate is 10 14 -10 15 /cm 3 .
需要特别说明的是,本发明衬底的材料可以如实施例一般选择SOI衬底材料,也可以直接P型半导体层材料。本发明器件所用半导体材料可为硅、锗、碳化硅、氮化镓、三氧化二镓、金刚石等任何合适的半导体材料。本发明深介质沟槽4内所填充的介质层绝缘层可以采用单一介质材料,也可以采用不同的介质材料形成的复合材料,具体如二氧化硅、氮化硅、蓝宝石或其它适合的绝缘介质材料中任一种或多种。此外,本文为了简化描述,器件结构和制备方法均是以N沟道LDMOS器件为例来说明,但本发明同样适用于P沟道LDMOS器件。本发明所列举实施例及相较前述实施例的关系并非穷尽或限制,本领域技术人员在本发明说明书公开的基础上将多个技术特征进行组合得到的所有技术方案均在本发明的保护范围内,本发明器件制备方法中的工艺步骤和工艺条件可根据实际需要进行增删和调整。It should be particularly noted that, the material of the substrate of the present invention can be generally selected from the SOI substrate material as in the embodiment, or the material of the P-type semiconductor layer can be directly selected. The semiconductor material used in the device of the present invention can be any suitable semiconductor material such as silicon, germanium, silicon carbide, gallium nitride, gallium trioxide, and diamond. The dielectric layer insulating layer filled in the deep
以上结合附图对本发明的实施例进行了详细阐述,但是本发明并不局限于上述的具体实施方式,上述具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,不脱离本发明宗旨和权利要求所保护范围的情况下还可以做出很多变形,这些均属于本发明的保护。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative rather than restrictive. Under the inspiration of the present invention, many modifications can be made without departing from the spirit of the present invention and the protection scope of the claims, which all belong to the protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810991168.1A CN109166924B (en) | 2018-08-28 | 2018-08-28 | A lateral MOS type power semiconductor device and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810991168.1A CN109166924B (en) | 2018-08-28 | 2018-08-28 | A lateral MOS type power semiconductor device and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109166924A CN109166924A (en) | 2019-01-08 |
CN109166924B true CN109166924B (en) | 2020-07-31 |
Family
ID=64893215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810991168.1A Active CN109166924B (en) | 2018-08-28 | 2018-08-28 | A lateral MOS type power semiconductor device and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109166924B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113690299B (en) * | 2020-05-18 | 2024-02-09 | 华润微电子(重庆)有限公司 | Trench gate VDMOS device and preparation method thereof |
CN111933687B (en) * | 2020-07-07 | 2023-04-18 | 电子科技大学 | Lateral power device with high safety working area |
CN112164750B (en) * | 2020-09-29 | 2024-10-22 | 上海晶丰明源半导体股份有限公司 | High density integrated active capacitor |
CN113921611A (en) * | 2021-09-26 | 2022-01-11 | 重庆邮电大学 | LDMOS device with double-side super-junction trench gate |
CN114843332B (en) * | 2022-04-27 | 2023-04-25 | 电子科技大学 | Low power consumption and high reliability half-clad trench gate MOSFET device and preparation method |
CN115332323A (en) * | 2022-10-18 | 2022-11-11 | 广州粤芯半导体技术有限公司 | Semiconductor device and method of manufacturing the same |
CN115692505B (en) * | 2022-11-21 | 2024-12-06 | 武汉新芯集成电路股份有限公司 | Semiconductor device and method of manufacturing and operating the same |
CN117253924A (en) * | 2023-11-20 | 2023-12-19 | 深圳天狼芯半导体有限公司 | Silicon carbide LDMOS and preparation method |
CN117878158A (en) * | 2024-03-08 | 2024-04-12 | 粤芯半导体技术股份有限公司 | Groove gate type LDMOS device and manufacturing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1866969A2 (en) * | 2005-03-31 | 2007-12-19 | Nxp B.V. | Complementary asymmetric high voltage devices and method of fabrication |
US8564057B1 (en) * | 2007-01-09 | 2013-10-22 | Maxpower Semiconductor, Inc. | Power devices, structures, components, and methods using lateral drift, fixed net charge, and shield |
US8809949B2 (en) * | 2009-06-17 | 2014-08-19 | Infineon Technologies Austria Ag | Transistor component having an amorphous channel control layer |
CN104201206B (en) * | 2014-08-29 | 2016-09-21 | 电子科技大学 | A kind of laterally SOI power LDMOS device |
CN107808899B (en) * | 2017-10-27 | 2020-05-01 | 电子科技大学 | Lateral power device with mixed conduction mode and preparation method thereof |
-
2018
- 2018-08-28 CN CN201810991168.1A patent/CN109166924B/en active Active
Non-Patent Citations (2)
Title |
---|
具有半绝缘多晶硅完全三维超结横向功率器件;曹震,段宝兴,袁小宁,杨银堂;《物理学报》;20150818;第64卷(第18期);全文 * |
绝缘栅双极型晶体管的研究进展;张金平,李泽宏,任敏,陈万军,张波;《中国电子科学研究院学报》;20140420;第9卷(第2期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109166924A (en) | 2019-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109166924B (en) | A lateral MOS type power semiconductor device and its preparation method | |
US8872264B2 (en) | Semiconductor device having a floating semiconductor zone | |
CN109166915B (en) | A kind of dielectric superjunction MOS type power semiconductor device and preparation method thereof | |
CN102456718B (en) | Novel upper structure of insulated gate bipolar transistor device for improving device performance | |
CN109119461B (en) | Super-junction MOS type power semiconductor device and preparation method thereof | |
CN103715238B (en) | A kind of lateral high-voltage device of Ultra-low Specific conducting resistance | |
JP2018186270A (en) | SiC semiconductor device having an offset at the bottom of the trench | |
CN107808899B (en) | Lateral power device with mixed conduction mode and preparation method thereof | |
CN104538446A (en) | Bidirectional MOS type device and manufacturing method thereof | |
US11374119B2 (en) | Semiconductor device and method of manufacturing the same | |
CN105990423A (en) | Transverse dual-field-effect tube | |
CN118486734A (en) | Silicon carbide trench gate metal oxide semiconductor field effect transistor and preparation method thereof | |
US11264475B2 (en) | Semiconductor device having a gate electrode formed in a trench structure | |
CN110518058A (en) | A kind of lateral trench type insulated gate bipolar transistor and preparation method thereof | |
CN116598358A (en) | A trench type power MOSFET device and process flow | |
CN108447905A (en) | A super-junction IGBT with a trench-isolated gate structure | |
CN107785414B (en) | Lateral power device with mixed conduction modes and method of making the same | |
CN107785433B (en) | Stepped high-K dielectric layer wide band gap semiconductor longitudinal double-diffusion metal oxide semiconductor field effect transistor | |
CN110459596B (en) | Transverse insulated gate bipolar transistor and preparation method thereof | |
US20140084334A1 (en) | Power semiconductor device | |
CN110459609B (en) | Short-circuit anode thin-layer high-voltage power device | |
CN110504313B (en) | A lateral trench type insulated gate bipolar transistor and its preparation method | |
CN118472038A (en) | A trench superjunction SiC VDMOSFET device | |
CN117650158A (en) | Wide bandgap semiconductor trench MOSFET device and manufacturing method thereof | |
CN115050815B (en) | Self-protection semiconductor structure and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |